

(1) Numéro de publication:

0 473 497 A1

DEMANDE DE BREVET EUROPEEN

(21) Numéro de dépôt: 91402287.6

(51) Int. Cl.5: H01Q 3/24

2 Date de dépôt: 21.08.91

3 Priorité: 21.08.90 FR 9010528

43 Date de publication de la demande: 04.03.92 Bulletin 92/10

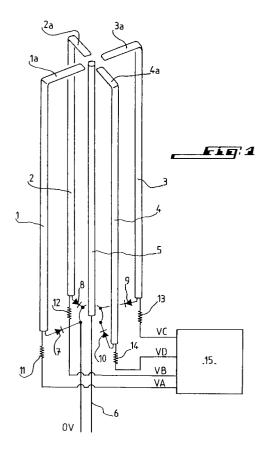
Etats contractants désignés:

AT BE CH DE DK ES GB GR IT LI LU NL SE

Demandeur: SOCIETE D'ETUDES ET DE REALISATION DE PROTECTION ELECTRONIOUE INFORMATIOUE ELECTRONIOUE SECURITE MARITIME S.E.R.P.E.-I.E.S.M.

Eillage du Hirgoat, ZI des 5 chemins

F-56520 Guidel(FR)


Inventeur: Audren, James 7 Résidence Pen Glanic F-56520 Guidel(FR) Inventeur: Brault, Patrice 11 Rue Guédan F-56100 Lorient(FR)

Mandataire: Berger, Helmut et al Cabinet Z. WEINSTEIN 20, avenue de Friedland F-75008 Paris(FR)

- Dispositif formant antenne émettrice ou réceptrice d'ondes de haute fréquence.
- © La présente invention concerne un dispositif formant antenne émettrice ou réceptrice d'ondes de haute fréquence.

Le dispositif est caractérisé en ce qu'il comprend quatre tiges verticales parasites (1-4) disposées symétriquement à une tige verticale centrale (5) et des éléments de commutation (7-10) commandés par un circuit de commande (15) de façon que les tiges parasites (1-4) soient amenées successivement et périodiquement à la masse par le circuit de commande (15).

Le dispositif trouve application dans le domaine de la radiogonométrie.

10

15

25

40

45

50

55

La présente invention concerne un dispositif formant antenne émettrice ou réceptrice d'ondes de haute fréquence à diagramme de rayonnement d'orientation variable par rotation de celui-ci.

On connait de tels dispositifs plus couramment appelés à guidage électronique consistant généralement en plusieurs antennes reliées par des réseaux à déphasage approprié créant un circuit de combinaison ou de distribution, le guidage consistant à faire varier un ou plusieurs réseaux à déphasage.

Cependant, ces dispositifs connus nécessitent des réseaux complexes de déphasage et de multiples descentes d'antenne.

La présente invention a pour but d'éliminer les inconvénients ci-dessus en proposant un dispositif formant antenne émettrice ou réceptrice d'ondes de haute fréquence à diagramme de rayonnement d'orientation variable par rotation à l'aide d'un circuit électronique de commande, et caractérisé en ce qu'il comprend au moins trois tiges conductrices verticales parasites disposées concentriquement à une quatrième tige conductrice centrale verticale reliée au fil de descente d'antenne et en ce que les tiges parasites sont amenées périodiquement au moins individuellement à un potentiel de masse respectivement par des éléments de commutation commandés par le circuit de commande de façon que la ou les tiges parasites à la masse forment avec la tige centrale un ou des doublets accordés et que la ou les tiges parasites restantes non à la masse forment des éléments directeurs du rayonnement.

Avantageusement, le dispositif comprend quatre tiges parasites disposées symétriquement à la tige centrale et amenées à la masse successivement par le circuit de commande de façon que le diagramme de rayonnement ait une configuration cardioïde.

De préférence, le circuit de commande comprend un diviseur, dont les sorties délivrent les signaux de commande respectivement des éléments de commutation en synchronisme avec un signal d'horloge appliqué à l'entrée d'horloge du diviseur ayant une fréquence multiple de la fréquence de chaque signal de commande ou fréquence de rotation de l'antenne, le signal d'horloge comportant une partie de signal de réinitialisation du diviseur et étant transmis sur une ligne conductrice reliée au fil de descente d'antenne.

Le circuit de commande comprend de plus un circuit de formation du signal d'horloge comprenant un microprocesseur ou un compteur-décodeur délivrant deux signaux de commande, l'un d'activation ou de désactivation d'un transistor à la fréquence multiple de la fréquence de rotation de l'antenne et l'autre d'activation d'un autre transistor pendant une durée correspondant audit multiple de la fré-

quence de rotation de l'antenne à chaque période de rotation de l'antenne, les collecteurs des deux transistors étant reliés en commun et un transistor émetteur-suiveur, dont la base est commandée par les collecteurs en commun des deux autres transistors et fournissant sur la ligne de transmission précitée le signal d'horloge présentant un niveau bas de tension constituant la partie de réinitialisation du diviseur appliqué à ce dernier par un transistor de réinitialisation, suivi de niveaux hauts de tension appliqués à l'entrée d'horloge du diviseur par un transistor porté à saturation par ces niveaux hauts.

Le dispositif comprend de plus deux inductances de valeurs suffisantes pour isoler le signal de haute fréquence passant la ligne de transmission précitée du circuit de commande des éléments de commutation.

Avantageusement, les éléments de commutation sont constitués par des diodes, dont les cathodes sont reliées en commun au potentiel de masse et les anodes reliées respectivement aux extrémités inférieures des tiges parasites, qui sont également reliées respectivement aux sorties du diviseur du circuit de commande par l'intermédiaire de résistances.

L'invention sera mieux comprise et d'autres buts, caractéristiques, détails et avantages de celle-ci apparaîtront plus clairement au cours de la description explicative qui va suivre faite en référence aux dessins schématiques annexés donnés uniquement à titre d'exemple illustrant un mode de réalisation de l'invention et dans lesquels.

La figure 1 représente une vue schématique en perspective de l'antenne conforme à l'invention associée à un circuit de commande.

La figure 2 représente un schéma électronique du circuit de commande.

La figure 3 représente des signaux de commande d'éléments de commutation associés à l'antenne.

La figure 4 représente le diagramme de rayonnement de l'antenne de la figure 1.

En se reportant aux figures, l'antenne conforme à l'invention, utilisée comme radiogoniomètre, comprend de préférence quatre tiges conductrices parasites verticales 1-4 disposées symétriquement à une tige centrale conductrice verticale 5 en étant très proches de cette dernière, par exemple d'une distance de $0,14\lambda$, où λ est la longueur d'onde du signal de haute fréquence émis ou reçu par l'antenne. La longueur de chacune des tiges verticales 1-5 correspond à $1/4\lambda$. La tige centrale 5 a son extrémité inférieure reliée électriquement à un fil de descente d'antenne 6 raccordé à un émetteur ou un récepteur (non représenté) du signal de haute fréquence. Les tiges parasites 1-4 ont chacune de leurs extrémités supérieures prolongées

par une section horizontale 1a-4a dirigée vers l'extrémité supérieure de la tige centrale 5 afin d'augmenter la capacité de la tige centrale 5 par rapport à chaque tige environnante parasite 1-4. Les extrémités inférieures des tiges parasites 1-4 sont reliées respectivement aux anodes de quatre diodes à capacité variable 7-10, dont les cathodes sont reliées en commun à un potentiel de masse (0 volt). Les extrémités inférieures des tiges 1-4 sont également reliées respectivement à des résistances 11-14, dont les bornes opposées à celles reliées aux tiges 1-4 sont reliées respectivement à quatre sorties d'un circuit électronique de commande 15. Le circuit 15 est adapté pour fournir périodiquement des signaux de commande VA, VB, VC, VD respectivement des diodes 7-10 à travers les résistances 11-14 de façon à rendre les diodes 7-10 successivement conductrices et porter ainsi successivement les tiges parasites 1-4 au potentiel de masse.

Le circuit de commande 15 comprend un diviseur octal 16, connu en soi, dont les sorties Q0 à Q3 délivrent respectivement les signaux de commande VA à VD des diodes 7-10 par les résistances 7-14 en synchronisme avec un signal d'horloge S obtenu à partir d'un circuit de formation 17 qui sera décrit ultérieurement. L'entrée d'horloge CLK du diviseur 16 est reliée à la jonction commune de deux résistances R1 et R2, la résistance R1 ayant son autre borne reliée à la masse tandis que l'autre borne de la résistance R2 est reliée au collecteur d'un transistor T1, dont la base est reliée à un potentiel positif d'alimentation et à une borne d'un condensateur C1, dont l'autre borne est reliée à la masse. L'émetteur du transistor T1 est relié à la cathode d'une diode D1 de protection en polarisation inverse de la base-émetteur du transistor T1. L'anode de la diode D1 est reliée à une résistance R3 également reliée à la base d'un transistor T2 de réinitialisation du diviseur 16. Une résistance R4 est reliée entre la base du transistor T2 et la masse. Le transistor T2 a son émetteur relié à la masse et son collecteur relié à l'entrée de réinitialisation ou de remise à zéro du diviseur 16. Une résistance R5 relie également le collecteur du transistor T2 au potentiel positif d'alimentation. Une inductance L1 relie l'anode de la diode D1 au conducteur central 18 d'un câble coaxial, lequel conducteur 18 est relié au fil de descente d'antenne 6 par l'intermédiaire, si nécessaire, d'un condensateur C2.

Le circuit de formation 17 comprend un transistor T3 branché en émetteur-suiveur avec une diode D2 protégeant la jonction base-émetteur du transistor T3, dont l'émetteur est relié à une résistance R5 en série avec une inductance L2 reliée au conducteur 18. Le collecteur du transistor T3 est relié au potentiel positif d'alimentation et à une

résistance R6, dont l'autre borne est reliée d'une part à un condensateur C3 ayant son autre borne à la masse et d'autre part à une résistance R7 ayant son autre borne reliée à la base du transistor T3. La base du transistor T3 est ainsi connectée par la résistance R7 à une alimentation découplée par le condensateur C3 et activé par la résistance R6 à partir de l'alimentation principale. Le circuit 17 comprend de plus deux transistors T4 et T5, dont les bases sont reliées respectivement à deux résistances R8 et R9. Le collecteur du transistor T4 est relié à une résistance R10 ayant son autre borne reliée à la base du transistor T3 tandis que le transistor T5 a son collecteur relié directement à la base du transistor T3. Les transistors T4 et T5 ont de plus leurs émetteurs reliés à la masse. Les bases des transistors T4 et T5 sont commandées au travers des résistances R8 et R9 par des signaux provenant d'un circuit 19, qui peut être constitué par un microprocesseur ou un compteurdécodeur. Plus précisément, le circuit 19 est adapté pour activer ou désactiver le transistor T4 par un signal ayant une fréquence quatre fois supérieure à la fréquence Fr de rotation de l'antenne ou la fréquence de chaque signal de commande VA, VB, VC et VD de commande des diodes 7-10. Le circuit 19 est de plus adapté pour activer le transistor T5 par un signal pendant une durée correspondant à quatre fois la fréquence de rotation de l'antenne Fr à chaque rotation complète de l'antenne, c'est-à-dire que le transistor T5 est activé une fois à chaque rotation de l'antenne pendant un quart de période de la période de rotation. En choisissant convenablement les résistances R6, R7 et R10, la tension au conducteur 18 a la forme du signal S. Ainsi, le signal S comporte une partie P1 d'un niveau de tension d'approximativement 0 volt et d'une période du quart de la période correspondant à la fréquence Fr et trois parties d'horloge P2-P4, chacune d'une période correspondant à quatre fois la fréquence Fr. A l'extrémité du conducteur 18, côté antenne, l'inductance L1 alimente le circuit délivrant les signaux de commande VA-VD ; le conducteur central 18 du câble coaxial étant par ailleurs relié à l'émetteur ou au récepteur des signaux de haute fréquence par l'intermédiaire d'un condensateur C4. La valeur de chaque inductance L1 et L2 doit être suffisante pour isoler le signal de haute fréquence passant le conducteur 18 du circuit 15.

Le fonctionnement du circuit de commande de l'antenne ressort déjà de la description qui en a été faite ci-dessus et va être maintenant expliqué brièvement

Le circuit 19 attaque les bases des transistors T4 et T5 par les signaux définis ci-dessus et la base du transistor T3 est commandée par les col lecteurs des transistors T4 et T5 de façon à fournir,

50

25

par l'intermédiaire de la résistance R5 et de l'inductance L2 le signal S. Le courant provenant de l'inductance L1, par l'intermédiaire de la diode D1 et du transistor T1, charge la ligne d'alimentation du condensateur C1 à une tension proche de la tension d'alimentation de départ, qui est en fait la tension au condensateur C3 moins les trois chutes de tension de diode, pendant les trois niveaux de tension les plus élevés des parties P2, P4 du signal S. Pendant les trois niveaux hauts, le transistor T1 sature et fournit trois signaux d'horloge au diviseur 16 par l'intermédiaire des résistances R1 et R2. Pendant la période de basse tension de la partie P1 du signal S, le transistor T2 est désactivé car sa tension de base provenant des résistances R3 et R4 est trop basse. Le transistor désactivé T2 fournit alors une impulsion positive de remise à zéro du diviseur 16 de façon à mettre ainsi en place une séquence des sorties Q0, Q1, Q2, Q3 du diviseur 16 en synchronisme avec la forme d'onde du signal S. Ainsi, à l'instant de remise à zéro du diviseur 16, la sortie Q0 de celui-ci fournit la tension VA de commande de la diode 7, les sorties Q1 à Q3 étant au potentiel de 0 volt. A l'apparition de la première impulsion d'horloge appliquée au diviseur 16, la sortie Q1 de celui-ci fournit le signal de commande VB de la diode 8 en même temps que se termine le signal de commande VA, les sorties Q2 et Q3 étant toujours au potentiel de 0 volt. A l'apparition de la deuxième impulsion d'horloge, la sortie Q2 fournit le signal de commande VC de la diode 9 en même temps que se termine le signal de commande VB, les sorties Q0 et Q3 étant à 0 volt. A l'apparition de la troisième impulsion d'horloge, la sortie Q3 du diviseur 16 fournit la tension de commande VD de la diode 10 en même temps que se termine le signal de commande VC avec les sorties Q0 et Q1 au potentiel de 0 volt.

Les diodes 7 à 10 sont ainsi polarisées successivement en condition passante ou condition de haute capacité respectivement par les signaux de commande VA à VD à la fréquence de chacun de ces signaux ou fréquence de rotation de l'antenne Fr. Dans ces conditions, les tiges parasites 1-4 de l'antenne sont successivement mises à la masse à la fréquence des signaux de commande VA-VD. Ainsi, lorsque la tige 1 est mise à la masse, elle constitue alors avec la tige centrale 5 un doublet accordé ou antenne en boucle accordée en vertu de la capacité rencontrée au niveau des extrémités des tiges 1 et 5. La tige 3, diamétralement opposée à la tige 1, se comporte alors comme élément directeur parasite, électriquement court (en ce qui concerne sa longueur effective) et espacé de 0,14 λ par rapport à l'antenne active formée par les tiges 1 et 5. Si l'on considère l'antenne comme étant émettrice, la majeure partie de l'excitation due au champ rayonnant et dirigée vers la tige 3 provient de la tige centrale 5 du fait que la tige 3 est beaucoup plus proche de la tige 5 que de la tige 1 formant doublet accordé avec la tige 5. Inversement, les tiges 2 et 4 reçoivent une excitation du champ rayonnant considérable de la part de la tige 1, qui tend à annuler l'excitation provenant de la tige centrale 5 et, en conséquence, l'effet des tiges parasites 2 et 4 sur la répartition du champ est moins important que l'effet de la tige 3. Il en résulte que le diagramme de rayonnement a la forme cardioïde représentée en figure 4 lorsque les tiges 1 et 5 forment un doublet accordé. En commutant tour à tour les diodes 7 à 10, on obtient une rotation de la forme cardioïde par incréments de 90° avec bien entendu une durée de chaque signal de commande VA-VD adéquate.

L'antenne a été décrite comme comprenant quatre tiges parasites autour d'une tige centrale mais il est bien entendu que l'antenne peut comporter trois tiges verticales parasites disposées concentriquement à la tige verticale centrale de façon à être équidistante les unes des autres de 120° avec trois diodes de commutation associées respectivement aux trois tiges parasites et commandées par le circuit de commande 15, dont le diviseur délivrerait sur ses trois sorties Q0 à Q3 les trois signaux de commande VA-VC de commutation des diodes correspondantes de façon à obtenir une rotation du diagramme de rayonnement par incréments de 120°. Dans de tels cas, lorsque l'une des tiges parasites sera amenée à la masse, les deux autres tiges parasites en l'air se comporteront comme des éléments directeurs. Il est de plus à noter que le signal d'horloge S comportera une partie P1 de réinitialisation du diviseur 16 d'une durée égale au tiers de la période de rotation de l'antenne et deux parties P2 et P3 de niveaux hauts d'une fréquence de trois fois la fréquence Fr.

L'antenne peut également fonctionner avec plus que quatre tiges parasites autour de la tige centrale sans sortir du cadre de la présente invention.

De plus, l'antenne peut également fonctionner en commutant en condition passante trois diodes avec la diode restante, dans le cas de quatre diodes associées respectivement à quatre tiges parasites, en condition bloquante, ou encore avec deux diodes adjacentes en position passante et les deux autres diodes en position bloquante.

Par ailleurs, l'antenne peut être utilisée en position inversée par rapport à celle de la figure 1 si cela est nécessaire comme cela est par exemple le cas sur les hélicoptères, les avions, et.... . Enfin, le signal d'horloge S, au lieu d'être transmis sur le fil conducteur 18 au diviseur 16 à travers les enroulements L1 et L2 et les transistors T1 et T2, peut être transmis sur un fil conducteur indépendant non relié au fil de descente d'antenne 6.

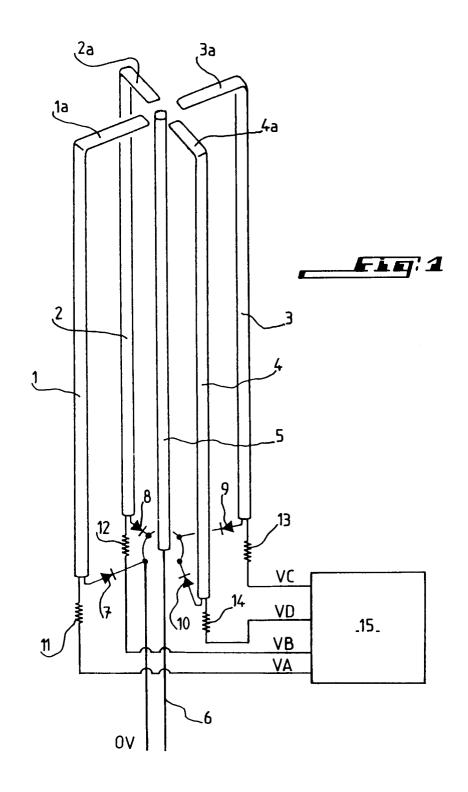
50

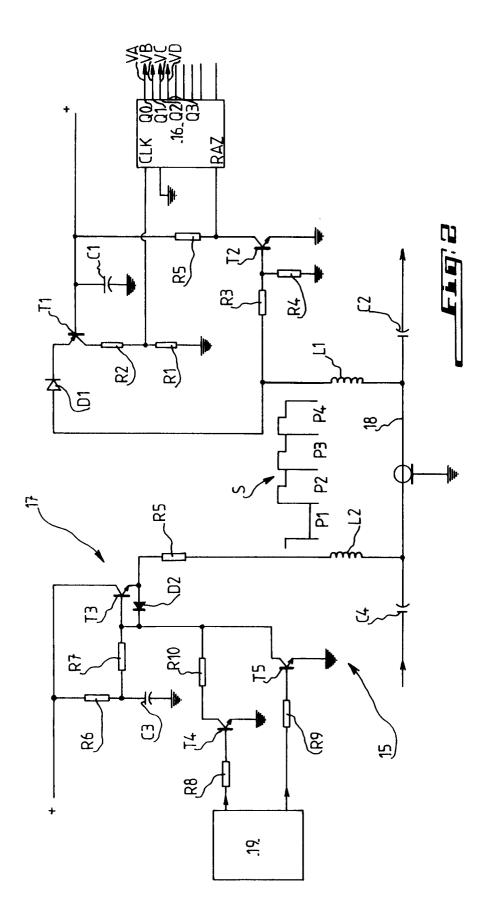
15

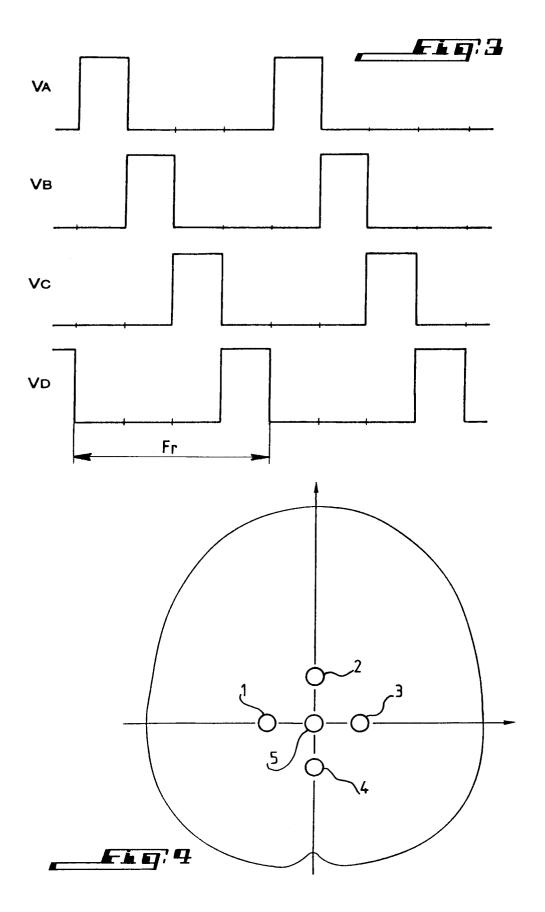
20

25

Cependant, malgré toutes les modifications possibles signalées ci-dessus de l'antenne, le meilleur mode de réalisation est celui tel que décrit en référence aux figures 1 à 4.


L'antenne conforme à l'invention a ainsi pour avantage qu'elle n'exige pas de plan de sol, ne nécessite qu'une seule descente d'antenne et est guidée électroniquement par des éléments de commutation commandés par un circuit électronique de conception relativement simple, ces éléments de commutation pouvant être constitués, à la place des diodes, par des transistors, des dispositifs à effet de champ, voire même des relais.


Revendications


- 1. Dispositif formant antenne émettrice ou réceptrice d'ondes de haute fréquence à diagramme de rayonnement d'orientation variable par rotation à l'aide d'un circuit électronique de commande, caractérisé en ce qu'il comprend au moins trois tiges conductrices verticales parasites (1-3) disposées concentriquement à une quatrième tige conductrice centrale verticale (5) reliée au fil de descente d'antenne (6) et en ce que les tiges parasites sont amenées périodiquement au moins individuellement à un potentiel de masse respectivement par des éléments de commutation (7-9) commandés par le circuit de commande (15) de façon que la ou les tiges parasites (1-3) forment avec la tige centrale (5) un ou des doublets accordés et que la ou les tiges parasites restantes non à la masse forment des éléments directeurs du rayonnement, en ce que les tiges parasites (1-3) sont situées à une distance de la tige centrale (5) égale à 0,14 λ et ont avec la tige centrale (5) une longueur égale à 1/4 λ οù λ est la longueur d'onde, et en ce que les tiges parasites ont chacune de leur extrémité supérieure prolongée par une section horizontale (1a-3a) dirigée vers la tige centrale (5) de façon à augmenter la capacité de cette dernière par rapport à chaque tige parasite.
- 2. Dispositif selon la revendication 1, caractérisé en ce que qu'il comprend quatre tiges parasites (1-4) disposées symétriquement à la tige centrale (5) et amenées à la masse successivement par le circuit de commande (15) de quatre éléments de commutation (7-10) de façon que le diagramme de rayonnement ait une configuration cardioïde.
- 3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que le circuit de commande (15) comprend un diviseur (16), dont les sorties (Q0-Q3) délivrent les signaux de commande

- (VA-VD) respectivement des éléments de commutation (7-10) en synchronisme avec un signal d'horloge (S) appliqué à l'entrée horloge du diviseur (16) ayant une fréquence multiple de la fréquence de chaque signal de commande (VA; VB; VC; VD) ou fréquence de rotation de l'antenne (Fr), le signal d'horloge (S) comportant une partie (P1) de signal de réinitialisation du diviseur (16) et étant transmis sur une ligne conductrice (18) reliée au fil de descente de l'antenne (6).
- Dispositif selon la revendication 3, caractérisé en ce que le circuit de commande (15) comprend de plus un circuit (17) de formation du signal d'horloge (S) comprenant un microprocesseur ou un compteur-décodeur (19) délivrant deux signaux de commande, l'un d'activation ou de désactivation d'un transistor (T4) à la fréquence multiple de la fréquence de rotation de l'antenne (Fr) et l'autre d'activation d'un autre transistor (T5) pendant une durée correspondant audit multiple de la fréquence de rotation de l'antenne (Fr) à chaque période de rotation de l'antenne. les collecteurs des transistors (T4, T5) étant reliés en commun, et un transistor émetteur-suiveur (T3), dont la base est commandée par les collecteurs en commun des deux autres transistors (T4, T5) et fournissent sur la ligne de transmission (18) précitée le signal d'horloge (S) présentant un niveau bas de tension constituant la partie de réinitialisation du diviseur (16) appliqué à ce dernier par un transistor de réinitialisation (T2), suivi de niveaux hauts de tension appliqués à l'entrée horloge du diviseur (16) par un transistor (T1) porté à saturation par ces niveaux hauts.
- 5. Dispositif selon la revendication 3 ou 4, caractérisé en ce qu'il comprend deux inductances (L1, L2) de valeur suffisante pour isoler le signal de haute fréquence passant à travers la ligne de transmission (18) précitée du circuit de commande (15).
 - 6. Dispositif selon l'une des revendications précédentes, caractérisé en ce que les éléments de commutation (7-10) sont constitués par des diodes, dont les cathodes sont reliées en commun en potentiel de masse et les anodes reliées respectivement aux extrémités inférieures des tiges parasites (1-4), qui sont également reliées respectivement aux sorties (Q0, Q1, Q2, Q3) du diviseur (16) par l'intermédiaire de résistances (11-14).
 - 7. Dispositif selon l'une des revendications précé-

dentes, caractérisé en ce qu'il est utilisé comme radiogoniomètre.

Office européen des brevets

EP 91 40 2287

DOCUMENTS CONSIDERES COMME PERTINENTS Revendication Citation du document avec indication, en cas de besoin, CLASSEMENT DE LA DEMANDE (Int. CI.5) Catégorie des parties pertinentes concernée US-A-3 560 978 (HIMMEL, L. ET. AL.) 1-4 H 01 Q 3/24 * colonne 2, ligne 5 - ligne 40; revendications 1-3; figures 1,2 Α FR-A-2 264 405 (LE MATERIEL TELEPHONIQUE) 1,2,7 * page 2, ligne 25 - ligne 29 * * * page 5, ligne 33 - page 6, ligne 11; revendication 1; figure 1 * * US-A-3 218 645 (EHRENSPECK, H. W.) Α 1 * colonne 2, ligne 25 - ligne 65; figure 1 * * Α US-A-4 260 994 (PARKER, E. G.) 1-3 * colonne 2, ligne 55 - ligne 64 * * * colonne 4, ligne 43 ligne 55 * * * colonne 5, ligne 33 - ligne 58; revendications 1,2; figure 1 * * DOMAINES TECHNIQUES RECHERCHES (Int. CI.5) H 01 Q Le présent rapport de recherche a été établi pour toutes les revendications Lieu de la recherche Date d'achèvement de la recherche Examinateur BUTLER N.A. La Haye 28 novembre 91 CATEGORIE DES DOCUMENTS CITES E: document de brevet antérieur, mais publié à la X: particulièrement pertinent à lui seul date de dépôt ou après cette date Y: particulièrement pertinent en combinaison avec un D: cité dans la demande autre document de la même catégorie L: cité pour d'autres raisons A: arrière-plan technologique O: divulgation non-écrite &: membre de la même famille, document P: document intercalaire correspondant T: théorie ou principe à la base de l'invention