

Europäisches Patentamt
European Patent Office
Office européen des brevets

⑪ Publication number:

0 479 365 A1

⑫

EUROPEAN PATENT APPLICATION

⑬ Application number: 91202454.4

⑮ Int. Cl. 5: F21V 7/04

⑭ Date of filing: 23.09.91

⑯ Priority: 01.10.90 NL 9002136

W-2000 Hamburg 1(DE)

DE

⑰ Date of publication of application:
08.04.92 Bulletin 92/15

⑯ Inventor: Geboers, Jaak Maria Jozef
c/o Internationaal Octrooibureau B.V.

⑯ Designated Contracting States:
BE DE ES FR GB IT NL

Prof. Holstlaan 6 NL-5656 AA Eindhoven(NL)

⑰ Applicant: N.V. Philips' Gloeilampenfabrieken
Groenewoudseweg 1
NL-5621 BA Eindhoven(NL)

Inventor: Kiesling, Manfred

⑯ BE ES FR GB IT NL

c/o Internationaal Octrooibureau B.V.

⑰ Applicant: Philips Patentverwaltung GmbH
Wendenstrasse 35 Postfach 10 51 49

Prof. Holstlaan 6 NL-5656 AA Eindhoven(NL)

⑯ Representative: Rooda, Hans et al

INTERNATIONAAL OCTROOIBUREAU B.V.

Prof. Holstlaan 6

NL-5656 AA Eindhoven(NL)

⑮ Illumination device and capped lamp/reflector unit for use therein.

⑯ The illumination device comprises a housing (20), a lampholder (21), a reflector (1) and an electric lamp (3) having a base (6) rigidly connected to its light-diffusing lamp vessel (4). A light source (5) within the lamp vessel (4) is disposed substantially coaxially with an optical axis (2) of the reflector (1).

The reflector (1) is polygonal in cross sections transverse to its axis (2) and shapes the light generated into a beam, the intensity of which increases from I_0 along the optical axis (2) to a value of 105 to 130% thereof at an angle of 5 to 25% to the axis.

Scenes illuminated by the device yield evenly exposed photo, film and video images.

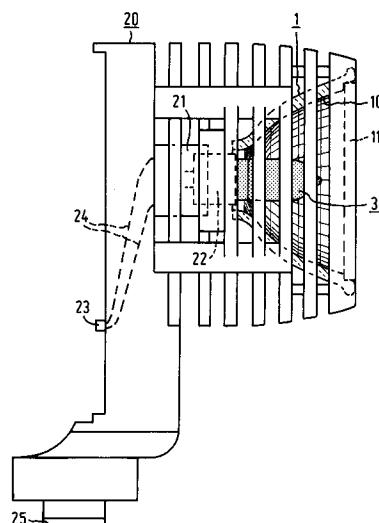


FIG.3

The invention relates to an illumination device comprising:

- a housing,
- a lampholder and a concave reflector having an optical axis in the housing;
- an electric lamp comprising: a light-diffusing lamp vessel, a gas filling, and an electric element inside the lamp vessel, arranged inside the reflector and substantially coaxial with the reflector;
- a lamp cap securely connected to the lamp vessel and accommodated in the lampholder.

5 The invention also relates to a capped lamp/ reflector unit suitable for use in this device.

Such a device is known from EP 0 168 016A. The known device is designed for use as a portable mine illumination device. Its electric lamp has an outer bulb which scatters light just as, or instead of the lamp 10 vessel.

Without a light-scattering lamp vessel and/or outer bulb, the lamp in conjunction with the reflector would give a narrow light beam with a high intensity in the beam centre and a quick intensity decrease at small angles to the centre. If an envelope having a light-scattering surface obtained by sandblasting or chemical etching is used, the intensity in the beam centre is much lower and the intensity initially decreases slowly 15 from the centre, and later more quickly. The beam as a result is much wider. A larger surface can be illuminated with the beam, but less brightly. A further intensification of these effects is obtained through the use of a second light-scattering envelope.

20 A disadvantage of an envelope frosted by sandblasting, and similarly of such an envelope frosted chemically, is that the frosting causes some reduction of the luminous flux, approximately 5 to 6 percents, as a result of light absorption.

Light-scattering means are also used in commercially available illumination devices of the construction described and designed for making video registrations. Thus, devices are known in which the luminous window of the reflector is covered by a frosted pane; other devices have reflectors whose concave surface is rough.

25 Light-scattering means not only yield a wider beam of a lower intensity in the centre thereof and a gradual decrease of this intensity outside the centre, but also a greater rotational symmetry of the beam. Deviations in the rotational symmetry of the lamp itself, for example, owing to a current supply conductor which runs alongside the light source, are reduced by such means, while the evenness of the beam is increased. A screen illuminated with such a beam has an illuminated field which is to a considerable degree 30 rotationally symmetrical. The illuminated field has an illuminance which is very even, not only as regards rotational symmetry, but also diametrically: a comparatively high illuminance in the centre and a gradual decrease therefrom towards the outer edge.

The known illumination devices, however, have the disadvantage that video, film, or photographic shots 35 of a poor illumination quality are obtained when these devices are used, in spite of the evenness of the beam formed by these devices and the even illumination of the field covered by this beam.

The invention has for its object to provide an illumination device of the kind described in the opening paragraph as well as a lamp/reflector unit suitable therefore, which renders images of a high illumination quality possible.

According to the invention, this object is achieved in that the reflector is a polygon in cross-sections 40 transverse to its axis and forms a light beam whose intensity around the optical axis in a direction away from this axis up to a direction which encloses an angle of between 5 and 25° with this optical axis increases to a value which lies between 105 and 130% of the intensity on the optical axis.

The size of the said angle is chosen in dependence on the aperture angle of the objective of the camera in conjunction with which the device or the lamp/reflector unit is to be used.

45 When a screen is irradiated with the beam formed by the illumination device, an illuminated field is obtained which is diametrically uneven, but is to a high degree rotationally symmetrical. Nevertheless, a picture shot of this field surprisingly is of a very good and even illumination quality.

The invention is based on the following insight.

The illumination quality of a field as judged by the eye is not a measure for the illumination quality of 50 pictures obtained of that field. The human eye expects a field having a high illuminance in the centre and a gradual, strong or less strong decrease from there towards the edge when a screen is irradiated with a light beam. If the said decrease is even around the centre of the field, the field is subjectively judged by the eye as being evenly illuminated. A screen illuminated by a device according to the invention does not have the greatest illuminance in the centre of the field and is accordingly not judged by the eye as evenly 55 illuminated, but as a field having a dark spot in the centre. When a picture made by a camera is judged, however, the viewer does not start from the assumption that the picture is made with the use of a movie light. It is required that the picture of the recorded field has the same brightness everywhere.

The camera which records the picture is objective. It only registers where how much light originates

from the various spots of the field and enters the objective, and records these data. In the centre of the field only light coming from a movie light is incident perpendicularly on the screen and is sent to the objective of the camera by mirrored reflection, while from other spots only a small portion of the incident light will arrive and end up in the objective of the camera as a result of diffuse scattering. Light mirrored from these other 5 spots will not enter the objective since it is reflected sideways of the camera. In order to obtain through diffuse scattering more light in the objective from spots around the centre, accordingly, not less, as is usual, and not as much, but even more light must be directed towards these spots than to the centre. So to the eye the centre must appear darker.

To achieve that the reflector sufficiently spreads the light generated by the light source, it is necessary 10 for the reflector to be a polygon in cross-sections transverse to the optical axis, *i.e.* to have lanes which run in axial direction and which are plane in a direction transverse to the axis. The light-scattering lamp vessel thereby prevents radial dark lines appearing on a screen illuminated by the device, formed by the axial bends in the reflector, the lines along which the lanes adjoin one another.

Being aware of the insight as described and the measure arising from it, those skilled in the art are 15 definitely capable of designing a reflector with a defined reflector size for a defined light source which yields in conjunction with the said light source the light beam as formed by the device according to the invention.

In an attractive embodiment of the device and of the lamp/reflector unit according to the invention, the reflector is faceted, *i.e.* the axial lanes have bends in axial direction. The reflector may then be built up of 20 bent rings which encircle the axis.

The reflector may be a total reflector made of metal, for example of aluminium, or of, for example, glass or synthetic material vapourized with metal, or alternatively a cold-beam mirror: a selective reflector which mainly reflects the visible radiation and transmits infrared radiation. A dichroic mirror may be used for this, 25 built up of alternating layers of high and of low refractive index on a body of, for example, glass or synthetic material.

The electric element of the lamp may be an incandescent body, for example of tungsten, the gas filling then containing a halogen or halogen compound, for example HBr, or alternatively a pair of electrodes. In the latter case the gas filling may be, for example, xenon under high pressure, for example several kPa, possibly with mercury and/or a metal halide.

30 It is favourable to close off the reflector with a light-transmitting, for example transparent glass disc. This measure promotes safety since contact with the lamp vessel is made impossible. Touching of the lamp vessel can involve the risk of burning or singeing, while contact with a cold lamp is to be avoided as well, to counteract pollution and the risk of crystallization of the glass. The escape of UV radiation is also counteracted. In a favourable embodiment, the disc has a glued connection with the reflector, for example, 35 by means of silicone glue. The glued connection may have interruptions along the circumference of the disc, so that the space inside the reflector is in contact with the surroundings and can ventilate.

The base of the lamp may be integral with the reflector or with the lamp vessel. The base may be, for example, a neck-shaped portion of the reflector, in which portion the lamp vessel may be fixed by means of, for example, cement or mechanical means. The base may alternatively be, for example, a seal of the 40 lamp vessel around a current supply conductor to the electric element, for example a wedge base. It is also possible for a separate body to be fastened to the reflector or to the lamp vessel by way of lamp cap. In an alternative embodiment of the device, the electric lamp is indetachably included in the reflector. The differences between these embodiments are of no influence on the essence of the invention.

In a preferred embodiment, the lamp vessel is satin-frosted in order to render it light-scattering. The 45 lamp vessel as a result has a warm-white silky appearance in contrast to a lamp vessel frosted by etching or sandblasting, which is grey. The advantage is that the lamp vessel absorbs substantially no light, at most only 1-2%, which can be ascertained by comparing the quantity of light generated with the quantity of light generated by the same lamp after the lamp vessel has been made transparent again by etching with HF. Satin-frosting of the lamp vessel may be realised, for example, by means of a suspension of ammonium 50 bifluoride in HF.

Embodiments of the illumination device and of the lamp/reflector unit according to the invention are shown in the drawings.

In the drawings

Fig. 1 shows the lamp/reflector unit partly in side elevation, partly in cross-section;

55 Fig. 2 graphically represents the luminous intensity distribution of the beam formed by the unit of Fig. 1; and

Fig. 3 shows the illumination device in side elevation with the reflector in axial cross-section.

The lamp/reflector unit of Fig. 1 has a concave reflector 1 having an optical axis 2. An electric lamp 3

has a light-scattering lamp vessel 4, for example of glass having an SiO_2 content of at least 95% by weight, such as quartz glass. The lamp vessel 4 has an electric element 5 inside the reflector 1 and substantially coaxial with the reflector 1. In the Figure, the electric element is an incandescent body, while the lamp vessel has a gas filling comprising a halogen compound. A lamp cap 6 is securely connected to the lamp vessel 4. In the unit drawn, the lamp cap 6 and the lamp vessel 4 are fastened to the reflector 1 with cement.

5 The reflector 1 is a polygon in cross-sections transverse to its axis 2, forming a light beam whose intensity around the optical axis 2, in a direction away from this axis up to a direction which encloses an angle of between 5 and 25° with this optical axis 2, increases to a value which lies between 105 and 130% of the intensity on the optical axis.

10 In these Figures, the corner points of the polygons of the cross-sections transverse to the optical axis 2 are represented with lines 7. The lines mark the lateral boundaries of the axially extending lanes 8, which are plane in these cross-sections.

15 In the same Figure, a second embodiment is indicated above the optical axis 2, in which the lanes 8 of the portion below the optical axis are subdivided into facets 9, which are flat also in axial direction of the reflector.

20 The reflector has a mirroring surface 10, in the drawing an interference filter of alternating layers of SiO_2 of low refractive index and ZnS of high refractive index, which reflects visible radiation and transmits IR radiation.

25 A flat disc 11, for example made of glass, closes the reflector 1. The disc has an interrupted glue connection 12 with the reflector 1 of, for example, silicone cement.

The lamp vessel 4 is satin-frosted and has a warm-white silky surface.

The reflecting surface of the reflector of Fig. 1 goes through points having the coordinates given in Table 1. In this Table, the x-axis coincides with the optical axis and the y-axis is perpendicular thereto.

25

Table 1

	x (mm)	y (mm)
30	0.000	3.000
	0.230	4.334
	0.681	5.826
	1.411	7.537
	2.532	9.569
35	4.255	12.104
	6.843	14.086
	10.397	16.222
	15.410	18.512
40	19.700	19.930

In the embodiment having lanes 8, a fluent line goes through these coordinates, lying centrally between two lateral boundaries 7. In the embodiment having facets, straight line sections run between the coordinates and over the centres of the facets. Both the lanes 8 and the facets 9 have a centre angle of 10°. In the embodiment drawn, accordingly, there are 36 lanes or 36 rows of facets, as the case may be.

45 The lamp cap 6 has a lateral profile 13 for positive retention by a lampholder.

The lamp/reflector unit of Fig. 1 was manufactured in various versions, the characteristic parameters of which are listed in Table 2.

50

55

Table 2

Incandescent body					
	Power (W)	Voltage (V)	Ø (mm)	Length (mm)	Centre (x-coord.)
5	20	6	0.714	1.36	5.5
	35	6	1.085	1.45	5.5
	50	6	1.264	1.96	5.4
	35	12	1.000	2.46	5.1
	50	12	1.283	2.63	5.2

Fig. 2 shows the typical light intensity distribution in the light beam formed by the unit of Fig. 1. Starting from the centre of the beam, from the optical axis of the reflector, the luminous intensity I increases around this axis from the value I_0 to a value lying between 105 and 130, i.e. approximately 112% of I_0 , at an angle to the optical axis which lies between 5 and 25°, here approximately 11°. The intensity of the beam increases from the centre gradually up to this angle of 11°, and does not reach the value of the beam centre until at an angle of more than 15°. As a result, the unit gives a picture of the scenes illuminated by the unit which is evenly exposed.

In Fig. 33, the illumination device has a housing 20 in which a lampholder 21 is mounted. The lamp cap 22 of an electric lamp 3 (see also Fig. 1) is held in the lampholder 21. A reflector 1 (see also Fig. 1) is inside the housing 20, surrounding the electric lamp 3 with its optical axis 2 coaxial with the electric element of the lamp. The device has contacts 23 for making electrical contacts with a battery by means of snap connections. The contacts are connected to the lampholder 21 via cables 24. The device has a base 25 for mounting on a camera.

Claims

1. An illumination device comprising:
 - a housing (20),
 - a lampholder (21) and a concave reflector (1) having an optical axis (2) in the housing;
 - an electric lamp (3) comprising: a light-diffusing lamp vessel (4), a gas filling, and an electric element (5) inside the lamp vessel, arranged inside the reflector (1) and substantially coaxial with the reflector;
 - a lamp cap (6) securely connected to the lamp vessel (4) and included in the lampholder;
 characterized in that the reflector (1) is a polygon in cross-sections transverse to its axis (2) and forms a light beam whose intensity around the optical axis (2), in a direction away from this axis up to a direction which encloses an angle of between 5 and 25° with this optical axis, increases to a value which lies between 105 and 130% of the intensity on the optical axis.
2. An illumination device as claimed in Claim 1, characterized in that the reflector (1) has facets (9).
3. An illumination device as claimed in Claim 1 or 2, characterized in that the reflector (1) has a dichroic mirror (10).
4. An illumination device as claimed in Claim 1 or 2, characterized in that a transparent disc (11) closes off the reflector (1).
5. An illumination device as claimed in Claim 4, characterized in that the disc (11) has an interrupted glue connection (12) with the reflector (1).
6. An illumination device as claimed in Claim 1 or 2, characterized in that the lamp vessel (4) is satin-frosted.
7. A lamp/reflector unit suitable for use in an illumination device as defined in Claim 1 provided with
 - a concave reflector (1) having an optical axis (2);
 - an electric lamp (3) comprising: a light-scattering lamp vessel (4), a gas filling, and an electric element (5) in the lamp vessel, inside the reflector (1) and substantially coaxial with the reflector;

- a lamp cap (6) securely connected to the lamp vessel (4), in which the reflector (1) is a polygon in cross-sections transverse to its axis (2) and forms a light beam whose intensity around the optical axis, in a direction away from this axis (2) up to a direction which encloses an angle between 5 and 25° with this optical axis, increases to a value which lies between 105 and 130%
5 of the intensity on the optical axis.

8. A lamp/reflector unit as claimed in Claim 7, characterized in that the reflector (1) has facets (9).

9. A lamp/reflector unit as claimed in Claim 7 or 8, characterized in that the reflector (1) has a dichroic
10 mirror (10).

10. A lamp/reflector unit as claimed in Claims 7 or 8, characterized in that a transparent disc (11) closes off the reflector (1).

15 11. A lamp/reflector unit as claimed in Claim 10, characterized in that the disc (11) has an interrupted glue connection (12) with the reflector (1).

12. A lamp/reflector unit as claimed in Claim 7 or 8, characterized in that the lamp vessel (4) is satin-frosted.
20

25

30

35

40

45

50

55

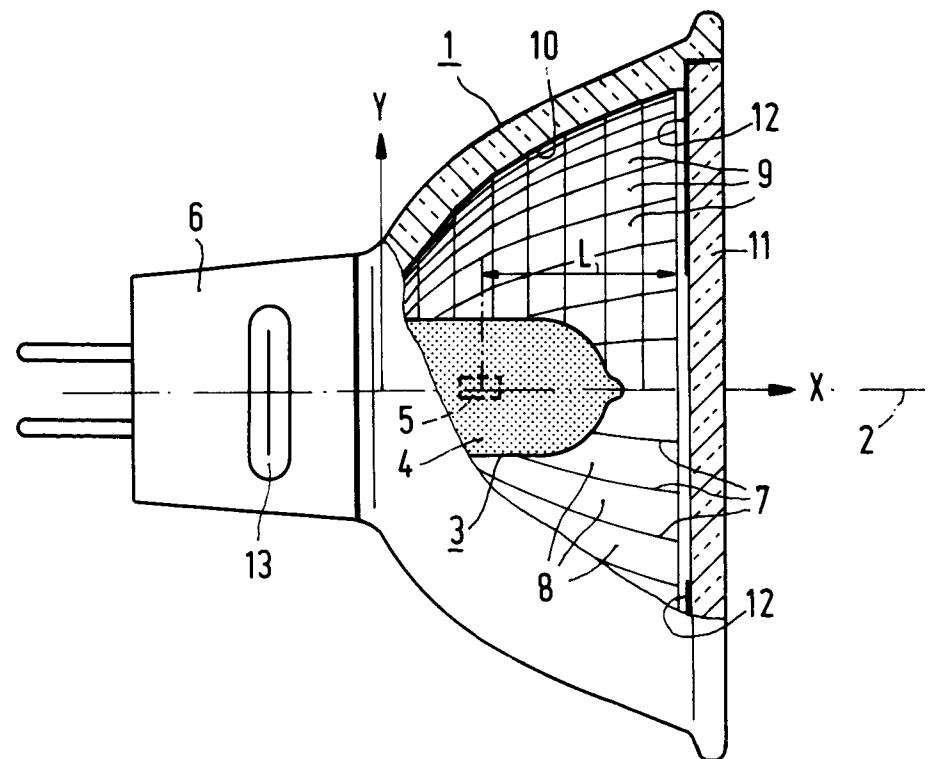


FIG.1

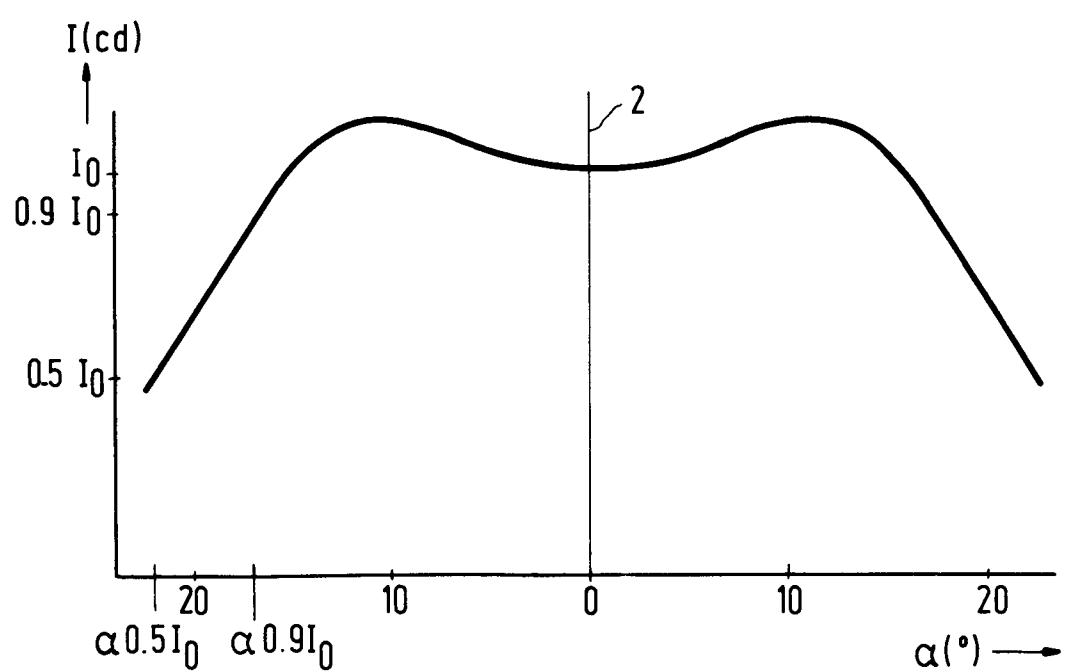


FIG.2

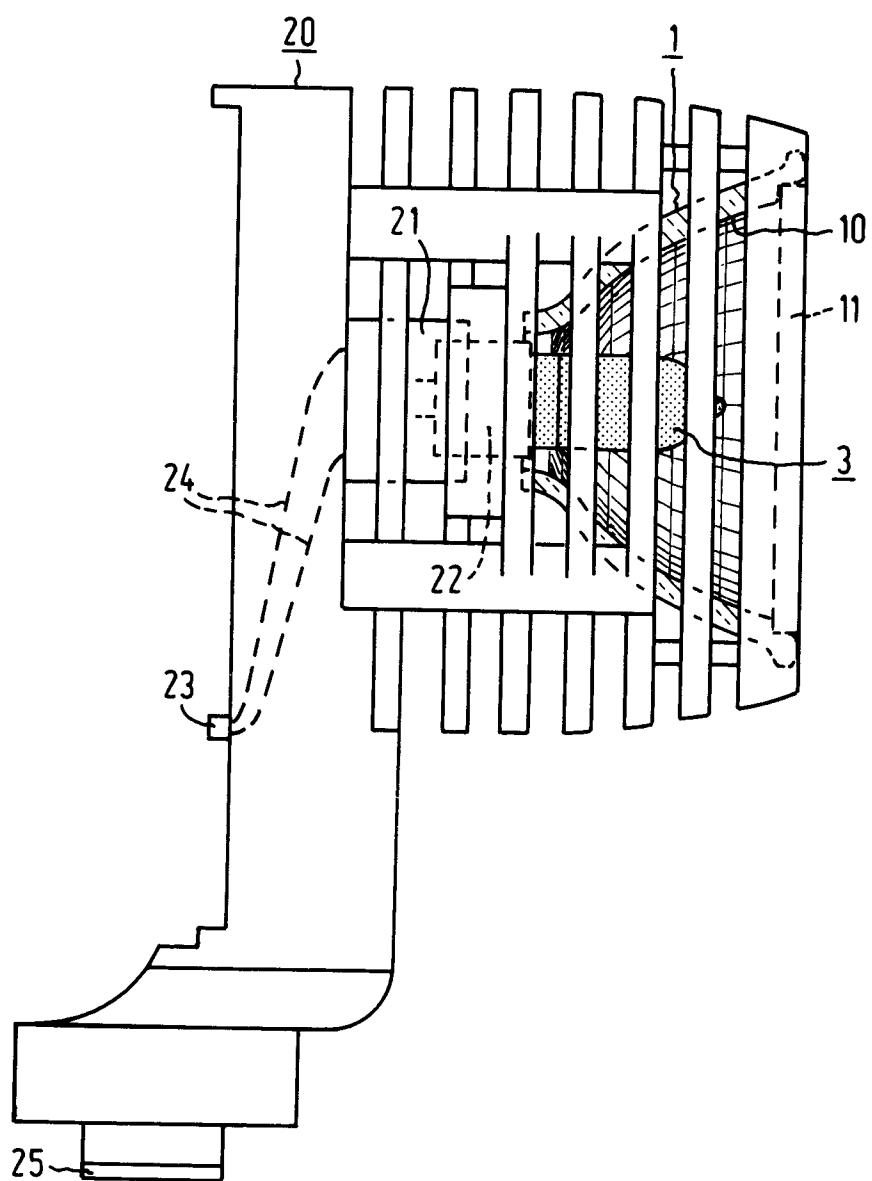


FIG.3

EUROPEAN SEARCH
REPORT

EP 91 20 2454

DOCUMENTS CONSIDERED TO BE RELEVANT					
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.5)		
A	EP-A-0 136 684 (GTE PRODUCTS CORPORATION) * page 6, line 15 - line 20; claim 1; figure 3 ** - - -	1-3,7-9	F 21 V 7/04		
A	GB-A-2 074 303 (CHLORIDE GROUP LTD.) * page 1, line 48 - line 57; figure 1 ** - - -	1,4,7,10			
A	GB-A-2 080 969 (PATENT-TREUHAND-GESELLSCHAFT FÜRELEKTRISCHE GLÜHLAMPEN) * page 1, line 128 - page 2, line 2; figure 3B ** - - -	1,7			
A	GB-A-2 198 516 (N.V. PHILIPS ' GLOEILAMPEN-FABRIEKEN) * page 3, line 34 - line 38 ** - - - - -	1,7			
TECHNICAL FIELDS SEARCHED (Int. Cl.5)					
F 21 V H 01 K F 21 Q F 21 M					
The present search report has been drawn up for all claims					
Place of search	Date of completion of search	Examiner			
The Hague	12 December 91	VAN OVERBEEKE J.J.			
CATEGORY OF CITED DOCUMENTS					
X: particularly relevant if taken alone					
Y: particularly relevant if combined with another document of the same category					
A: technological background					
O: non-written disclosure					
P: intermediate document					
T: theory or principle underlying the invention					
E: earlier patent document, but published on, or after the filing date					
D: document cited in the application					
L: document cited for other reasons					
.....					
&: member of the same patent family, corresponding document					