EP 0 481 569 A2

0 European Patent Office

Office européen des brevets

@ Publication number: 0 481 569 A2

® EUROPEAN PATENT APPLICATION

@) Application number: 91202690.3 @ Int. c15. BO7C 3/00

@) Date of filing: 16.10.91

Priority: 16.10.90 US 598189 (@) Applicant: BELL & HOWELL PHILLIPSBURG
COMPANY
Date of publication of application: 5215 Old Orchard Road
22.04.92 Bulletin 92/17 Skokie, lllinois 60077(US)
Designated Contracting States: @ Inventor: Kostyniuk, Paul F.
CHDEFRGBITLI 539 Park Avenue

Wilmette, lllinois 60091(US)

Representative: Mittler, Enrico et al
c¢/o Marchi & Mittler s.r.l. Viale Lombardia, 20
1-20131 Milano(IT)

@ Mail sorting apparatus and method.

@ A mail sorting machine (20) includes an input hopper (30); a mailpiece reading and processing section (22);
and, a sorting bin section (24) comprising a plurality of bins (261 -26128). The reading and processing section
(22) includes a CPU (54) which executes a program ANALYZE _MAIL for sorting third class mailpieces. The
program ANALYZE_MAIL sorts the mailpieces included in a batch into packages, and then associates the
packages into sacks or bags. The program ANALYZE MAIL constructs the packages and sacks to obtain
maximum postage discounts. Upon an initial pass of all mailpieces of a batch through the sorting machine (20),
the program ANALYZE MAIL generates output (TABLE 1) advising how the bins (26) are to be grouped for
subsequent passes. The program ANALYZE _MAIL also generates output (TABLES 2A - 2E) advising, for each
group, which bins (26) are to have their packages associated together for insertion into the same bag or sack.
Advantageously, the mailpieces are sorted so that the bins (26) to be associated together are physically adjacent
one another in the sorting machine (20). Bag tags are generated to tell an operator which bins are to be
collected together to form a sack or bag, as well as the sack number and group number. The program
ANALYZE MAIL also includes an accounting capability for billing postage to a possible plurality of clients
having mailstreams included in the batch, and for allocating postage costs in accordance with whether the
client's mailpieces qualify for postage discounts.

Rank Xerox (UK) Business Services



EP 0 481 569 A2

FIG. 1

80

V§§§h\\] AZZZV

0
e

64—
38— |[BAR Cape
READER
36
T Nk JET 32

D
>
o~
=53
/]
[o1]
(o2}

oD I [ )
Da v
7
{
w
@

22




10

15

20

25

30

35

40

45

50

55

EP 0 481 569 A2

BACKGROUND OF THE INVENTION
I. FIELD OF THE INVENTION

This invention pertains to apparatus and method for sorting postal envelopes prior to mailing, and
particularly to such apparatus and method for presorting envelopes in order to obtain postage discounts
offered by the United States Postal Service.

Il. PRIOR ART AND OTHER CONSIDERATIONS

The United States Postal Service is handling an ever increasing volume of domestic mail. A large
component of the domestic mail volume is attributed to postal patrons who introduce large or bulk
shipments of mail into the Postal Service. Examples of such postal patrons include financial institutions
(such as banks and credit card companies that mail out periodic statements to their customers); utilities
(which mail out monthly or quarterly bills); charitable and non-profit institutions; and, advertising agencies.

The United States Postal Service affords more favorable postage rates for postal patrons who cooperate
with the United States Postal Service by preparing bulk shipments of mail in a manner more easily handled
by the United States Postal Service. The United States Postal Service defines its postage class structure,
and the requirements for obtaining the more favorable postage rates for bulk mail patrons, in a publication
called the Domestic Mail Manual (also known as the "DMM").

By way of example for the foregoing, the DMM sets forth a schedule of rates and fees for third class
mail, with the postage rate for third class mail depending upon a presort level of the mail. In this respect, for
third class mail the DMM prescribes the following presort levels for bulk rate mail: basic; basic ZIP + 4; 5
digit; 5 digit ZIP + 4; ZIP + 4 barcoded; and, carrier route. Of these presort levels, the basic level is the
most expensive, the basic ZIP +4 the second most expensive, and so on with the carrier route presort level
being the least expensive. Indeed, a patron preparing a bulk shipment of mail can achieve a considerable
postage savings depending upon the extent to which the mailpieces included in the shipment qualify for the
less expensive presort levels.

Qualifying for a particular presort level involves more than the degree (five or nine digit) and manner
(barcoded or not) by which ZIP code information is provided on the mailpieces. For a mailpiece to qualify
for most of the presort levels, the DMM further requires that the mailpiece be included as a part of a
package (a specified number, such as 10 or more) of mailpieces packaged (i.e., associated by a
rubberband) in accordance with specified criteria (such as the same carrier route, same 5 digit ZIP code
destination, same 3 digit ZIP code prefix destination, for examples). In addition, to qualify for most of the
presort levels, in accordance with specified criteria the postal patron must place the packages in a sack
along with other mailpieces, and the sack must contain at least a specified minimum number of pieces (or
have at least a specified minimum weight). Examples of such specified criteria for inclusion of mailpieces in
the same sack are that the mailpieces either be destined to the same carrier route, the same 5 digit ZIP
code destination, or the same 3 digit ZIP code prefix destination.

In addition to complying with the foregoing package and sack requirements, the postal patron must
apply a label or tag, having a prescribed format, to each sack. As required by the DMM, the sack tag or
label must include select information regarding the contents of the sack.

Thus, in order to obtain the maximum possible postage savings for each mailpiece, a postal patron
must presort the mailpieces in accordance with ZIP code; must attempt to associate mailpieces in
accordance with DMM specifications into packages; must attempt to associate packages in accordance with
DMM specifications into sacks; and, must generate a label for each sack in accordance with the format
prescribed by the DMM. It should become apparent that factors such as insufficient quantity and thin
geographical distribution may disqualify many of the mailpieces included in a bulk shipment from receiving
the most favored presort level. A greater postage rate associated with a less favored presort level must be
paid for a mailpieces disqualified from the most favored presort level.

Large bulk shipments of mail can be presorted in ZIP code groupings using automated sorting
machines, such as those provided by the Bell & Howell Phillipsburg Company. Examples of such
automated sorting machines include the Bell & Howell Phillipsburg Company model 1000, 800, and 600
Mail Processing Systems. These automated sorting machines read optical characters and/or bar code and
sort mail into bins.

While the prior art automated sorting machines cited above perform admirably for their initially intended
purposes, the machines still required much human thought in the preparation of packages and associating
of packages into sacks for obtaining the more favorable presort levels. In this respect, a human operator




10

15

20

25

30

35

40

45

50

55

EP 0 481 569 A2

must mentally determine how fo associate into packages and sacks mailpieces from numerous and often
non-adjacent bins of the sorting machine. Such tedious determinations are subject to human error.
Erroneous packaging and sacking of mailpieces causes considerable consternation with the United States
Postal Service, and may jeopardize or render suspect the entire bulk mail shipment.

In order to qualify as many mailpieces as possible for the most favored presort levels, many companies
and organizations send their bulk shipments to a third party company such as a presort agency for
combining with the bulk shipments of other companies and organizations. By combining the bulk mail
shipments of several postal patrons, and by presorting the combined mail for the several patrons on the
automated sorting machines described above, the presort agencies are often able to leverage the quantity
and geographical distribution factors in order to qualify the maximum number of mailpieces for the most
favored presort levels. Unfortunately, since some mailpieces do not achieve the most favored presort levels,
it is very difficult for the presort agencies to allocate the postage costs (e.g., qualified discount vs. non-
qualified postage rate) incurred among the contributing patrons.

Moreover, some postal patrons meter the mailpieces included in a bulk shipment with postage prior to
conducting their own in-house sorting or prior to sending the shipment to a presort agency. In such cases, it
may turn out that a mailpiece pre-metered at a rate for a favored presort level may not qualify for that
presort level, with the result that additional postage must be applied to that mailpiece. When the mailpieces
of more than one patron are combined or commingled, as at a presort agency, it is very difficult from an
accounting standpoint to allocate the resultant postage increase triggered by the non-qualifying pre-metered
mailpiece to the postal patron from whom the mailpiece came.

As mentioned above, some postal patrons meter the mailpieces included in a bulk shipment prior to the
sorting operation (either in-house or at a presort agency). Other postal patrons use the "permit” mail
provisions of the United States Postal Service. Traditionally the United States Postal Service has refused to
accept bulk shipments that include both pre-metered and permit mail, in view inter alia of the difficulty in
verifying the accuracy of the computed postage amounts.

In view of the foregoing, it is an object of the present invention to provide a sorting method and
apparatus for associating mailpieces in a manner conducive for collection and associating into packages
and sacks for obtaining desired postage presort levels.

An advantage of the present invention is the provision of method and apparatus for sorting mailpieces
and for providing reports indicative of the postage presort levels into which mailpieces are classified.

Another advantage of the present invention is the provision of method and apparatus for sorting
mailpieces wherein sack labels are automatically generated for sacks of mail.

SUMMARY

A mail sorting machine includes an input hopper; a mailpiece reading and processing section; and, a
sorting bin section comprising a plurality of bins. The reading and processing section includes a CPU which
executes a program ANALYZE MAIL for sorting third class mailpieces. The program ANALYZE MAIL
sorts the mailpieces included in a batch into packages, and then associates the packages into sacks or
bags. The program ANALYZE MAIL constructs the packages and sacks to obtain maximum postage
discounts.

Upon an initial physical pass of all mailpieces of a batch through the sorting machine, the program
ANALYZE _MAIL generates output advising how the bins are to be associated for subsequent passes. As a
result of the first physical pass, the program ANALYZE MAIL classifies the mailpieces of the batch into a
plurality of "groups". A "group" is a set of mailpieces which is to be separately sorted, independently from
the remainder of the batch, during one or more "passes” of the sorting machine. For example, after the first
or initial physical pass, for a first subsequent pass only a first group of mailpieces is loaded into the input
hopper; for a second subsequent pass only a second group of mailpieces is loaded into the input hopper;
and so forth. In general, during the first physical pass, mailpieces belonging to a first group are assigned to
a first set of bins; mailpieces belonging to a second group are assigned fo a second set of the bins; and so
forth.

In addition to assigning mailpieces to specified groups (i.e., bins) during the first physical pass, the
program ANALYZE MAIL also generates a report which informs the operator from which bins to collect
each group. Advantageously, each group is collected from physically adjacent bins. Moreover, the program
ANALYZE MAIL also generates a report for each group, which report indicates from which bins mailpieces
are to be collected into sacks. Advantageously, the sack is composed of mailpieces from physically
adjacent bins. Further, the program ANALYZE _MAIL generates "bag tags” (also known as "sack tags™) for
each sack, with the bag tag bearing information to apprise the operator from which bins to gather the



10

15

20

25

30

35

40

45

50

55

EP 0 481 569 A2

contents of the sack, as well as the sack and group number.

The program ANALYZE MAIL also includes an accounting capability for billing postage to a possible
plurality of clients having mailstreams included in the batch, and for allocating postage costs in accordance
with whether the client's mailpieces qualify for postage discounts.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features, and advantages of the invention will be apparent from the
following more particular description of preferred embodiments as illustrated in the accompanying drawings
in which reference characters refer to the same parts throughout the various views. The drawings are not
necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.

Fig. 1 is a top schematic view of a sorter apparatus according to an embodiment of the invention.

Fig. 2 is a schematic view of electronic circuitry included in the sorter apparatus of the embodiment of
Fig. 1.

Fig. 3 is an isometric view of an edge post and hook assembly provided thereon according to the
embodiment of Fig. 1.

Fig. 4 is a schematic view showing the interrelationships between Figs. 4A - 4N.

Figs. 4A - 4N are schematic views showing a series of functions and their constituent steps executed in
accordance with a program ANALYZE _MAIL by the sorter apparatus of the embodiment of Fig. 1.

DETAILED DESCRIPTION OF THE DRAWINGS

Fig. 1 shows a sorter apparatus 20 according to an embodiment of the invention. The sorter 20 includes
a reading and processing section 22 and a sorting bin section 24. The sorting bin section 24 includes a
plurality of bins 26 into which mailpieces are ultimately sorted. In one embodiment, 128 such bins 26,
numbered as bins 261-2612g, are provided (although not all of the 128 such bins 26 are illustrated in Fig. 1).
It should be understood that in other embodiments a different number of bins are provided.

The processing section 22 includes an input hopper 30; a feeder 31; and a mailpiece transport
assembly 32 which directs mailpieces along a processing path 33. Along the processing path 33 are various
processing stations also included in the processing section 22, including an optical character recognition
(OCR) station 34; an ink jet printer station 36; a bar code reader station 38.

As shown in Fig. 1, a plurality of hopper floor belts 40 and hopper augers 42 transport incoming
mailpieces on edge in the direction of arrow 44 toward the feeder 31. The feeder 31, being of a rotating belt
variety, feeds the leading mailpiece in the hopper 31 in the direction of the processing path 33 (i.e., in the
direction of arrow 46). The mailpieces travel on edge down the processing path 33 along the OCR station
34, the ink jet printer station 36, the bar code reader section 38, and into the sorting bin section 24.

The processing section 22 also includes an operator console 50 and a data processing system 52. The
data processing system 52 includes a central processing unit (CPU) 54 and an I/O interface 56 (see Fig. 2).
The CPU 54 communicates through the 1/0 interface 56 to various peripheral devices, including a keyboard
58; a monitor 60; a report printer 62; a bag tag or sack tag printer 64; and, a disk drive 66 (see Fig. 2). In
addition, the CPU 54 communicates through the I/O interface 56 to electronics for the aforementioned OCR
station 34; ink jet printer station 36; bar code reader station 38; and, operator console 50.

The operator console 50 includes a start switch 70 and stop switch 72, as well a feed select switch 74
and a series of status indicator lights 76. The feed select switch 74 is used to control the rate at which the
feeder 31 feeds mailpieces from the input hopper 30 toward the mail processing path 33.

The sorting bin section 24 includes a central transport assembly 80 which directs mailpieces along a
sorting path that is collinear with the processing path 33 of the processing section 22. That is, the central
fransport assembly 80 of the sorting bin section 24 continues to transport a mailpiece in the direction of
arrow 46 through the sorting bin section 24 until the mailpiece is deflected into an appropriate one of the
bins 26. The central transport assembly 80 includes a plurality of unillustrated transport belts.

As shown in Fig. 1, bins are provided on both sides of the sorting path in paired relationship. That is, at
the same distance from the processing section 22, bin 26, is paired with bin 26125; a little further
downstream bin 26, is paired with bin 26127; and so forth until the downstream-most pair of bins 264 and
2665.

The sorting path is defined by a plurality of diverter gates 82 and sorting path walls 84. Each bin 26 has
a diverter gate 82 and a sorting path wall 82 associated therewith. When activated, a diverter gate 84 pivots
about a pivot point (such as pivot point 86 shown with respect to diverter gate 821 of bin 261) for diverting a
mailpiece from the sorting path into its respective bin. Each sorting path wall 84 has a rear ramp surface 88



10

15

20

25

30

35

40

45

50

55

EP 0 481 569 A2

inclined with respect to the sorting path. The rear ramp surface 88 and the diverter gate 82 form a planar
surface inclined with respect to the sorting path when the diverter gate 82 is pivoted to deflect mailpieces
out of the sorting path and into the bin 26. The angle of inclination of this planar surface including the rear
ramp surface 88 facilitates direction of the on edge mailpiece into the queue of mailpieces developing in the
bin.

In addition to the rear ramp surface 88, a bin 26 is defined by a horizontal bin floor 90 and a leading
edge abutment rail 92. The leading edge abutment rail is suspended above the horizontal bin floor 90
between the sorting path wall 84 and a vertical edge post 94. As shown in Figs. 1 and 3, the leading edge
abutment rail extends through an aperture provided in a travelling vertical plate 96. The bin floor 90 has an
auger 98 provide therein which transports mailpieces diverted into the bin 26 in a direction perpendicular
and away from the sorting path. For example, with reference to bin 261, the auger 98, directs deflected
mailpieces away from the sorting path in the direction of arrow 100. The leading or first such mailpiece
deflected into a bin 26 contacts the fravelling plate 96. As successive mailpieces are diverted into a bin 26
and interposed between the ramp surface 88 and the previous mailpiece, the travelling plate 96 is slidingly
pushed along the abutment rail 92 away from the sorting path toward the edge post 94. Near the edge post
94 a pressure sensor switch 102 is provided to detect when a bin 26 is becoming full. In this respect, when
a sufficient number of mailpieces are diverted into a single bin 26 such that the travelling plate 96 closes
the pressure sensor switch 102 for that bin, the sorting operation is temporarily halted an a diagnostic
message is provided to the operator so that mailpieces diverted to the bin can be manually removed for
accommodating additional mailpieces in that bin.

As is shown in Fig. 3, each edge post 94 has hook assembly 104 provided thereon for engaging mail
sacks, for example. The hook assembly 104 comprises two perpendicular bracket members 106a and 106b.
The hook assembly 104 is mounted on the edge post 94 by fasteners 108 which extend through the bracket
member 106a. The bracket member 106b has two U-shaped hooks 110 provided thereon. The hooks 110
engage one of the metal rings 112 provided around the mouth of a mail sack 114.

Referring again to the diverter gates 82 provided along the sorting path, each diverter gate 82 is
activated by a solenoid 120. The solenoids 120 of each pair of bins are controlled by bin pair controller 122,
there being 64 such bin pair controllers 122 shown in the embodiment of Fig. 1. Bin pair controller 122;
controls the solenoids 1201 and 120128 for bins 264 and 26125, respectively; bin pair controller 122,
controls the solenoids 120, and 120427 for bins 26, and 26427, respectively; and so forth.

The bin pair controllers 122 are connected in series to the I/O interface 56 of the data processing
system 52 in shift register fashion along line 124. The signal carried on line 124 is a digital signal indicative
of the bin number to which a mailpiece should be directed in accordance with the sorting operation. The
signal from the 1/O interface 56 is first applied to the bin pair controller 1221 as a mailpiece approaches
diverter gates 82, and 8212g. If the signal indicates that the mailpiece is destined for either bin 261 or bin
26128, the bin pair controller, upon evaluating the signal, causes activation of the appropriate solenoid 120.
If the signal indicates that the mailpiece is destined for another downstream bin 26, the signal for that
mailpiece is shifted downstream to the bin pair controller 122, as the mailpiece approaches diverter gates
82, and 8217 associated with bins 262 and 26127. The bin pair controller 122, then either activates an
appropriate solenoid 120 or shifts the signal yet further downstream along with the travelling mailpiece.

The data processing system 52, and particularly the CPU 54 executes a set of instructions that control
the operation of the sorter 20. That set of instructions in collectively referred to as program
ANALYZE__MAIL. The program ANALYZE__MAIL consists of numerous subsets of instructions coded in the
"C" programming language, which subsets are referred to herein as "functions”. Execution of the program
ANALYZE MAIL and its constituent functions causes the sorting machine 20 to operate in the manner
described below. In connection with the ensuing description of the operation of the sorting machine 20, it
should be understood that the word "bundle" is often used interchangeably with "package", and that the
word "bag" is often used interchangeably with "sack".

OPERATION

In the operation of the sorting machine 20 of Fig. 1, a batch of third class mail is placed in the input
hopper 30. The batch may comprise a plurality of mailstreams from a plurality of patrons. In the example
discussed hereinafter particularly with reference to the TABLES, the batch includes mailstreams from an
insurance company patron, a ulility company patron, and a publishing company patron. The insurance
company actually contributes three separate mailstreams to the batch, in particular an automotive insurance
mailstream, a life insurance mailstream, and a health insurance mailstream.

After the mailstreams are all loaded into the input hopper 30, and when the CPU 54 is running the



10

15

20

25

30

35

40

45

50

55

EP 0 481 569 A2

program ANALYZE MAIL and the start switch 70 is turned on, the operator activates the feed select switch
74. Activation of the feed select switch 74 initiates a first physical pass of the mailpieces through the sorter
20, which includes fransport of the mailpieces through the input hopper 30 in the direction of arrow 44;
through the processing section 32 (in the direction of arrow 46); and, into the sorting bin section 24. As
each mailpiece is transported through the processing section 22, the OCR 34 reads the character address;
the ink jet printer 36 prints a barcode corresponding to the character-read ZIP code; and, the bar code
reader 38 verifies the printed bar code.

As discussed hereinbefore, the program ANALYZE _MAIL executed by sorting machine 20 collectively
sorts the entire batch, comprising the mailstreams of all the patrons, in order o achieve the optimum third
class postage discounts in accordance with the DMM. In order to do so, the program ANALYZE MAIL
associates the mailpieces of the batch into "packages" (also known as "bundles"), and the packages are
associated into sacks or bags.

In the above regard, the program ANALYZE MAIL creates four different package types, notably: five
digit (or "5") packages; three digit ("3") packages; state ("S") packages; and, mixed state (or "M")
packages. Generally, packages must consist of ten (10) or more mailpieces satisfying the same package
ZIP code rule. For example, all the mailpieces in a FIVE__DIGIT package must be destined for the same
five digit zip code. All the mailpieces included in a THREE__DIGIT package must have the same three initial
three ZIP code digits (e.g., 22151, 22153, 22155, 22165). All the mailpieces included in a single STATE
package must have initial ZIP code digits which destine the mailpieces to the same state (e.g., to lllinois).

As is more fully explained by the DMM, to qualify for certain third class postage discounts, the
packages must in turn be placed into sacks consisting of a minimum number of mailpieces (or a minimum
weight). Typically the minimum number of mailpieces per sack is 125, or alternatively the minimum weight
is 15 pounds. Accordingly, the program ANALYZE__MAIL creates four different sack types: FIVE__DIGIT
sacks; THREE__DIGIT sacks; STATE sacks; and MIXED _ STATE sacks.

As a result of the first physical pass, the program ANALYZE MAIL classifies the mailpieces of the
batch into a plurality of "groups". A "group" is a set of mailpieces which is to be separately sorted,
independently from the remainder of the batch, during one or more "passes" of the sorting machine 20. For
example, after the first or initial physical pass, for a first subsequent pass only a first group of mailpieces is
loaded into the input hopper 30; for a second subsequent pass only a second group of mailpieces is loaded
into the input hopper 30; and so forth. In general, during the first physical pass, mailpieces belonging to a
first group are assigned fo a first set of bins 26; mailpieces belonging to a second group are assigned to a
second set of the bins 26; and so forth.

In addition to assigning mailpieces to specified groups (i.e., bins) during the first physical pass, the
program ANALYZE MAIL also generates a report in the form of TABLE 1 which informs the operator from
which bins 26 to collect each group. Advantageously, each group is collected from physically adjacent bins
26. Moreover, the program ANALYZE MAIL also generates a report in the form of TABLE 2A for each
group, which report indicates from which bins mailpieces are to be collected into sacks. Advantageously,
the sack is composed of mailpieces from physically adjacent bins 26. Further, the program
ANALYZE MAIL generates "bag tags" (also known as "sack tags™) for each sack, with the bag tag bearing
information to apprise the operator from which bins 26 to gather the contents of the sack, as well as the
sack and group number. A format for a plurality of bag tags is illustrated in TABLE 3.

In addition, during the first physical pass, the program ANALYZE MAIL generates a number of
accounting reports as exemplified by TABLES 4, 5, 6, and 6A discussed infra.

Function FIRST__SORT__PASS

As a result of the execution of a function FIRST__SORT__PASS, three files are created during the first
physical pass, including file COUNT.DAT, file AGGR.DAT, and CLIENT1.DAT. The creation of these three
files is indicated by steps 200, 202, and 204 in Fig. 4A.

The size of the file COUNT.DAT (i.e., the number of records in the file) depends on the number of
unique zip codes and mailstreams encountered during the first physical pass.

The format of each record in file COUNT.DAT is as follows:



10

15

20

25

30

35

40

45

50

55

EP 0 481 569 A2

byte
offset

#
Zip Code - 4 bytes (long integer) 0
Stream Index - 1 byte (hex/binary value) 4
Client Index - 1 byte (hex/binary value) 5
Bin - 1 byte (hex/binary value) 6
5 Digit OCR/BCR count - 2 bytes (unsigned integer) 7
Zip + 4 OCR count - 2 bytes (unsigned integer) 9
Zip + 4 Barcoded count - 2 bytes (unsigned integer) 11

After the first physical pass, the records in file COUNT.DAT are sorted in ascending order. In this
respect, a primary sortation is done by ZIP code. For ZIP codes repeated due to their usage in different
client/mailstreams, a secondary sortation is performed by first sorting the client index number, followed by
the stream index number.

The following is an example of how multiple records in the file COUNT.DAT are stored (note that the
binary values are converted to ascii for display purposes):

ZIP CODE stream client bin 5 Digit ZIP+4 ZIP+4
Barcoded
203460000 2 1 3 12 3 7
203500000 1 1 3 1 0 3
203500000 3 1 3 0 0 1
203500000 2 3 3 1 0 0
203500000 0 7 3 0 2 0
302530000 2 1 4 0 0 5
406770000 1 1 5 0 1 3

File AGGR.DAT is a binary file of fixed length. Each entry is four bytes long representing a long integer.
The first 256 entries is an array of bin counts where each individual bin count is indexed by bin. The 257th
entry represents the total number of mailpieces fed, the 258th entry represents the total number of
mailpieces read, and the last entry represents the total 5 Digit ZIP count (OCR and Barcoded mailpieces).
The following summarizes the file format for file AGGR.DAT:

counts by bin - 256 entries, each entry 4 bytes
total fed - 1 entry 4 bytes long
total read - 1 entry 4 bytes long
total 5 Digit count - 1 entry 4 bytes long

The file CLIENT1.DAT is a binary file containing ten bytes per record. Each record contains the
following data and is presented in order:

byte

offset #
Stream Index - 1 byte (hex/binary value) 0
Client Index - 1 byte (hex/binary value) 1
Total Fed Count - 4 bytes (long integer) 2
Total Reject Count - 4 bytes (long integer) 6

File CLIENT1.DAT contains a variable number of records, depending on the number of unique clients and
mailstreams used. The records in this file are sorted in ascending order. A sortation is performed by first
sorting the client index number followed by the stream index number.

The following discussion describes other steps executed by the CPU 54 in connection with a plurality of
functions included in the program ANALYZE__MAIL.

Function ASSIGN__ PACKAGES



10

15

20

25

30

35

40

45

50

55

EP 0 481 569 A2

The function ASSIGN__PACKAGES (see Fig. 4A) takes records from file COUNT.DAT and assigns
package types to each zip code. The package types are reflected by the numbers "5" and "3" and the
letters "S" and "M". A package type of "5" refers to a five digit package; a package type of "3" refers to a
three digit package; a package type of "M" refers to mixed states package; a package type of "S" refers to
a state package.

During the first pass through the records in the file COUNT.DAT, the function ASSIGN__PACKAGES
initially examines each record in the file COUNT.DAT in the record order noted above in order to determine
potential three digit packages (i.e., packages wherein all the mailpieces have identical first three ZIP code
digits, but which do not qualify as five digit packages) [reflected by step 250] and potential state packages
[reflected by step 252]. In this regard, the function ASSIGN__PACKAGES examines the field ZIP CODE for
the current record to determine whether the record has the same ZIP code as did the next previous record.
(Consecutive records might have the same ZIP codes when the same ZIP codes are present in different
mailstreams). If the ZIP code for the currently examined record is the same as the previous record, the
function ASSIGN__PACKAGES determines the total number of mailpieces represented by the record by
adding the values in the "5 Digit", "ZIP +4", and "ZIP + 4 Barcoded" fields of the record and adds that sum
to a running total mailpiece counter (in location CNT) for this ZIP code.

If the ZIP code for the currently examined record differs from the previous record, the function
ASSIGN__PACKAGES momentarily lays aside the current record to process the mailpiece count for the
previous ZIP code (i.e, the ZIP code for the previous record). In this respect, the function
ASSIGN__PACKAGES determines whether the number of mailpieces for the previous ZIP code was less
than the predetermined minimum bundle size. If it was, the function ASSIGN__ PACKAGES realizes that the
previous ZIP code might qualify for a three digit package. To do this, the function ASSIGN__ PACKAGES
determines to what 3 Digit ZIP code the previous ZIP code belongs (i.e, determines the first three digits of
the previous ZIP code).

The function ASSIGN__PACKAGES then assigns the total count of the number of mailpieces for the
previous ZIP code (stored at location CNT) to a three digit package counter for the 3 Digit ZIP code to
which the previous ZIP code belongs (i.e, to counter THREE__DIGIT__PACK__CNT[3__DIGIT__ZIP]).

After processing the mailpiece count for a previous ZIP code in the manner described above, the
function ASSIGN__PACKAGES returns to processing the ZIP code for the current record. At this juncture,
the function ASSIGN__PACKAGES assigns to the mailpiece counter CNT the sum of the values in the "5
Digit", "ZIP +4", and "ZIP +4 Barcoded" fields of the current record. The function ASSIGN__ PACKAGES
then examines the next record in the file COUNT.DAT, and continues the process described above for each
such record until an end of file is encountered.

After determining the potential three digit packages at step 250, the function ASSIGN__PACKAGES
attempts to locate potential state packages (step 252). In this regard, the function ASSIGN__PACKAGES
compares the number of mailpieces assigned to each 3 Digit ZIP code with the predetermined minimum
number of mailpieces necessary to make up a package (e.g., 10). If the actual number of counted
mailpieces for an 3 Digit ZIP code is less than the predetermined minimum, the function
ASSIGN__PACKAGES determines with which state the 3 Digit ZIP code is associated, and increments a
state package counter for that state (i.e., STATE__PACK _CNT(i); where i = a number corresponding to the
associated state). Also, if the number of counted mailpieces for an 3 Digit ZIP code is less than the
predetermined minimum, the corresponding three digit package counter (THREE__DIGIT__PACK__CNT) is
set to zero.

Having determined potential three digit packages and potential state packages in the manner described
above (steps 250 and 252), the function ASSIGN__PACKAGES then conducts a second pass through the
file COUNT.DAT in order to create a temporary file SACK1.TMP (step 254). As will be seen later, the file
SACK1.TMP is used by function ASSIGN__SACKS to generate a file SACK2.TMP. The file SACK1.TMP
contains multiple records of the following structure:

struct PACKAGE

{
unsigned long ZIP_ID; /* zip identifier */
unsigned long CNT; /* count */
char PTYPE; /* package type */
unsigned char BIN; /* bin assignment */
)



10

15

20

25

30

35

40

45

50

55

EP 0 481 569 A2

Thus, the file SACK1.TMP is much reduced in size from the file COUNT.DAT since the multiple zip__id
entries due to client/mailstream selections are combined. Also, the three different count categories
("ZIP +4"; "5 Digit"; and "ZIP + 4 Barcoded™) are combined into one count value (CNT) since the sortation
of mail only depends on the combined count. The file SACK1.TMP is created in ZIP code order.

As mentioned above, the function ASSIGN__ PACKAGES creates the file SACK1.TMP during the second
pass through the file COUNT.DAT (step 254). During the second pass through file COUNT.DAT the function
ASSIGN__PACKAGES examines each record of file COUNT.DAT in a manner similar to the first pass. The
function ASSIGN__ PACKAGES determines whether the ZIP code for each currently examined record in file
COUNT.DAT is the same as for the previous record. If the ZIP code is the same, the function
ASSIGN__PACKAGES determines the total number of mailpieces represented by the record and adds that
number to a cumulative counter (CNT) for the total number of mailpieces for that ZIP code.

When, during the second pass through file COUNT.DAT, the function ASSIGN__ PACKAGES encounters
a record having a ZIP code which differs from the previous ZIP code (i.e., the ZIP code of the previous
record), the function ASSIGN__PACKAGES prepares a record for file SACK1.TMP for the previous ZIP
code. In this respect, in creating the record, the previous ZIP code is stored in the ZIP__ID field of the
structure PACKAGE and the current value of the counter CNT is stored in the CNT field of the structure
PACKAGE. A value for the bin assignment (BIN) for the mailpieces for this package is obtained from the
corresponding "bin" field from the record in the COUNT.DAT file. The value for the package type (PTYPE)
is determined as follows.

In determining the package type (PTYPE) for a package of mailpieces, the function
ASSIGN__PACKAGES determines whether the total number of mailpieces for the ZIP code (stored in
location CNT) exceeds the predetermined minimum package size (e.g., 10). If the predetermined minimum
is equalled or exceeded, the function ASSIGN__ PACKAGES assigns a "5" value to the PTYPE field for the
record in the structure PACKAGE associated with this ZIP code. The "5" value in the PTYPE field is
indicative of the fact that the package is a "5 Digit Package", meaning that all the mailpieces in this
package have the identical first five digit ZIP codes.

If the total number of mailpieces for the ZIP code is less than the predetermined minimum package
size, the function ASSIGN__PACKAGES determines to what 3 Digit ZIP code this ZIP code belongs. Then
the function ASSIGN__PACKAGES determines whether the three digit package counter
(THREE__DIGIT__PACK__CNT[3_ DIGIT__ZIP]) for the 3 Digit ZIP code equals or exceeds the predeter-
mined minimum package size. If (THREE__DIGIT__PACK__CNT[3__DIGIT__ZIP]) for the 3 Digit ZIP code
equals or exceeds the predetermined minimum package size, then the function ASSIGN__PACKAGES
assigns a "3" value to the PTYPE field for the record in the structure PACKAGE.

If the total number of mailpieces for the 3 Digit ZIP code is less than the predetermined minimum
package size, the function ASSIGN__PACKAGES determines to what state this 3 Digit ZIP code belongs.
Then the function ASSIGN__PACKAGES determines whether the state package counter
(STATE__PACK__CNT) for this state equals or exceeds the predetermined minimum package size. If the
state package counter for this state equals or exceeds the predetermined minimum package size, then the
function ASSIGN__PACKAGES assigns a "S" value to the PTYPE field for the record in the structure
PACKAGE.

If the function ASSIGN__ PACKAGES cannot assign a "5", "3", or "S" value to the PTYPE field for this
record in the SACK1.TMP file, a "M" value (indicative of "Mixed State Packages) is assigned to the PTYPE
field.

Function ASSIGN__SACKS

Function ASSIGN_SACKS (see Fig. 4A) uses the file SACK1.TMP created by function
ASSIGN__PACKAGES to generate another file (file SACK2.TMP). In so doing, function ASSIGN__SACKS
makes tentative sack assignments.

The file SACK2.TMP is a temporary work file for making sack assignments to ZIP codes. Once created
by function ASSIGN__SACKS, the file SACK2.TMP contains multiple records of the following structure:

10



10

15

20

25

30

35

40

45

50

55

EP 0 481 569 A2

struct SACK

{
struct PACKAGE package;
int NO; \*bag ID number*\
char STYPE \*sack type*\

}

where the structure PACKAGE is as formerly defined.

There are five possible sack assignments: FIVE_DIGIT; MIXED__FIVE; THREE_ DIGIT; STATE; and
MIXED__STATES.

The function ASSIGN__SACKS reads through the file SACK1.TMP in two passes. During the first pass,
the function ASSIGN__SACKS obtains certain sack counts. During the second pass, the function
ASSIGN__SACKS generates the file SACK2.TMP.

During the first pass through the file SACK1.TMP, function ASSIGN__SACKS determines the 3 Digit ZIP
code and the package type (PTYPE) assigned to each record in the file SACK1.TMP. If the package type
(PTYPE) of a record is "5", the package count (CNT) for that package is checked to determine whether the
package contains enough mailpieces to be its own sack (step 260). This is done by comparing the package
count (CNT) value of the package to a predetermined minimum mailpiece number necessary to make up a
sack ("MIN__MAIL"). If the package count (CNT) does not qualify the package to be its own sack, then the
function ASSIGN__SACKS realizes that this "5" type package may be part of a MIXED _FIVE;
THREE__DIGIT; STATE; or MIXED _STATES sack. Accordingly, for the 3 Digit ZIP code corresponding to
the ZIP code for the current package, the function ASSIGN__SACKS adds the package count (CNT) to a
"mixed five sack counter” (MIXED__FIVE__SACK _CNT[3_DIGIT__ZIP]) [step 262].

For packages belonging to the other types (PTYPE = 3, S, or M), the function ASSIGN__SACKS adds
the package count (CNT) to the appropriate counter (step 262). For example, for a record in SACK1.TMP
having a PTYPE = 3, the function ASSIGN__SACKS adds the package count (CNT) of that record to a
"three digit sack counter” (THREE__DIGIT__SACK__CNT[3__DIGIT__ZIP]) for the 3 Digit ZIP code for the
ZIP code of the record. Similarly, a unique counter exists for each state (STATE__SACK__CNT) and each
mixed state (MS__SACK__CNT).

The function ASSIGN__SACKS then checks the potential mixed five, three digit, and state sack counts
(step 264). First, for each 3 Digit ZIP code, the function ASSIGN__SACKS checks the value of the counter
MIXED _FIVE__SACK__CNT to determine whether each potential mixed five sack has the predetermined
minimum number of mailpieces to be a sack. If the counter MIXED _FIVE__SACK__CNT falls short of the
predetermined minimum number, then it is assumed for the moment that these mailpieces, previously
thought to comprise a mixed five sack, should now comprise a three digit sack. To this end, the value of the
counter MIXED_FIVE__SACK__CNT[3_DIGIT__ZIP] for this 3 Digit ZIP code is added to the counter
THREE__DIGIT__SACK__CNT[3_ DIGIT__ZIP] for the 3 Digit ZIP code. The value of the counter
MIXED__FIVE__SACK__CNT for this 3 Digit ZIP code is then re-initialized at zero.

In the same manner the function ASSIGN__SACKS checks the number of mailpieces in each potential
three digit sack to insure that the potential sack has the predetermined minimum number of mailpieces to
qualify as a sack. If the value of THREE__DIGIT__SACK__CNT[3__ DIGIT__ZIP] does not have the predeter-
mined minimum number of mailpieces, it is assumed that these mailpieces should now be part of a state
sack. Accordingly, a state sack counter (STATE__SACK__CNT) for the state having the concerned 3 Digit
ZIP code is incremented by the value of the THREE__DIGIT__SACK _CNT[3_ DIGIT__ZIP], and the value
of the counter THREE_ DIGIT_SACK _CNT[3__DIGIT__ZIP] is reinitialized at zero.

In the same manner the function ASSIGN__SACKS checks the number of mailpieces in each potential
state sack to insure that the potential state sack has the predetermined minimum number of mailpieces to
qualify as a sack. If the value of STATE__SACK_ CNT for the state does not have the predetermined
minimum number of mailpieces, it is assumed that these mailpieces should now be part of a mixed state
sack. Accordingly, a mixed state sack counter (MS__SACK__CNT) is incremented by the value of the
STATE__SACK_CNT for the affected state, and the value of the counter STATE__SACK__CNT for the
affected state is reinitialized at zero.

During the second pass through the file SACK1.TMP the function ASSIGN__SACKS uses the data in the
file SACK1.TMP and the various sack counters described above (MIXED__FIVE__SACK_CNT;
THREE__DIGIT__SACK__CNT; STATE__SACK__CNT; and, MS__SACK_CNT) to create the new file
SACK2.TMP (step 266). As the function ASSIGN__SACKS reads through each record in file SACK1.TMP,

11



10

15

20

25

30

35

40

45

50

55

EP 0 481 569 A2

the function ASSIGN__SACKS again examines the package type (PTYPE) and obtains the 3 Digit ZIP Code
corresponding to the ZIP code stored in the record. For records in SACK1.TMP having a record type "5"
(i.e., PTYPE = 5) and a package count (CNT) exceeding the predetermined minimum number required to
form sack, a record is created in file SACK2.TMP having a five digit sack type value (STYPE =
FIVE__DIGIT).

If a record has a record type "5" but does not represent the predetermined minimum number of
mailpieces for a FIVE__DIGIT sack, the associated count is compared to see if it exceeds the minimum
sack count for the next lowest priority sack type (i.e., sack type MIXED _FIVE) to which it belongs. If it
does, a record is created in file SACK2.TMP having a mixed five sack type value (STYPE =
MIXED _FIVE). If the record does not represent the minimum sck count, the same type process is repeated
for the remaining lower priority sacks in the order THREE__DIGIT, followed by STATE. If the record does
not meet the minimum number for any of the above sack types, it is assigned a MIXED _STATES sack
type.

For records in SACK1.TMP having a package record type of "3", a similar count comparison is
performed as above. However, the check begins with the THREE_ DIGIT sack count level so only
THREE__DIGIT, STATE, and MIXED__STATES assignments can be made.

For records in SACK1.TMP having a package record type of "S" a similar count comparison is
performed as above. However, the check begins with the STATE sack count level so that only STATE and
MIXED__STATES assignments can be made.

Finally, all records having package type "M" are assigned a MIXED _STATES sack type.

Function FIRST__ PASS__ PACKS

The function FIRST__PASS PACKS (see Fig. 4B) determines which bins, as a result of the first sort
pass, consist of completely sorted packages. In this regard, function FIRST__PASS _PACKS prepares an
array FULLSORT _BIN having elements corresponding to each of the 128 bins 26 included in the sorter. As
a result of the execution of function FIRST__PASS PACKS, bins which do not contain a fully sorted
package as a result of the first sort pass have a zero value stored in their corresponding element in array
FULLSORT_BIN. For example, if bin 263 does not include a fully sorted package, a "zero" value is stored
in FULLSORT_ BIN[3]. For any bin consisting of fully sorted packages, a unique non-zero number is stored
in the element in array FULLSORT _BIN corresponding to that bin number.

In the simple case (reflected by step 270), the determination of function FIRST__PASS_PACKS is
made by comparing the number of mailpieces in a bin with the sum of the number of mailpieces included in
all the packages in the bin. If the number of mailpieces in a bin equals the sum of the number of mailpieces
included in all the packages in the bin, then the bin consists of fully sorted packages. For any bin consisting
of fully sorted packages, a unique non-zero number is stored in the element in array FULLSORT_BIN
corresponding to that bin number.

For three digit and state packages the comparison is complicated by the fact that completely sorted
package contents could end up in several first pass bins. Therefore, for three digit and state packages, the
partial package counts from several bins making up one complete package are compared against the same
several bins total piece count.

In order to process the three digit and state packages, the function FIRST__PASS_PACKS reads
through every record in the file SACK2.TMP (which was created by function ASSIGN__SACKS) and creates
two additional work files, i.e., STATE__PACK__FILE and THREE__PACK _FILE (step 272). For every record
encountered in file SACK2.TMP that concerns a state package (PTYPE = §S), the function
FIRST__PASS_PACKS duplicates that record in the file STATE__PACK_FILE. Likewise, for every record
encountered in file SACK2.TMP that concerns a three digit package (PTYPE = 3), the function
FIRST__PASS__PACKS duplicates that record in the file THREE__PACK _FILE.

To determine whether a potentially completely sorted state package is spread through a plurality of bins
(step 274), for each state the function FIRST__PASS PACKS determines what records in the file
STATE__PACKS _FILE have ZIP codes belonging to that state. When a record in file
STATE__PACKS_FILE pertains to the state, the function FIRST__PASS _PACKS sets a flag in an element
of an array BIN__USAGE corresponding to the bin number indicated in the record. For example, if bins 267,
2655, and 269> all have mailpieces belonging to a completely sorted state package, flags are set at
BIN__USAGE[7], BIN__USAGE[55], and BIN__USAGE[92].

Having noted the bins in which completely sorted state packages may reside, the function
FIRST__PASS_PACKS then compares the total number of mailpieces in the state package with the total
number of mailpieces in all the bins for which a flag was set in array BIN__USAGE for the state of interest.

12



10

15

20

25

30

35

40

45

50

55

EP 0 481 569 A2

Recall that the number of mailpieces for each bin 26 is obtainable from the file AGGR.DAT which was
created during the first sort pass (i.e., at step 202).

If the total number of mailpieces in the state package is equal to the total number of mailpieces in all
the bins for which a flag was set in array BIN__USAGE, then those bins are known to include mailpieces for
the fully sorted state package. For the bins including mailpieces for the fully sorted state package, the same
non-zero number is placed in the elements of array FULLSORT__BIN corresponding to those bins. The non-
zero number placed in each of the elements of array FULLSORT _ BIN for the state is unique number which
does not appear in array FULLSORT _BIN for any other state or any other purpose.

It should be understood that the foregoing processing related to state packages is conducted separately
for each state. This requires that certain parameters, including the array BIN__USAGE, be reinitialized for
each state. Likewise, whatever number entered into one or more elements of the array FULLSORT _BIN for
a particular state will be a number unique to that state.

The function FIRST__PASS_PACKS also determines whether fully sorted three digit packages are
spread through more than one bin (step 276). This determination is made in a similar manner as was the
determination for state packages. That is, for each 3 Digit ZIP Code value the function
FIRST__PASS PACKS reads through the file THREE__PACK_FILE which it created, and determines
whether mailpieces belonging to that 3 Digit ZIP Code are in a plurality of bins. If so, the function
FIRST__PASS_PACKS sets flags in array BIN__USAGE in the same manner as with the state packages.
Then, in like manner as with the state packages, the function FIRST__PASS PACKS determines whether
the total mailpiece count of the particular three digit package equals the sum of the bin counts for each of
the bins in which the three digit package is spread. If an equality is determined, then function
FIRST__PASS _PACKS realizes that the bins for which flags were set in array BIN__USAGE contain the
completely sorted three digit package. As with the completely sorted state packages, a unique number
associate with this three digit package is assigned to each element in array FULLSORT _BIN corresponding
o the bins wherein mailpieces belonging to this completely sorted three digit package reside.

Thus, upon completion of the execution of function FIRST__PASS _PACKS, an example of the contents
of a portion of array FULLSORT_ BIN might be as follows:

FULLSORT_BIN[001] =
FULLSORT_BIN([002]
FULLSORT_BIN[003]
FULLSORT_BIN[004]
FULLSORT_BIN[005]
FULLSORT_BIN{[006]
FULLSORT BIN[007]

i

il
WWwoNMNOHO

FULLSORT BIN[127]
FULLSORT BIN[128]

||
[o N )

Where a FULLSORT _BIN value of "0" indicates that the bin does not contain a completely sorted package;
a value of "1" indicates that a first fully sorted package is contained in bin 26;; a value of "2" indicates that
a second fully sorted package (perhaps a state package) is contained in bins 26; and 26s; and, a value of
"3" indicates that a third fully sorted package (perhaps a three digit package) is contained in bins 26¢ and
267.

Function MAKE__SORT__ RECORDS

The function MAKE__SORT_RECORDS (see Fig. 4B) makes a file (file SORTREC1.TMP) which lists
packages for second pass sorting and makes another file (file FULLSORT1.TMP) which lists packages that
will not be sorted in a subsequent pass. The function MAKE__SORT__RECORDS creates the files
SORTREC1.TMP and FULLSORT1.TMP after reading through the file SACK2.TMP (which was created by
function ASSIGN__SACKS).

In reading each record from the file SACK2.TMP, the function MAKE__SORT__ RECORDS determines to
which type of package the record relates. In particular, the function MAKE__SORT__RECORDS checks to

13



10

15

20

25

30

35

40

45

50

55

EP 0 481 569 A2

see if the PTYPE for the record is either "5", "3", or "S".

For a record in file SACK2.TMP having a PTYPE of "5", corresponding to a five digit package, the
function MAKE__SORT__RECORDS duplicates the record either in file SORTREC1.TMP or file
FULLSRT1.TMP (step 280). To determine to which file to duplicate the record, the function
MAKE__SORT__RECORDS further checks to determine whether this five digit package is in a fully sorted
bin. This further check is conducted by noting the bin number included in the record, and then indexing into
the array FULLSORT_ BIN for that bin number. If the array FULLSORT_ BIN contains a non-zero value for
that bin, the routine ASSIGN__PACKAGES concludes that the record is fully sorted and duplicates the
record from SACK2.TMP in the file FULLSORT1.TMP. Otherwise the function MAKE__SORT__RECORDS
duplicates the record from SACK2.TMP in the file SORTREC1.TMP.

If the function MAKE__SORT__ RECORDS determines that the PTYPE for a record in file SACK2.TMP is
"3", corresponding to a three digit package, the function MAKE__SORT_ RECORDS determines the 3 Digit
ZIP Code to which the record pertains. Then the function MAKE__SORT__RECORDS notes the bin number
stored in the record, and stores that bin number in an element of an array THREE__DIG__BIN correspond-
ing to the pertinent 3 Digit ZIP Code (step 282). Likewise, the function MAKE__SORT__RECORDS notes
from the record the sack type assignment (from STYPE), and stores that sack type in an element of an
array THREE_DIGIT__SACK _TYPE corresponding to the pertinent 3 Digit ZIP Code (step 284).

If the function MAKE__SORT__ RECORDS determines that the PTYPE for a record in file SACK2.TMP is
"8", corresponding to a state package, the function MAKE__SORT__RECORDS determines the state to
which the record pertains. Then the function MAKE__ SORT__ RECORDS notes the bin number stored in the
record, and stores that bin number in an element of an array STATE__BIN corresponding to the pertinent
state (step 286). Likewise, the function MAKE__SORT__RECORDS notes from the record the sack type
assignment (from STYPE), and stores that sack type in an element of an array STATE__SACK_TYPE
corresponding to the pertinent state (288).

After reading all the records in file SACK2.TMP, after storing information in the arrays
THREE__DIG_ BIN and THREE_ DIGIT__SACK__TYPE for three digit package records, and after storing
information in arrays STATE_BIN and STATE__SACK_TYPE for state package records, the function
MAKE__SORT__RECORDS is prepared to complete the writing of the two output files SORTREC1.TMP and
FULLSORT1.TMP. The function MAKE__SORT__RECORDS first writes three digit packages to the appro-
priate one of the two output files (step 290), and then the state packages to the appropriate one of the two
output files (292), with the result that the two output files are sorted first by package type, and then within
each package type by package ZIP.

In writing the three digit packages to the appropriate file (file FULLSORT1.TMP or file SORTREC1.TMP)
at step 290, the routine MAKE__SORT__RECORDS checks to determine which elements of array
THREE__DIGIT__PACK__CNT (generated by the function ASSIGN__PACKAGES), i.e. which 3 Digit ZIP
Codes, have non-zero values, and write a record to the appropriate file only for those 3 Digit ZIP Codes.
Similarly, the routine MAKE__SORT_RECORDS writes the state packages to the appropriate file (file
FULLSORT1.TMP or file SORTREC1.TMP) at step 292 only for those states having a number of mailpieces
exceeding the predetermined minimum bundles size.

The formats for file FULLSORT1.TMP and SORTREC1.TMP are identical. In particular, the formats are
both files are prescribed by the structure SACK, which was defined above in connection with the discussion
of function ASSIGN__SACKS as including the structure PACKAGE (which, in turn, was defined above in
connection with the discussion of the function ASSIGN__PACKAGES). But in creating these two files, the
routine ASSIGN__ PACKAGES must store the proper information in the structure PACKAGE portion of the
structure SACK, particularly the fields for ZIP__ID, CNT and BIN. It should be noted that only one record is
written to a 3 Digit ZIP code, e.g., 60202 is written to ZIP__ID 602. Furthermore, only one record per state is
written to FULLSOR1.TMP and SORTREC1.TMP.

For each three digit package, the function MAKE__SORT__RECORDS obtains the information for fields
CNT and BIN from the corresponding elements in the respective arrays THREE__DIGIT__PACK__CNT and
THREE__DIGIT__BIN. Recall that array THREE_DIGIT__BIN was generated by the function
MAKE__SORT__RECORDS and that the array THREE__DIGIT__PACK__CNT was generated by the function
ASSIGN__PACKAGES. To determine whether a record should be written to file FULLSORT1.TMP or to file
SORTREC1.TMP, the function MAKE__SORT__ RECORDS checks the status of array FULLSORT _ BIN for
the bin whose number is stored in the array THREE__DIGIT _BIN for the pertinent 3 Digit ZIP Code. If the
value stored in array FULLSORT_BIN is non-zero, then a record is written to file FULLSORT1.TMP.
Otherwise a record is written to file SORTREC1.TMP.

For each state package, the function MAKE__SORT__ RECORDS obtains the information for fields CNT
and BIN from the corresponding elements in the respective arrays STATE__PACK__CNT and STATE__BIN.

14



10

15

20

25

30

35

40

45

50

55

EP 0 481 569 A2

Recall that array STATE__BIN was generated by the function MAKE__SORT_ RECORDS and that the array
STATE__PACK__CNT was generated by the function ASSIGN__PACKAGES. To determine whether a record
should be written to file FULLSORT1.TMP or +to file SORTREC1.TMP, the function
MAKE__SORT__RECORDS checks the status of array FULLSORT_BIN for the state. If the value stored in
array FULLSORT _BIN for the pertinent state is non-zero, then a record is written to file FULLSORT1.TMP.
Otherwise a record is written to file SORTREC1.TMP.

Function SACK__ SORT

The function SACK__SORT (see Fig. 4C) creates a file SORTREC2.TMP using file SORTREC1.TMP
(step 300). Each record in file SORTREC2.TMP has the format of the structure SACK described above.

The function SACK__SORT sorts the records in file SORTREC1.TMP by sack type (step 302), then
within sack type by package type (step 304), and within package type by package ZIP id (step 306). The
resultant sort creates the file SORTREC2.TMP. At the end of execution of the function SACK__SORT, mail
is not yet in the final "sack and bag" order, since further sorting is required by major free as described
below.

Function SACK_SORT begins by scanning the file SORTREC1.TMP and writing all FIVE__DIBIT sack
package entries to the output file SORTREC2.TMP. While scanning the input file, the count for each
package type entry is recorded. Since the file SORTREC1.TMP has been sorted by package type, the
package type counts are used to determine the starting position of each different package type's entries.

Next, the file SORTREC1.TMP is scanned from the beginning and all MIXED__FIVE SACK package
entries are appended to the output file.

Since only one package type could go into FIVE_DIGIT and MIXED__FIVE sacks, it was a simple
matter of copying sequential records marked with the appropriate sack type to the output file. For the
remaining sack types (THREE__DIGIT, STATE, and MIXED__STATES) multiple package types are allowed.
Therefore, much searching is required to find the apprpriate next entry for the outpuit file.

The THREE__DIGIT sack can be composed of both FIVE__DIGIT and THREE__DIGIT packages. The
first step is to determine if any entries exist for all possible package types. Then the function SACK__SORT
repeatedly determines which of the existing package entries of sack type THREE__DIGIT (which are located
in the input file by the starting position previously saved and count values of records already processed)
corresponds to the first THREE__DIGIT sack entry and the appropriate record is appended to the output file
with the ZIP__ID corresponding to the three digit ZIP of the sack. In addition, the processed record count for
the selected package type is incremented. This is done until all package entries have been processed.

The MIXED _STATES sack can be composed of both FIVE_DIGIT, THREE_ DIGIT, STATE, and
MIXED _STATE packages. The first step is to determine if any entries exist for all possible package types.
Since there is only one MIXED STATES sack, packages are written in package priority order until all
entries are exhausted.

Upon completion of the execution of function SACK__SORT, the ZIP__ID field in a record in file
SORTREC2.TMP is the package ZIP id, which is no longer necessarily the long integer value of the full 5
digit zip code with four zeros trailing in the " +4" position. The ZIP__ID for non-5 digit package mail may be
the 3 digit zip (range 0 - 999) for 3 digit packages and a state index number (range 0 - 99) for state
packages. The BAG field of the records in file SORTREC2.TMP are undefined at this point, since further
processing is necessary to determine the appropriate values for this field.

Function MAKE__ COMBOS

The function MAKE__COMBOS (Fig. 4D) determines mandatory combinations of first pass bins for
making up state packages and three digit packages. Function MAKE__COMBOS sets up the required data
in an array BIN__COMBOS to force mailpieces scattered across numerous bins by ineffective first pass sort
schemes back into a single second pass group. Bins fully sorted on the first sort pass are pulled out since
they are not part of second pass records.

The function MAKE__COMBOS first handles state packages. For each state at step 310 the function
MAKE__COMBOS reads each record in the STATE__PACK_FILE (which was created by function
FIRST__PASS__PACKS) and determines (by reference to array FULLSORT__BIN) whether the particular bin
number contained in the record is a fully sorted bin (step 312). If the bin number for that record is fully
sorted and the record belongs to the current state, the function MAKE__COMBOS goes on to the read the
next record in the array STATE__PACK_FILE (i.e., to step 310). If the bin is not fully sorted, the function
MAKE__COMBOS sets a flag in an element of array BIN_USAGE corresponding to that bin, thereby

15



10

15

20

25

30

35

40

45

50

55

EP 0 481 569 A2

indicating that the bin has mailpieces for the current state (step 314).

After the entire file STATE__PACK _FILE has been read for a particular state (determined at step 316),
at step 318 the function MAKE__COMBOS calls another function, function CHECK _COMBOS, which
actually sets up the data in array BIN__COMBOS giving consideration to possible conflicting bin assign-
ments. A detailed discussion of the function CHECK__COMBOS is provided below.

After the function CHECK COMBOS has been called for a particular state, as indicated by the
affirmative result at step 320 the function MAKE__COMBOS moves on the next state and repeats the afore-
described state package handling for that next state, including a call to function CHECK__COMBOS after
reading through the entire STATE__PACK_FILE for that next state. The function MAKE__COMBOS
conducts the afore-described state package handling procedure for each state.

The function MAKE__COMBOS executes much the same procedure for the three digit packages as it
did for the state packages. In handling the three digit packages, at step 330 the function MAKE__COMBOS
reads the first record in the file THREE_DIGIT _PACK_FILE (which was created by function
FIRST__PASS__PACKS). As reflected by step 332 for example, in handling the state packages, the function
MAKE__COMBOS ignores any records in the file THREE__DIGIT__PACK _FILE which pertain to fully sorted
bins (determined by reference to array FULLSORT _BINS).

At step 334 the function MAKE__COMBOS obtains the first three digit ZIP code from the first record in
the file THREE__DIGIT__PACK_FILE and stores that first ZIP code in a location THREE__DIG__ ZIP. At
step 336 the function MAKE__COMBOS determines the bin number contained in that record; and, sets a
flag in the element of array BIN__USAGE corresponding to that bin number.

Having processed the first record in file THREE__DIGIT__PACK_FILE, the function MAKE__COMBOS
then reads through further records in the file THREE__DIGIT__PACK _FILE (as reflected by step 340),
noting the ZIP code stored in the record and storing the first three digits of the ZIP code in a location SCF
(step 342). At step 344 the function MAKE__COMBOS checks to determine if the value in location SCF (the
ZIP code for the most recently read record) is the same as the value in THREE__DIGIT__ZIP (see the
preceding paragraph). If so, the function MAKE__COMBOS (1) at step 346 sets a flag in an element of the
array BIN__USAGE corresponding to the bin number included in the most recently read record from file
THREE_DIGIT__PACK_FILE (thereby indicating that the three digit ZIP code has mailpieces in that bin as
well), and (2) goes on to read the next record in file THREE_DIGIT__PACK_FILE (i.e., returns fo step
340). If the next record in file THREE_DIGIT _PACK_FILE is read at this point, the function
MAKE__COMBOS repeats the steps described in this paragraph with respect to that next record.

If the function MAKE__COMBOS determines at step 344 that the value in location SCF (the ZIP code
for the most recently read record) is not the same as the value in THREE_ DIGIT__ZIP, the function
MAKE__COMBOS concludes its processing of the ZIP code whose value is stored in location
THREE_DIGIT__ZIP by: (1) calling function CHECK _COMBOS (described below) at step 348 to set
appropriate values in the array BIN__COMBO; (2) setting the value in location THREE__DIGIT__ZIP equal to
the value in location SCF (at step 350); (3) at step 352 setting a flag in an element of the array
BIN__USAGE corresponding to the bin number included in the most recently read record from file
THREE__DIGIT__PACK _FILE; and, (4) repeating the steps of the preceding paragraph for the next record
in file THREE__DIGIT__PACK_FILE (e.g., by returning to step 340). The processing of three digit packages
continues in this manner until all three digit packages have been processed (step 354), after which the
function MAKE__SACK__COMBOS is called (step 356).

Function CHECK_ COMBOS

The function CHECK__COMBOS is called by the function MAKE__ COMBOS (described above) in order
to resolve any conflicting bin assignments and to store data in the array BIN_COMBOS. The routine
MAKE__COMBOS calls the function CHECK__COMBOS as the routine MAKE__COMBOS finishes with each
state, and as the routine MAKE__COMBOS finishes with each three digit ZIP value.

As indicated above, the function CHECK COMBOS stores values in the array BIN_COMBO to
indicate which first pass bins are to be mandatorily combined together. As an example of how the array
BIN__COMBOS might appear upon completion of the execution of function CHECK _COMBOS, consider
the following:

16



10

15

20

25

30

35

40

45

50

55

EP 0 481 569 A2

BIN_COMBO[001] =
BIN_COMBO[002]
BIN_COMBO[003]
BIN_COMBO[004 ]
BIN_COMBO[005]
BIN_COMBO[006]
BIN_COMBO[007]
BIN_COMBO[008]

I

una
oONPNOROO

[e e

BIN_ COMBO([127]
BIN_COMBO[128] =

where a zero ("0") assignment indicates that there is no forced combination for a bin; where bins assigned
a "1" are to be forced into combination (i.e., bins 3 and 6); and, where bins assigned a "2" are to be forced
into combination (i.e., bins 5 and 7). Thus, each forced combination has a unique combination number
associated therewith, and the bins forced into combination together have the same combination number
assigned to their corresponding elements in the array BIN__ COMBOS.

When function CHECK__COMBOS is called, function CHECK__COMBOS initially executes two steps:
(1) initializes a counter COLLISION__CNT; and, (2) counts the number of bins for which a flag has been set
in array BIN__USAGE for the current package. If the number of flags set is only one, then function
CHECK__COMBOS knows that no combination of bins is required and returns control to the calling function
MAKE__COMBOS.

Assuming that the function CHECK COMBOS does not immediately return control to the calling
function MAKE__COMBOS, the function CHECK__COMBOS checks to determine whether any of the bins
for which a flag was set in array BIN__USAGE has already been forced into a combination. This check is
implemented by checking the element in array BIN__COMBO corresponding to that bin to determine if a
non-zero combination number has already been assigned to the bin. If a non-zero combination number has
already been assigned, the function CHECK__COMBOS notes a "collision™.

The function CHECK _COMBOS counts the number of collisions detected using a counter
COLLISION__CNT. In addition, the function CHECK__COMBOS stores the numbers of the bins subject to
collision in an array COLLISION__COMBO. For example, if a first collision occurred in bin 67 and a second
collision occurred in bin 48, COLLISION__COMBO[1] = 34 and COLLISION__COMBOJ[2] = 48.

Having searched for collisions, the function CHECK__COMBOS executes different steps in determining
the combination number to be stored in BIN__COMBOS, depending upon whether no collisions, one
collision, or multiple collisions were detected.

If no collisions were encountered during the execution of function CHECK _COMBOS, the function
CHECK__COMBOS would then select the next available number for use as a combination number. For
example, in the example, if the highest number thus far stored in the array BIN__COMBOS was "2", the
function CHECK _COMBOS would then store a "3" in every element in array BIN__ COMBOS for which a
flag was set in a corresponding element of array BIN__USAGE. The function CHECK__COMBOS would then
return control to the calling function MAKE__COMBOS.

If only one collision were encountered during the execution of function CHECK __COMBOS, the function
CHECK_ _COMBOS would assign the combination number stored in the first element of
COLLISION__COMBO to the elements in array BIN_COMBOS corresponding to the elements in array
BIN__USAGE having flags set. For example, if bins 67 and 102 were utilized for the current package as
indicated by flags being set in the 67th and 102nd elements of array BIN__USAGE, if the only collision
detected by function CHECK__COMBOS for the current package occurred with respect to bin 67, and if the
combination number assigned to bin 67 were "5", then the function CHECK__COMBOS would assign the
combination number "5" to bins 67 and 102 (i.e., to BIN__COMBO[67] and BIN__COMBO[102]). The
function CHECK _COMBOS would then return control to the calling function MAKE__COMBOS.

In the more complex case where multiple collisions are encountered, the function CHECK__COMBOS
replaces all the elements of array BIN__COMBO affected by the collision with the combination number of
the first detected collision, i.e., all collision bins are assigned the value COLLISION__COMBOI0] and are
properly placed in the BIN_COMBO array. Then the combination number in COLLISION__COMBOI0] is
assigned to any new bins that might not have collided. This is done by setting the array elements in
BIN__COMBO to COLLISION__COMBOI0] using the corresponding elements marked in array BIN_USAGE.

17



10

15

20

25

30

35

40

45

50

55

EP 0 481 569 A2

Since the value in COLLISION__COMBOI[0] may not have been the lowest forced combination indicator out
of multiple such indicators, a numbering gap could possibly occur.

A numbering gap, if it occurs, is fixed by placing all non-zero elements from the BIN__COMBO array
into another array UNIQUE__COLLISIONS along with counting the number of elements in array
UNIQUE__COLLISIONS. All elements in the array UNIQUE__COLLISIONS are sorted in numerical order,
then each element repeating the value of the previous element is removed from the array, thereby shrinking
the array in size. The array UNIQUE__COLLISIONS makes it possible to easily reassign forced bin
combination numbers without gaps to the BIN__COMBO array. This is accomplished by searching both the
BIN_COMBO array and the UNIQUE__COLLISIONS array for matching contents. When the contents
match, a new sequential number is assigned into yet another array COMBO__ TRANSLATION corresponding
to the position of the UNIQUE__COLLISIONS array. Finally, the BIN__COMBO array is updated by
assigning the value in the COMBO__TRANSLATION array which is indexed by the contents of the
BIN__COMBO array.

Function MAKE__ SACK__COMBOS

The function MAKE__SACK _COMBOS (see Fig. 4E) determines mandatory combinations of first pass
bins for forming sacks. That is, the function MAKE__SACK__COMBOS sets up the required data to force a
sack's packages scattered across bins by the first pass sort scheme back into a single second pass group.

The function MAKE__SACK__COMBOS (which forces a sack's packages together) is somewhat simpler
than the function MAKE__COMBOS (which determined combinations of first pass bins for making up state
packages and three digit packages). The simplicity results from two factors. First, the function
MAKE__COMBOS has already forced zip codes scattered across bins to form packages. Second, an input
file (i.e., SORTREC2.TMP) of subsequent pass packages sorted by sack zip ID already exists. The file
SORTREC2.TMP was created by the function SACK__SORT. The file SORTREC2.TMP is sorted by sack
type, within sack type by package type, and within package type by package zip. Therefore, the file
SORTREC2.TMP is effectively sorted by sack zip ID.

At step 370 the function MAKE__SACK__COMBOS reads the initial record in the file SORTREC2.TMP.
At step 372 the sack ID value obtained from the first record is stored in location LAST__SACK__ZIP__ID. At
step 374 the sack type value obtained from the first record is stored in location LAST__SACK _TYPE. At
step 376 a flag is set in the element of array BIN__USAGE corresponding to the bin value obtained from the
first record of file SORTREC2.TMP.

At step 378 the function MAKE__SACK__COMBOS begins a loop of reading and processing records in
the file SORTREC2.TMP. The next record is read at step 378. If the record was not the last record (as
determined at step 380), at step 382 the function MAKE__SACK__COMBOS checks whether the sack type
value of the record indicates a "MIXED STATES" sack. There is no forced combination with respect to any
MIXED STATES sacks, so that an affirmative result at step 382 results in the continuation of the loop with
the reading of the next record at step 378. If the record does not indicate a MIXED STATES sack, the ZIP
ID value from the record is stored at location SACK_ZIP__ID (step 384).

At step 386 the function MAKE__SACK_COMBOS determines whether the next record indicates a
change of sack types from the previous record. A change of sack types occurs when the current records
has two critical parameters that differ from the previous records. That is, when SACK_ZIP__ID is not equal
to LAST_SACK_ZIP_ID, and when the sack type read from the current record is not equal to
LAST _SACK__TYPE, a change of sack type has occurred.

When, at step 386, a change in sack type is determined not to have occurred, the function
MAKE__SACK__COMBOS sets a flag in an element of the array BIN__USAGE corresponding to the bin
value obtained from the current record in the SORTREC2.TMP file (step 388). The value in location
SACK__ZIP__ID is then stored in location LAST _SACK__ZIP__ID (step 390), and a value indicative of the
sack type obtained from the current record is stored in the location LAST__SACK__TYPE (step 392). The
function MAKE__SACK__COMBOS then loops back to step 378 for the reading of another record from file
SORTREC2.TMP.

When, at step 386, a change in sack type is determined to have occurred, at step 394 the function
MAKE__SACK__COMBOS calls the function CHECK__COMBOS (described above) to update the array
BIN__COMBOS. The function CHECK__COMBOS resolves conflicting bin assignments for sacks in essen-
tially the same manner as described above in connection with the resolution of conflicting bin assignments
for packages. After the «call to function CHECK_ COMBOS, at step 396 the function
MAKE__SACK__COMBOS clears the array BIN__USAGE in anticipating of processing the next sack type.
The function MAKE__SACK__COMBOS then sets a flag in an element of the array BIN_USAGE cor-

18



10

15

20

25

30

35

40

45

50

55

EP 0 481 569 A2

responding to the bin value obtained from the current record in the SORTREC2.TMP file (step 388). The
value in location SACK__ZIP__ID is then stored in location LAST _SACK_ZIP__ID (step 390), and a value
indicative of the sack type obtained from the current record is stored in the location LAST _SACK _TYPE
(step 392). The function MAKE__SACK__COMBOS then loops back to step 378 for the reading of another
record from file SORTREC2.TMP.

After the last record is read from file SORTREC2.TMP (as determined at step 380), the function
MAKE__SACK__COMBOS calls the function CHECK__COMBOS at step to update the array BIN_COMBOS
with respect to the last record. Thereafter, as indicated by step 398, processing continues with the function
BUILD__TREES, which is described immediately below.

Function BUILD__ TREES

The function BUILD _TREES (see Figs. 4F and 4G) builds a major tree array, i.e. array MAJ__TREE,
which associates particular bins with a sort tree. In addition, the function BUILD__ TREES develops pointer
information in a file SRTREE.DAT. The file SRTREE.DAT contains key pointer and offset information used
fo process individual subsequent pass groups within a properly ordered input file containing package
information for multiple groups.

As an example of how the major trees built by function BUILD__ TREES appear, after the execution of
function BUILD__ TREES, the array MAJ__ TREE might have values such as the following:

MAJ TREE[000] = 0 (bin 0 not used)

MAJ TREE([001] 0 (no major tree assignment)
MAJ TREE[002] 1 (first sort tree)
MAJ_TREE[003] 2 (second sort tree)

MAJ _TREE[004] 2 (second sort tree)

MAJ _TREE[005] 0 (no major tree assignment)
MAJ _TREE[006] = 3 (third sort tree)

MAJ_TREE[128] 0 (no major tree assignment)

The function BUILD__ TREES takes the number of different packages coming from a first pass bin or a
required combination of bins and forms information for "groups" (including "groups" requiring even more
passes). This is done by comparing the package count with the number of available bins. Several first pass
bins may be combined fogether if the fotal package count is less than the number of bins available.

At the beginning of the execution of function BUILD _TREES, as reflected by step 400, the function
BUILD__TREES determines the number of packages in each state/3-digit forced bin combination and stores
that value in an array QUAL__PER__COMBO. This is done by determining which bins have the same value
stored in the array BIN__COMBO (e.g., which bins are forced into combination), and summing the number
of packages for all bins combined together. The number of packages in each bin is available from the array
PACKS__PER__BIN, which was developed in the previous function MAKE__SORT__RECORDS.

At steps 402 - 408 the function BUILD__ TREES initializes various parameters. At step 402 the counter
CUTOFF_CNT is initialized at a value equaling the number of available bins. This initialization value may
not be 128, since some bins may be designated as reject bins, or may not be used, or may be used for
other purposes. At step 404 the counter TREE__CNT, which counts the number of sort trees, is initialized at
1. At steps 406 and 408, respectively, the counters QUAL__CNT and TEMP__CNT are initialized at zero.

Commencing at step 410 the function BUILD__ TREES attempts to find the first bin belonging to a tree.
In so doing, the function BUILD_ _TREES considers only bins having packages stored therein which are not
fully sorted during the first pass, or bins which have been forced into combination (e.g., bins having a non-
zero value in their corresponding element in array BIN__ COMBO).

At step 412 the function BUILD_ _TREES determines whether the considered bin was forced into
combination by checking for a non-zero value at the corresponding element in array BIN_COMBO. If the
considered bin was involved in a forced combination, at step 414 the qualifying package counter
QUAL_CNT has the value of the number of packages included in the combined bins added thereto. Where
"i" stands for the bin under consideration, the number of packages included in the combined bins is

19



10

15

20

25

30

35

40

45

50

55

EP 0 481 569 A2

obtained from array QUAL_PER_COMBO[BIN_COMBO[ill. Values were stored in array
QUAL__PER__COMBO at step 400 of function BUILD__TREES. Also for the considered bin involved in the
forced combination, for each bin included in the forced combination, at step 416 the function
BUILD__TREES sets elements corresponding to each such bin in array MAJ__TREE equal to the value in
counter TREE__CNT, which is presently "1". The function BUILD__TREES then sets BIN__COMBO-
USAGE[BIN__COMBOJi]] = 1 at step 417, indicating that all bins in this combination have been accounted
for. Processing then continues at step 420 as indicated by path 422.

The function BUILD _TREES locates a bin not involved in a combination (e.q., a bin for which the
corresponding element in array BIN__COMBO is zero) at step 412. Upon locating a non-combined bin, the
function BUILD _ TREES stores the current value of counter TREE__CNT (i.e., "1"), in the element of array
MAJ__TREE corresponding to the located non-combined bin (step 418). From thence processing continues
with step 420 as indicated by path 422.

At step 420 the function BUILD _TREES computes the number of the next-highest numbered bin by
incrementing the number of the bin located at step 412. Then, using the incremented bin number
(symbolically expressed by "i"), at step 422 the function BUILD_ _TREES checks to see if the bin was
involved in a forced combination by checking the value of BIN__COMBOIi]. If the bin was involved in a
forced combination, the number of packages involved in the combination (i.e., QUAL_PER__COMBO-
[BIN__COMBQYJ) is stored at the temporary counter TEMP__CNT (step 424). If the bin was not involved in a
forced combination, the number of packages in the bin (i.e., PACKS__PER_BIN[i]) is stored at the
temporary counter TEMP__CNT (step 424). After execution of step 424 or step 426, the function
BUILD__TREES adds the value of TEMP__CNT to the counter QUAL__ CNT (step 428).

At step 430 the function BUILD_ _TREES determines whether the value in counter QUAL_CNT
(updated at step 428) exceeds the number of available bins (i.e., exceeds the value of the counter
CUTOFF_CNT initialized at step 402). If an excess is determined at step 430, at steps 432 and 434,
respectively, the function BUILD__ TREES increments the value in counter TREE__CNT and stores the value
in TEMP__CNT in counter QUAL_CNT before proceeding to step 436. In so doing, the function
BUILD__TREES begins another sort tree beginning with the current bin and initializes the value in counter
QUAL__CNT for the new tree on the basis of the count determined at the appropriate one of steps 424 or
426.

At step 436 the function BUILD__TREES again discerns whether the current bin was involved in a
forced combination. If the current bin was involved in a forced combination, at step 438 the function
BUILD__TREES sets the corresponding elements in array MAJ__TREE equal to the current value of counter
TREE__CNT for each bin included in forced combination with the current bin. Then, at step 440, a flag is
set in array BIN__COMBO__USAGE at element BIN__COMBOYi] thereof.

If at step 436 the function BUILD__TREES discerns that the current bin was not involved in a forced
combination, at step 442 the function BUILD__TREES assigns the value of the counter TREE__CNT to the
element i in array MAJ__TREE for this bin (i.e., MAJ__TREE[i] = TREE__CNT).

After processing either step 442 or step 440, the function BUILD _TREES checks at step 444 if all bins
have been processed. If not, execution loops back to step 420 for processing the next bin.

After all bins have been processed by function BUILD_ _TREES as determined at step 444, at step 446
the function BUILD_ _TREES prepares the file SRTREE.DAT (described below). The file SRTREE.DAT
contains key pointer and offset information eventually used to process individual "groups" within a properly
ordered input file, containing package information for multiple groups.

The file SRTREE.DAT contains records of the following structure:

typedef struct

{

unsigned int QUAL_PTR; /* number of package data entries

prior to this major tree */

unsigned int QUAL TRE: /* number packages (bins) required
per major tree */

unsigned int GRPS_TRE; /* groups per major tree */

unsigned int GROF_TRE: /* number of groups prior to this

major tree
} TREE_DATA

20



10

15

20

25

30

35

40

45

50

55

EP 0 481 569 A2

In preparing the file SRTREE.DAT, the function BUILD _TREES finds the bins belonging to each sort
free. Then, for each sort tree, the number of qualifying packages for all the bins included in the free is
summed to obtain a total package count for the tree (stored in location QUAL__CNT [which is re-initialized
at zero before checking each tree]). This value is stored in field QUAL__TRE for the appropriate record in
file SRTREE.DAT for the tree of interest.

To determine the value for field GRPS__TRE for a record in filed SRTREE.DAT, the function
BUILD__TREES evaluates the expression:

1 + (QUAL__CNT - 2)(TOT__BINS - 1)
assuming QUAL__CNT is greater than zero, and wherein TOT__BINS is as described with respect to step
402 supra. If the value of counter QUAL__CNT is zero, the value for field GRPS__TRE becomes "1".

The values of fields QUAL__PTR and GROF_ TRE, respectively, for each record in file SRTREE.DAT,
are obtained by maintaining running summations of the values QUAL__TRE and GRPS__TRE for previous
trees.

Function TREESORT

The function TREESORT (see Fig. 4H) takes the input file SORTREC2.TMP and produces an output file
SORTREC3.TMP. Whereas the records in input file SORTREC2.TMP are sorted by sack type, then within
sack type by package type, and within package type by ZIP ID, the records in output file SORTREC3.TMP
are sorted by major free, then within major tree by sack type, then within sack type by package type, then
within package type by ZIP ID.

At step 450, the function TREESORT determines the number of entries (i.e., the number of records)
belonging to each tree. This is done by making a first pass through the input file SORTREC2.TMP. As each
record in file SORTREC2.TMP is read, the bin number for that record is obtained from the record. Using the
bin number extracted from the record as an index, the function TREESORT determines the maijor tree to
which the record belongs by checking the array MAJ__TREE. The entries for each tree are counted as the
input file SORTREC2.TMP is read.

All the records from input file SORTREC2.TMP for as many trees as possible are stored in dynamic
memory by the function TREESORT. All the records for all the trees may not fit into dynamic memory
simultaneously, so for each execution of a loop (consisting of steps 452, 454, 456, and 458), the records for
as many frees as possible are stored in dynamic memory. The lowest numbered trees are handled during
the first execution of the loop, with successive loop executions involving progressively higher numbered
trees.

Before conducting another pass of the records included in the input file SORTREC2.TMP, at step 452
the function TREESORT sets a memory pointer for each tree which will fit into dynamic memory for the
current execution of the loop. The memory pointer is easily determined since the number of entries for each
tree is known from step 450, and the size of each record is standardized in accordance with the format
discussed supra.

At step 454 each record in the input file SORTREC2.TMP is again read. As a record is read, it is copied
into dynamic memory at the location specified by the memory pointer for the tree to which the record
belongs. After each record is written to dynamic memory, the memory pointer for its free is advanced to the
next record location for that tree in dynamic memory.

When all the trees being handled by this execution of the loop have been written into dynamic memory,
at step 456 the contents of the dynamic memory is written to the output file SORTREC3.TMP. Thus, the
output file SORTRECS3.TMP is sorted first by tree, then by sack, then by package, and then by ZIP ID.

At step 458 the function TREESORT checks to determine if all trees have been processed. If further
trees remain, the function TREESORT goes back to the beginning of the loop (i.e., back to step 452) to
handle further trees and to continue writing to the output file SORTREC3.TMP in the manner just described.
If all trees have been written, processing continues with function FIRST__PASS _SACKS (as indicated by
step 460).

Function FIRST__PASS__ SACKS

Function FIRST _PASS_SACKS (see Fig. 4l) determines first pass bins containing completed sorted
sacks. In this regard, the function FIRST__PASS _SACKS uses the file FULLSOR2.TMP to prepare an array
FULL _SACK__BIN, which is an array of completely sorted first pass sacks indexed by first pass bin. An
example of the appearance of a portion of array FULL _SACK_BIN upon completion of execution of
function FIRST__PASS__SACKS is as follows::

21



10

15

20

25

30

35

40

45

50

55

EP 0 481 569 A2

bin 0 not used

FULL_SACK_BIN[000]
FULL_SACK_BIN[001]
FULL_SACK_BIN[002]
FULL_SACK_BIN[003]
FULL_SACK_BIN[004]
FULL_SACK_BIN[005]
FULL_SACK_BIN[006]
FULL_SACX_BIN[007]
FULL_SACK_BIN[008] =

bins 3 and 5 form one sack

bins 3 and 5 form one sack
2nd sack from only one bin

]
OCONKHFHOFROOO

FULL_SACK_BIN[127]
FULL_SACK_BIN[128]

|
oo

]

In the simple case, function FIRST__PASS _SACKS determines completely sorted sacks by comparing
the sack count with the bin count of the bin where the sack contents was assigned. If the two counts are
equal, the bin is completely sorted.

For Mixed five digit, three digit, and state sacks the comparison is complicated because the sack
contents could end up in several first pass bins. Therefore the partial sack counts from several bins making
up one complete sack are compared against the same several bins total piece count. In addition, only the
file containing the first pass package records is scanned, so records that end up in the subsequent pass
package record file are not included. To account for this, the sack count arrays containing both first pass
and subsequent pass data are compared against the first pass sack count.

Describing now in detail the steps executed by function FIRST__PASS SACKS, various arrays and
parameters are initialized at step 470. For example, the output array FULL _SACK_BIN has all its elements
set equal to zero, and the array BIN__USAGE is set to a logical FALSE value at step 470. In addition, the
counters SACK__BIN__CNT and FIRST__PASS _SACKS, and the location SACK__CNT are initialized at
zero.

At step 472 the function FIRST__PASS _SACKS reads the first record from file FULLSOR2.TMP. The
file FULLSOR2.TMP was created by the function SACK _SORT, and is a file containing one record per
completely sorted first pass package. In reading the first record from file FULLSOR2.TMP at step 472, the
function FIRST__PASS _SACKS obtains the ZIP ID and the sack type from the initial record, and stores
those values at the respective locations LAST_SACK_ZIP__ID and LAST_ SACK_ TYPE.

At step 474 the function FIRST__PASS_SACKS begins a loop of reading and processing further
records in the file FULLSOR2.TMP. In so doing, the function FIRST_PASS _SACKS obtains the ZIP ID and
the sack type from the new record, and stores those values at the respective locations SACK__ZIP__ID and
SACK__TYPE.

At step 476 the function FIRST__PASS _SACKS determines whether the most-recently read record is in
the same sack as the previous record. This is affirmatively determined when SACK_ZIP_ID =
LAST__SACK_ZIP__ID and SACK__ZIP_ID = LAST__SACK_ ZIP__ID. If it is determined at step 476 that
the most-recently read record is not in the same sack as the Previous record, processing continues at step
478. Otherwise processing branches to step 480.

At step 480 the function FIRST__PASS SACKS determines whether the most recently read record
involves a new bin. A new bin is involved if the element corresponding to the new bin in array BIN__USAGE
is still FALSE. If a new bin is not involved, processing continues with step 482. Otherwise, processing
branches to step 484.

When a new bin is involved, at step 484 the function FIRST _PASS__SACKS sets the element in array
BIN__USAGE corresponding to the new bin to a TRUE value. Then, at step 486, the function
FIRST__PASS SACKS adds the count of the number of mailpieces in that new bin to the counter
SACK_BIN__CNT. It will be remembered that the count of the number of mailpieces in the new bin is
obtained from the file AGGR.DAT, which was created at step 202.

At step 482, reached either from step 480 or step 486, the function FIRST__PASS SACKS sums the
partial package counts by adding the adding the package count from the most recent record to the counter
SACK__CNT. At step 478, reached either from step 476 or step 482, the function FIRST__PASS__SACKS
initializes the logical flag ALL__FROM__PASS1 1o a logical zero.

At step 488 the function FIRST_PASS SACKS examines the value of the location

22



10

15

20

25

30

35

40

45

50

55

EP 0 481 569 A2

LAST _SACK_TYPE to determine what type of sack is being processed, with a view to determining
whether the flag ALL__FROM__PASS1 should be changed from FALSE to TRUE for this sack, thereby
indicating that the sack is not split into first and second pass records. FIVE__DIGIT sacks cannot be split
into first and second pass records, so if the value of LAST__SACK _TYPE is FIVE_DIGIT, the flag ALL-
FROM__PASS1 is set TRUE.

For the other sack types, function FIRST__PASS__SACKS at step 488 determines whether the value of
an appropriate counter equals the current value of the counter SACK__CNT (calculated at step 482). In this
respect, the equality determination at step 488 is made with respect to the appropriate one of the counters
MIXED _FIVE__SACK__CNT, THREE_ DIGIT__SACK_ CNT, or STATE__SACK_ CNT for the last sack
ZIP ID.

At step 490 the function FIRST__PASS _SACKS determines whether the flag ALL__ FROM__PASS1 is
TRUE and whether the value in counter SACK__CNT equals the value in the counter SACK__BIN__CNT
(see step 486). When both determinations are affirmative, the function FIRST__PASS__SACKS realizes that
it has encountered a completely sorted first pass sack. If either determination is negative, the function
FIRST__PASS _SACKS continues processing at step 492; otherwise the function FIRST _PASS _SACKS
branches to steps 493 followed by step 494.

Both determinations at step 490 being affirmative reflect the location of a completely sorted sack, and
cause a branch in processing to step 493. At step 493 the counter FIRST__PASS _SACKS is incremented
to a value which will be used as a unique identifying value for the just-located completely sorted sack. At
step 494 the value of FIRST__PASS _SACKS is stored in every element of array FULL _SACK_BIN which
corresponds to a bin which has mailpieces included in the completely sorted sack. The bins which have
mailpieces included in this most-recently located completely sorted sack are reflected by the elements in
array BIN__USAGE which have been set to a logical TRUE value.

At step 492, reached either from step 490 or step 494, the function FIRST__PASS__SACKS reinitializes
the counters SACK__CNT and SACK_BIN_CNT at zero; sets every element in array BIN__USAGE to a
FALSE value; and, stores the value from location SACK__ZIP__ID in location LAST _SACK_ZIP__ID and
the value from location SACK__TYPE in the location LAST__SACK_TYPE.

At step 495 the function FIRST__PASS SACKS determines whether any more records remain for
reading in file FULLSOR2.TMP. If records remain, processing loops back to step 474, at which the repetition
of the above-described steps occurs for the next record. If no further records remain in file
FULLSOR2.TMP, the function FIRST__PASS_SACKS processes the last-read record at step 496. In this
regard, the processing of step 496 is essentially the same as steps 488 through 494 inclusive, except there
is no step corresponding to reinitialization step 492. At step 497 processing is transfered to function
MAKE__BAGS.

Function MAKE__BAGS

Function MAKE-BAGS (see Figs. 4J and 4K) assigns unique identification numbers to each bag
destination and determines the number of pieces assigned fo a destination. In addition, the bag identifica-
tion numbers get corresponding assignments to subsequent pass groups and bins.

At step 500 the function MAKE__BAGS initializes the value of location LAST__BAG__ASSIGNED at
zero. At step 502 the function MAKE__BAGS handles mixed states bags, assigning all mixed states records
to the bag number "one". As part of step 502, the function MAKE__BAGS increments the value at location
LAST _BAG__ASSIGNED (so that the value is "1"), and then sets BAG__NO = 1. Further, at step 502 the
function MAKE__BAGS creates a record in a file BAGTAG__HANDLE, with the record having the following
format and values:

BAG_DATA.ZIP_ID =0
BAG_DATA.BAG_ID_NO = BAG.NO
BAG_DATA.BEG GROUP = 0
BAG_DATA.BEG_BIN =0
BAG_DATA.END_GROUP = 0
BAG_DATA.END_BIN =0

MIXED STATES
MS_SACK_CNT

BAG_DATA.S_TYPE
BAG_DATA.CNT

23



10

15

20

25

30

35

40

45

50

55

EP 0 481 569 A2

Having handled the mixed states bags at step 502, the function MAKE__BAGS determines the number
of first pass bags containing either some or all completely sorted first pass packages. These sacks must
have their bag ID assignment before subsequent pass groups are handled. The completely sorted first pass
bags are processed by steps 504 through 550 of the function MAKE__BAGS. Thereafter, at steps 554
through 572, the subsequent bags are processed.

In the above regard, at step 504 the function MAKE__BAGS initializes various values for handling the
first pass bags. The function MAKE_BAGS sets LAST_ID = -1; LAST_TYPE = -1; and,
FRST__PASS BAGS.CNT = 0.

At step 506 the function MAKE_BAGS reads, as a first step in a loop, a record from file
FULLSOR2.TMP. The file FULLSOR2.TMP was created by the function SACK__SORT. Assuming at step
508 that the record read is not from the same sack as the last record in the file FULLSOR2.TMP, at step
510 the function MAKE__BAGS checks whether the record just read from the file FULLSOR2.TMP pertained
to a mixed states sack. If so, the function MAKE__BAGS realizes that it has already handled (at step 502)
the mixed states bag, and at step 512 sets SACK__NO = 1. Also, at step 514, the function MAKE__ BAGS
writes a corresponding record (i.e., the record read from file FULLSOR2.TMP with the bag number updated)
to file FULLSORT. After execution of step 514, processing loops back to step 506 for the reading of another
record from file FULLSOR2.TMP.

Assuming that the function MAKE__BAGS determined at step 510 that the record just-read pertained to
a sack type other than a mixed states sack, at step 516 the function MAKE__BAGS obtains the ZIP ID from
the record and stores that ZIP ID in location SACK__ZIP__ID. At step 518 the function MAKE__BAGS
checks whether the record just-read from file FULLSOR2.TMP signals a change of sack. A change of sack
is signalled when SACK__ZIP__ID does not equal the value stored in location LAST _ID.

If a change of sack is not encountered at step 518, the function MAKE__BAGS adds the value in the
field SACK.PACKAGE.CNT from the record just-read to the counter FRST__PASS BAG.CNT (step 520).
Location SACK.NO is then set to the value at location BAG.NO (step 522). At step 524, a corresponding
record is written to file FULLSORT. After the corresponding record is written at step 524, execution loops
back to step 506 for the reading of yet another record from the file FULLSOR2.TMP.

If a change of sack is encountered at step 518, the function MAKE__BAGS determines whether the
record just-read from file FULLSOR2.TMP was the very first record in file FULLSOR2.TMP (step 526). For
all but the very first record in file FULLSOR2.TMP, the function MAKE__BAGS writes a corresponding
record in the file BAGTAG__HANDLE (step 528).

At step 530 the function MAKE__BAGS computes a value for pointer PREV__ASSIGN__PTR. In this
regard, at step 530 the function MAKE__BAGS uses the value of SACK__ZIP__ID obtained from the record
just-read as an index for an appropriate one of arrays MIXED _FIVE__BAG__NO; STATE__BAG__NO;
THREE__DIGIT__BAG__NO; depending on the value of SACK.STYPE obtained for the record just-read.
(These arrays were also initialized at step 500). The value obtained by indexing into the appropriate array is
stored in the pointer PREV__ASSIGN_PTR. If the value of SACK.STYPE obtained from the record just-read
is other than MIXED__FIVE; THREE__DIGIT; or STATE; the pointer PREV__ASSIGN__PTR is assigned the
value NULL at step 530.

At step 532 the function MAKE__BAGS checks to determine if PREV__ASSIGN_PTR is NULL or the
contents thereof is zero. If either value is stored in pointer PREV__ASSIGN_PTR, at step 534
LAST _BAG__ASSIGNED is incremented and at step 536 that incremented value is stored in location
BAG__NO. Otherwise, at step 538, BAG__NO has the value from "PREV__ASSIGN__PTR stored therein.

Step 540 is reached either from step 536 or step 538. At step 540, the function MAKE__BAGS checks
whether the pointer PREV__ASSIGN__PTR has the value NULL stored therein. If so, at step 542 the value of
BAG__NO is stored in location "PREV__ASSIGN__PTR.

At step 544, which follows either step 540 or step 542, the function MAKE__BAGS creates a record for
the array FRST__PASS__BAGS. The record created at step 544 has the following format and values:

24



10

15

20

25

30

35

40

45

50

55

EP 0 481 569 A2

FRST PASS_BAGS.ZIP_ID = SACK_ZIP_ID
FRST_PASS_BAGS.BAD_ID_NO = BAG_NO
FRST_PASS_BAGS.BEG_GROUP =0
FRST_PASS_BAGS.BEG_BIN =0
FRST_PASS_BAGS.END_GROUP =0
FRST_PASS_BAGS.END_BIN =0
FRST_PASS_BAGS.S_TYPE = SACK.STYPE
FRST_PASS_BAGS.CNT = SACK.PACKAGE.CNT

After creating a record for file FRST__PASS BAGS at step 544, the function MAKE__ BAGS stores the
value in location SACK_ZIP_ID in location LAST_ID (step 546) and stores the value in location
SACK.STYPE in location LAST _TYPE (step 548). Then function MAKE__BAGS jumps back to execute
steps 522 and 524 before reading another record from file FULLSOR2.TMP at step 506. In this respect, as
explained before, at step 522 the location SACK.NO is then set to the value at location BAG.NO and, at step
524, a corresponding record is written to file FULLSORT.

After all records from file FULLSOR2.TMP have been read as determined by step 508, the final
FIRST__PASS BAGS record is written to file BAGTAG__HANDLE at step 549. Then, as indicated by
symbol 550 processing continues at step 554 (see Fig. 4K) for handling package records for subsequent
pass sorting (i.e., package records from file SORTREC3.TMP).

At step 554, which is somewhat akin to step 504, various parameters are initialized, i.e., CUS__GROUP
= 0; LAST_ID = -1; LAST_TYPE = -1; and, BAG__DATA.CNT = 0. The file SRTREE.DAT is read to
determine if any more tree structures remain. In the case of remaining tree structures, CUS__GROUP is
incremented by one (step 560). Then a check at step 562 is made to determine if there are any more
groups defined by the present tree record. If there are not more groups, the function continues at step 556
where the file SRTREE.DAT is read for another tree structure. In the case where a group remains in the
present tree (deterimed at step 562), at step 564 an array BIN__CNT is set declaring the number of
packages to be placed in the present group's bins. In addition, at step 565 a file seek position is set in file
SORTREC3.TMP, for the first record in the present group being processed, by using tree record information
and the present group within the tree. At step 567 the array BIN__CNT contents are checked for a value of
one. This indicates that no more groups are required to sort the next record found in SORTREC3.TMP. For
all bins such that BIN__CNT[i] = 1 a record is read from the file SORTREC3.TMP (step 568). In the case
where no more bins remain, processing proceeds to step 560 where a new group is used. Where a record
is read from SORTREC3.TMP the record is processed at step 570 in the same way as for a first pass sort
record. Step 570 is the same as steps 506 through 549 except in step 506 where a record is read from file
FULLSOR2.TMP it is now read from file SORTREC3.TMP. After processing the package record from file
SORTREC3.TMP the process continues by going to step 566 where a check is made to determine if any
more bins have been assigned to the present group.

In the case where no more frees are left at step 558, the program is ready to go to the function
MAKE__ CLIENT _CNTS (as indicated by step 572).

Function MAKE__CLIENT__ COUNTS

The function MAKE__CLIENT__COUNTS (see Fig. 4L) sets up several count categories for each client.
These counts are subsequently used in postage reporting and client billing.

The function MAKE__CLIENT__COUNTS uses the input file COUNT.DAT created by function
FIRST__SORT_PASS and the input file SORTREC2.TMP created by the function SACK__SORT. It will be
recalled that the format of file COUNT.DAT is as follows:

25



10

15

20

25

30

35

40

45

50

55

EP 0 481 569 A2

byte

offset #

Zip Code - 4 bytes (long integer) 0
Stream Index - 1 byte (hex/binary value) 4
Client Index - 1 byte (hex/binary value) 5
Bin - 1 byte (hex/binary value) 6
5 Digit OCR/BCR count - 2 bytes (unsigned integer) 7
Zip + 4 OCR count - 2 bytes (unsigned integer) 9
Zip + 4 Barcoded count - 2 bytes (unsigned integer) 11

The records in file COUNT.DAT are sorted in ascending order. In this respect, a primary sortation is done
by ZIP code. For ZIP codes repeated due to their usage in different client/mailstreams, a secondary
sortation is performed by first sorting the client index number, followed by the stream index number.

At step 600 the function MAKE__CLIENT__COUNTS initializes several counter arrays. In this respect, at
step 600 the following are initialized at zero:

CLIENT[i].QUAL_TOT.COUNTS5
CLIENT[1i].QUAL_TOT.ZIP4
CLIENT[i].QUAL_TOT.BARCDE
CLIENT[i].NQUAL_TOT.COUNTS
CLIENT[i].NQUAL_TOT.ZIP4
CLIENT[i].NQUAL_TOT.BARCDE

where i represents the client index (the number associated with a particular client). CLIENTIil-
.QUAL__TOT.COUNTS will ultimately contain the total number of mailpieces from client "i" which qualify for
the 5 Digit OCR/barcode postage discount; CLIENT[i].QUAL_TOT.ZIP4 will ultimately contain the total
number of mailpieces from client "i" which qualify for the ZIP+4 OCR postage discount; CLIENT[i]-
.QUAL _TOT.BARCDE will ultimately contain the total number of mailpieces from client "i" which qualify for
the ZIP +4 barcoded postage discount; CLIENT[iJ.NQUAL_ _TOT.COUNTS will ultimately contain the total
number of 5 Digit OCR/barcoded mailpieces from client "i" which do not qualify for the 5 Digit
OCR/barcoded postage discount; CLIENT[i.NQUAL _TOT.ZIP4 will ultimately contain the total number of
ZIP +4 OCR mailpieces from client "i" which do not qualify for the ZIP+4 OCR postage discount; and,
CLIENT[i].NQUAL_ TOT.BARCDE will ultimately contain the total number of ZIP +4 Barcoded mailpieces
from client "i" which do not qualify for the ZIP +4 Barcoded postage discount
At step 600 the following are also initialized at zero:

TOTALS[0] .COUNTS
TOTALS[0] . COUNT9
TOTALS[ 0] . BAR_CNT

TOTALS[1].COUNT5
TOTALS[1].COUNT9
TOTALS[1] . BAR_CNT

TOTALS[2] .COUNTS
TOTALS([2] . COUNT9
TOTALS([2] .BAR_CNT

At step 602 the function MAKE__CLIENT _COUNTS reads a record in the file COUNT.DAT. As noted
above, each record in file COUNT.DAT has a ZIP ID field. At step 604 the function
MAKE__CLIENT__COUNTS searches the file SACK2.TMP to find the record in file SACK2.TMP having the
same ZIP ID as the current record in file COUNT.DAT. At step 606 the function MAKE__CLIENT__COUNTS
consults the record found in file SACK2.TMP to determine the sack type (STYPE) assigned to the sack

26



10

15

20

25

30

35

40

45

50

55

EP 0 481 569 A2

containing mailpieces for the current ZIP ID.

At step 608 a determination is made whether the record in file SACK2.TMP for the current ZIP ID
indicates that mailpieces having the current ZIP ID are contained in FIVE__DIGIT or MIXED__FIVE sacks
(thereby qualifying for the applicable postage discounts). If the determination at step 608 is affirmative, the
function MAKE__CLIENT__COUNTS adds values from the appropriate fields of the current COUNT.DAT
record to "qualifying” counters for the client having the client index borne by the current COUNT.DAT
record. In this respect, for client "i" at step 610 the counter CLIENT[iJL.QUAL__TOT.COUNTS is incremented
by the value contained at byte offset 7 in the COUNT.DAT record; the counter CLIENT[i].QUAL_ TOT.ZIP4
is incremented by the value contained at byte offset 9 in the COUNT.DAT record; and, the counter CLIENT-
[i(1.QUAL__TOT.BARCDE is incremented by the value contained at byte offset 11 in the COUNT.DAT record.

On the otherhand, if the determination at step 608 is negative, at step 612 other "non-qualifying”
counters for client "i" are incremented by the values contained at byte offsets 7, 9, and 11, namely
counters CLIENT[i].NQUAL__ TOT.COUNT5 , CLIENT[i].NQUAL_ TOT.ZIP4, and CLIENT[i}-
.NQUAL__TOT.BARCDE, respectively.

If other records remain in file COUNT.DAT (as determined at step 614), the function
MAKE__CLIENT__COUNTS loops back to step 602 to obtain the next record and to execute the steps of
Fig. 4L for that next record. After all records in file COUNT.DAT have been processed by function
MAKE__CLIENT__COUNTS, several "totals" are computed at step 616.

At step 616 the function MAKE__CLIENT_ COUNTS determines the following totals:

TOTALS[0] .COUNTS (The number of mailpieces for all
clients qualifying for the 5 Digit
OCR/barcode postage discount)

TOTALS[0] .COUNT4 (The number of mailpieces for all
clients qualifying for the ZIP+4
OCR postage discount)

TOTALS[0] .BAR_CNT (The number of mailpieces for all
clients qualifying for the ZIP+4
barcoded postage discount)

TOTALS[1].COUNTS5 (The number of non-qualifying 5
Digit OCR/barcode mailpieces for
all clients)

TOTALS[1] .COUNT4 (The number of non-qualifying ZIP+4
OCR mailpieces for all clients)

TOTALS[1].BAR_CNT (The number of non-qualifying ZIP+4
barcoded mailpieces for all
clients)

TOTALS[2] .COUNTS TOTALS[0].COUNTS + TOTALS[1].COUNT5

TOTALS[2] .COUNT4 TOTALS[0].COUNT4 + TOTALS[1].COUNT4

TOTALS[2].BAR_ CNT= TOTALS[O0O].BAR_CNT +
TOTALS{1].BAR_CNT

Then, at step 616, for j = 0, 1, and 2, the function MAKE__CLIENT__COUNTS determines TOTALS[j}-
.TOTAL, which is evaluated for each j by the expression TOTALS[j]JTOTAL = TOTALS[j].COUNT5 +
TOTALS[j1.COUNT9 + TOTALS[j].BAR_CNT.

Function CORRELATE__ BAGS

The function CORRELATE__BAGS (see Fig. 4M) determines the bag number (i.e., the sack number) for
each Zip Code and creates a file SACK3.TMP. The file SACK3.TMP is similar to the file SACK2.TMP which
is used to create file SACK3.TMP, but unlike file SACK2.TMP the file SACK3.TMP has a bag number
assigned to the "no" field in each record.

The input files utilized by function CORRELATE_ BAGS are file SACK2.TMP, file SORTREC.DAT, and
file FULLSORT.DAT. These input files are created by the functions ASSIGN__SACKS, MAKE__BAGS, and
MAKE__BAGS, respectively.

Function CORRELATE__ BAGS reads successive records from the file SACK2.TMP and attempts to first
match the current record with a record from the file SORTREC.DAT. If a maich is found, the function

27



10

15

20

25

30

35

40

45

50

55

EP 0 481 569 A2

CORRELATE__BAGS can assign a bag number for the Zip Code for the current record from the file
SACK2.TMP, and writes a record including that bag number to the new file SACK3.TMP. If a match is not
found in the file SORTREC.DAT, the function CORRELATE__BAGS then attempts to maich the current
record from the file SACK2.TMP with a record from the file FULLSORT.DAT. If a match is found, the
function CORRELATE__BAGS assigns a bag number for the Zip Code for the current record from the file
SACK2.TMP, and writes a record including that bag number to the new file SACK3.TMP.

At step 640 the function CORRELATE__ BAGS reads a record from the file SACK2.TMP. At step 642 the
function CORRELATE__BAGS obtains the value in the PTYPE field for the record just read from the file
SACK2.TMP. At step 644 a check is made to determine if the PTYPE value is "M", indicating a mixed
states package. If the PTYPE is "M", the function CORRELATE__BAGS knows that all MIXED STATES
packages are to go into the first bin, and accordingly at step 646 assigns SACK.NO the value "1". Then, at
step 648, a record is written to the new file SACK3.TMP, with the "no" field of the record having stored
therein the value of SACK.NO (i.e., "1").

If the PTYPE value for the current record from file SACK2.TMP is not an "M", at step 650 the function
CORRELATE__BAGS obtains the PACKAGE__ZIP__ID value from the zip identifier field of the struct
PACKAGE included in the struct SACK comprising the record for the file SACK2.TMP. Then, preparatory to
a loop of reading records from file SORTREC.DAT, at step 652 the function CORRELATE__BAGS initializes
the flag MATCH__FLAG to have a TRUE value and the index CURRENT __INDEX to have the value "0".

As indicated above, the function CORRELATE__ BAGS first attempts to match the current record in the
file SACK2.TMP with a record in file SORTREC.DAT. In this regard, at step 654 the function
CORRELATE__BAGS requires the reading of a record from the file SORTREC.DAT. Then, at step 656, a
value for pointer CURRENT _PTR is determined, which value reflects the physical position of the current
record in the file SORTREC.DAT relative to the beginning of the file SORTREC.DAT. As will be seen below,
the value of pointer CURRENT _PTR is ultimately used to determine the bag number for the package
referred to by the current record in file SACK2.TMP.

At step 658 the function CORRELATE__BAGS determines whether information from the current record
in file SACK2.TMP matches the corresponding information for the current record in file SORTREC.DAT.
Specifically, the PTYPE and zip identifier fields for the two current records are compared. In this regard, the
zip identifier information for the current record in file SACK2.TMP is stored in the location
PACKAGE__ZIP__ID previously determined at step 650.

If a "match" is located at step 658, the function CORRELATE__BAGS performs three operations
depicted by steps 660, 662, and 664. At step 660 the value of CURRENT__PTR is used to find the bag
number and set the SACK.NO. At step 662 a record is written to the new file SACK3.TMP, with the value of
SACK.NO as determined at step 660 being stored in the "no" field of the record. At step 664, the flag
MATCH__FLAG is set to a TRUE value.

At step 666, reached either from step 664 after a "match" or from step 658 when a maich is not found,
the index CURRENT__INDEX is incremented. As explained above, the value of CURRENT_INDEX is used
at step 656 to determine the value of CURRENT__PTR, which in turn is used at step 660 to determine the
value of SACK.NO.

At step 668 the function CORRELATE__BAGS checks to see if the flag MATCH__FLAG has a TRUE
value, indicating that a match has just been found. If so, the function CORRELATE__BAGS knows that it is
finished with the current record in file SACK2.TMP, and can go on to process the next record in file
SACK2.TMP, with the hope of finding a match for that next record as well. In this regard, an affirmative
determination at step 668 results in a branching back to step 640 for reading the next record in file
SACK2.TMP.

If a match were not found comparing the current record in file SACK2.TMP with the current record in
file SORTREC.DAT, at step 670 the function CORRELATE__ BAGS checks to determine whether there are
yet further records in the file SORTREC.DAT for which a comparison for prospective match can be made. If
additional records remain in file SORTREC.DAT, the function CORRELATE__BAGS branches back to step
654 for reading the next record in file SORTREC.DAT. For that next record, the steps 658 through 668 of
Fig. 4M are executed, with that next record from file SORTREC.DAT becoming the "current” record from
file SORTREC.DAT.

If, at step 670, it is determined that the file SORTREC.DAT has been exhausted with no match for the
current record in file SACK2.TMP, as indicated above the function CORRELATE BAGS goes on to check if
a match for the current record in file SACK2.TMP can be found with a record in the file FULLSORT.DAT.

Before reading a record from the file FULLSORT.DAT, however, at step 672 a loop parameter "i" is

initialized at "0". As seen hereinafter, this loop parameter "i" plays a role in determining the SACK.NO
should a match occur.

28



10

15

20

25

30

35

40

45

50

55

EP 0 481 569 A2

At step 674 the function CORRELATE__BAGS requires the reading of a record from the file FULL-
SORT.DAT.At step 678 the function CORRELATE__ BAGS determines whether information from the current
record in file SACK2.TMP matches the corresponding information for the current record in file FULL-
SORT.DAT. Specifically, the PTYPE and zip identifier fields for the two current records are compared. In
this regard, the zip identifier information for the current record in file SACK2.TMP is stored in the location
PACKAGE__ZIP__ID previously determined at step 650.

If a "match" is located at step 678, the function CORRELATE__BAGS performs three operations
depicted by steps 680, 682, and 684. At step 680 the value of the loop parameter "i" (which points to the
first pass record with a match) is used to find the assigned bag number and to set SACK.NO. At step 682 a
record is written to the new file SACK3.TMP, with the value of SACK.NO as determined at step 680 being
stored in the "no" field of the record. At step 684, the flag MATCH__FLAG is set to a TRUE value.

At step 686, reached either from step 684 after a "match" or from step 678 when a maich is not found,
the loop parameter "i" is incremented. As explained above, the value of the loop parameter "i" is used to
determine the value of SACK.NO.

At step 688 the function CORRELATE__BAGS checks to see if the flag MATCH__FLAG has a TRUE
value, indicating that a match has just been found. If so, the function CORRELATE__BAGS knows that it is
finished with the current record in file SACK2.TMP, and can go on to process the next record in file
SACK2.TMP, with the hope of finding a match for that next record as well. In this regard, an affirmative
determination at step 688 results in a branching back to step 640 for reading the next record in file
SACK2.TMP.

If a match were not found comparing the current record in file SACK2.TMP with the current record in
file SORTREC.DAT, at step 690 the function CORRELATE__ BAGS checks to determine whether there are
yet further records in the file FULLSORT.DAT for which a comparison for prospective match can be made.
If additional records remain in file FULLSORT.DAT, the function CORRELATE__BAGS branches back to
step 674 for reading the next record in file FULLSORT.DAT. For that next record, the steps 678 through 688
of Fig. 4M are executed, with that next record from file FULLSORT.DAT becoming the "current” record
from file FULLSORT.DAT.

If, at step 690, it is determined that the file FULLSORT.DAT has been exhausted with no match for the
current record in file SACK2.TMP, an error message is created at step 692. When, at step 640, it is
determined that the file SACK2.TMP has been exhausted, and a match found for each record therein,
processing continues with the function SAVE__ANAL__ CNT described below.

After the last record is read at step 640, processing continues with the function SAVE__ANAL _ CNT.

Function SAVE__ ANAL__ CNT

The function SAVE__ANAL _CNT (see Fig. 4L) creates a first pass count file ANAL__CNT.DAT which
resembles the file COUNT.DAT, except that the file ANAL__CNT.DAT has the parameters package type
(PTYPE), bag type (STYPE), and bag id (SACK.NO) appended to each record.

In the above regard, the function SAVE__ANAL_CNT uses the files COUNT.DAT and SACK3.TMP as
input. The file COUNT.DAT was created by the function FIRST _SORT__PASS (see Fig. 4A); the file
SACK3.TMP was created by the file CORRELATE__ BAGS (see Fig. 4M).

The file ANAL__CNT.DAT has its records sorted by zip code, then within zip code by client, and within
client by mailstream. Each record includes zip code counts by 5 Digit, ZIP+4, and ZIP +4 Barcoded
categories, first pass destination bin, package type (PTYPE), bag type (STYPE), and bag ID number
(SACK.NO).

Multiple records of the following structure are contained in the file ANAL__CNT.DAT:

29



10

15

20

25

30

35

40

45

50

55

EP 0 481 569 A2

typedef struct ({
CNT_DATA cnt_dat;
char PTYPE; /*package type*/
char STYPE; /*sack type*/
unsigned int BAG ID; /*bag ID number*/
} ANAL_CNTS;

where

typedef struct

{
long - 2IP ID; /*zip code*/
unsigned int STREAM; /*client-mailstream*/
unsigned char BIN; /*bin assignment 1lst pass#*/
unsigned int CNTS; /*5 Digit count*/
unsigned int 2IP4; /*ZIP+4 count*/

unsigned int BARCDE; /*ZIP+4 Barcoded count#*/
) CNT_DATA;

Thus, the file ANAL__CNT.DAT is sorted by Zip code, then within Zip code by client, then within client by
mailstream.

At step 700, the function SAVE__ANAL _CNT (see Fig. 4N) reads an initial SACK3.TMP record. Then
successive COUNT.DAT records are read and a corresponding ANAL__ CNT.DAT record is written for every
COUNT.DAT record read. Since there is only one record per package in file SACK3.TMP, and since
packages may be made up of multiple records, there will be more COUNT.DAT records than SACK3.TMP
records. After a COUNT.DAT record is read, at steps 702 and 704 the ZIP code is checked to see if it
belongs to the package from the SACK3.TMP record. If the ZIP code belongs to the packages, the package
type, bag type, and bag number information from the package is appended to the information in the
COUNT.DAT record and written to ANAL__CNT.DAT at step 708. If the ZIP code did not belong to the
current SACK3.TMP record, another SACK3.TMP record is read and the new information is written to
ANAL CNT.DAT as in step 708 discussed above. This process repeats until all records in COUNT.DAT
have been processed.

Function SET__ POST__ CNTS

The function SET__POST_ CNTS (see Fig. 4N) sets up initial counts files for postage reporting based
on the final sorting pass. In this respect, the function SET__POST__CNTS uses input files ANAL_CNT.DAT
(generated by the function SAVE_ANAL CNT) and AGGR.DAT (generated by the function
FIRST__SORT__PASS) to create two new files, file PASS1AGGR.DAT and file PASS2AGGR.DAT. The file
PASS1AGGR.DAT contains counts for all mailpieces that will not be fed during subsequent pass sorting.
The file PASS2AGGR.DAT contains counts for subsequent pass sorting. Both files PASS1AGGR.DAT and
PASS2AGGR.DAT include counts for both 5 Digit level rate (qualifying) and Basic level rate (non-qualifying)
mailpieces by 5 Digit, ZIP + 4, and ZIP +4 Barcoded categories, and also include rejects.

The following data structure is employed for both files PASS1AGGR.DAT and PASS2AGGR.DAT:

typedef struct
{ struct
{
long COUNTS;
long COUNT9;
long BAR_CNT;
}  QUAL, NQUAL;
long REJECTS;
} POST_SUM_CNT;

The function SET__POST__CNTS basically creates the new files PASS1AGGR.DAT and

30



10

15

20

25

30

35

40

45

50

55

EP 0 481 569 A2

PASS2AGGR.DAT after reading all the records in the file ANAL _CNT.DAT. At the beginning of a loop
commencing with step 730, the function SET__POST__CNTS reads a record from the file ANAL _CNT.DAT.
At step 732 the function SET__POST__CNTS determines whether the bin number included in the bin field
from the record just read from file ANAL__CNT.DAT is a bin containing fully sorted packages. This is done
by checking whether the element of array FULLSORT corresponding to that bin has a non-zero value. If a
zero value exists for the element in array FULLSORT corresponding to that bin, the function
SET__POST__CNTS loops back to step 730 for the reading of another record from the file
ANAL__CNT.DAT. Otherwise, execution continues with step 734.

At step 734 the function SET__POST__CNTS examines the sack type (STYPE) field of the current
record from the file ANAL__CNT.DAT. If the value of STYPE is FIVE__DIGIT or MIXED__FIVE, the function
SET__POST__CNTS knows to go to step 736 to increase certain "qualifying” counters. Otherwise the
function SET__POST__CNTS will go to step 738 to increase certain "non-qualifying” counters.

In the above regard, at step 736 the function SET__POST__ CNTS increases the following counters by
the values stored in corresponding fields in the current record from file ANAL _CNT.DAT: counter
PASS1.QUAL.COUNTS; counter PASS1.QUAL.COUNTY; and, counter PASS1.QUAL.BAR__CNT. Alternative-
ly, at step 738 the function SET__POST_CNTS increases the following counters by the values stored in
corresponding fields in the current record from file ANAL__CNT.DAT: counter PASS1.NQUAL.COUNTS;
counter PASS1.NQUAL.COUNTS; and, counter PASS1.NQUAL.BAR__ CNT.

At step 740 the function SET__POST_CNTS determines whether the current record read from file
ANAL CNT.DAT was the last record. If not, processing loops back to step 730 for the reading of a new
record from file ANAL__CNT.DAT, after which the steps 732 et seq. of function SET__POST__ CNTS are
repeated, with the next record becoming the "current" record in accordance with the preceding discussion.

Upon the exhaustion of file ANAL_CNT.DAT as determined at step 740, the function
SET__POST__CNTS reads the file AGGR.DAT in order to include reject counts (step 742). Then, at step
744, the function SET__POST__CNTS writes the entire file PASS1AGGR.DAT, which has the format
described above. Thereafter, at step 746, the function SET__POST__CNTS initializes all count values to
zero in the file PASS2AGGR.DAT in preparation for subsequent use.

Function INIT__GROUP__CNTS

Function INIT_GROUP__CNTS produces a file GRPCNTS.DAT that maintains counts, by group
number, of actually fed and rejected mailpieces. The file GRPCNTS.DAT is initialized with all zeros and is
intended to be updated during subsequent pass sorting. The file GRPCNTS.DAT is used for second pass
sorting display and insures that mailpieces fed in a wrong mode will not allow the reject count to go
negative. Records in the file GRPCNTS.DAT are of the following structure:

struct {
long FED;
long REJ;
}  GRP_CNT

Function PRINT__OUT

Function PRINT__OUT serves to print information pretaining to the files created in the manner
described above. In particular, the function PRINT__OUT generates hardcopies of the following reports:
Group Listing Report (see TABLES 1, 2A - 2E); Bag Tags Report (see TABLE 3); Job Summary Report (see
TABLE 4); Postage Summary Report (see TABLES 5 - 6A); and, Bag Audit Report (see TABLE 7).

TABLE 1 is produced by printing out file ANAL__SUM.DAT; file TOTQUL.DAT; file MAJ__ TREE.DAT;
file FRST__PAK.DAT; and, file FRST__SAK.DAT. TABLES 1, 2A - 2E show which bins 26 are to be grouped
together for subsequent for subsequent passes through the sorter apparatus 20. For example, bins 263 -
267are to be grouped together as Group 1; bin 26s forms Group 2; bin 265 forms Group 3; bins 2610 - 2614
are to be grouped together as Group 5; and so forth. Some groups are noticeably absent from TABLE 1,
such as Group 4, for example. It will be seen below in connection with TABLES 2C and 2D that Group 4 is
ultimately generated during a second pass of the Group 3 mailpieces. Likewise, other groups not listed in
TABLE 1 are generated during successive passes (not the first passes) of other groups.

The output of TABLE 1, and of TABLES 2A - 2E explained hereafter, are available upon completion of
the program ANALYZE_MAIL after the initial pass of mailpieces through the sorter 20. Using the output of
TABLE 1 AND TABLES 2A - 2E, an operator knows how to group together mailpieces for subsequent

31



10

15

20

25

30

35

40

45

50

55

EP 0 481 569 A2

passes before those passes are executed. For example, after the initial pass is completed and the program
ANALYZE__MAIL has generated TABLE 1 and TABLES 2A - 2E, the operator would manually retrieve the
Group 1 mailpieces from bins 263 - 267 and load those mailpieces into the input hopper 30 of the sorter 20.

TABLES 2A - 2E illustrate the output generated upon the printing of the Group Listing Report, which
reflects the contents of the bins 26 after passes of the various groups. Table 2A reflects the contents of the
bins 26 after the Group 1 mailpieces (gathered from bins 263 - 26; after the initial pass). Each bin 26 has a
package stored therein, since it is indicated that these bins are fully sorted.

TABLE 2A has five headings: "BIN"; "ZIP"; "P"; "B", and "ID". The "BIN" heading refers to the bins
26 of the sorting machine 20. For example, "bin 3" refers to bin 263 according to the nomenclature
previously adopted. "ZIP" refers to the Zip Code for the package of mailpieces stored in the associated bin.
The heading "P" refers to the type of package (PTYPE) stored in the bin. The heading "B" refers to the
type of sack (STYPE) in which the package in the bin is to be inserted. The heading "ID" refers to the bag
identification number, or sack number, of the sack which includes the mailpieces of the bin.

For example, from TABLE 2A it is seen that bin 263 contains a 5 Digit package for Zip code 02806,
which is to be placed in a MIXED _FIVE ("M5") sack bearing sack number ("ID") "2". As TABLE 2A is
further read across the page, it is also seen that bin 26, contains a 5 Digit package for Zip code 02809,
which is to be placed in the same MIXED_FIVE ("M5") sack bearing sack number ("ID") "2". In this
regard, if a number is not listed under the heading "ID" for a bin, it is understood that the mailpieces from
that bin are to be placed in the same sack with the preceding bin(s). Thus, from TABLE 2A it is apparent
that the packages from bins 263 - 2634 will all be placed in the same sack (i.e., the sack bearing sack
number "2"). Similarly, the packages from bins 2635 - 2651 are to be placed in sack number 3; the three
digit packages from bins 265> - 2654 are to be placed in sack number 4; and so forth. Noticeably, bin 26124
houses the MIXED _ STATES sack, which bears sack number 1 (see the function MAKE__BAGS, step 502,
for an explanation in this regard).

After running Group 1, and loading all the mailpieces from Group 1 into sacks bearing sack numbers 1 -
12 as indicated in TABLE 2A, the machine operator requesis that a new sort scheme be loaded into
memory with instructions to direct pieces in Group 2 to the proper bins. This is done by referencing file
SORTREC.DAT (the creation of which has been described above). The operator also loads the mailpieces
of Group 2 (from bin 26g from the initial pass) into the input hopper 30 of the sorter 20. TABLE 2B explains
how the Group 2 mailpieces will be distributed across the bins 26. The Group 2 mailpieces from bins 263 -
26 are all to be collected for insertion in a THREE__DIGIT sack which will bear sack number 13; the Group
2 mailpieces from bins 267 2619 are all to be collected for insertion into a STATE sack which will bear sack
number 14.

After collecting the Group 2 mailpieces into sacks 13 and 14 in accordance with TABLE 2B, the
operator loads the mailpieces for Group 3 into the input hopper 30 of the sorter 20. The sorter 20 directs
the Group 3 mailpieces to the bins 26 in accordance with TABLE 2C. In this regard, TABLE 2C directs how
the sacks numbered 15 through 21 inclusive are to be filled (i.e., from which bins packages are gathered for
filling the respective sacks). TABLE 2C also indicates that bin 26125 is to be further sorted as Group 4.
Recall that Group 4 was not listed in TABLE 1, the reason for which is now understood. Group 4 is derived
from Group 3, inasmuch as a secondary sorting pass arising from Group 3 necessitated the generation of
Group 4.

After collecting the packages from the bins 26 after the running of Group 3 as indicated in TABLE 2C,
the operator collects Group 4 from bin 26125 and places the Group 4 mailpieces in the input hopper 30 of
the sorter 20. TABLE 2D reflects the contents of the bins 26 after the running of the Group 4 mailpieces.
From TABLE 2D it is seen that packages from bins 263 - 2617 are also to be included in sack number 21
generated during the running of Group 4; that packages from bins 261g - 2630 are to be collected together
for insertion into sack number 22; and so forth through sack number 27.

Subsequent groups are run in accordance with TABLE 1 and in the manner of the foregoing discussion.
TABLE 2E reflects the contents of the bins 26 upon the running of the last group, i.e. Group 86. It is thus
seen that a total of 722 sacks were filled by the mailpieces run during the illustrative batch.

TABLE 3 shows a partial listing of bag tag data generated by the program ANALYZE _MAIL. The data
for generating TABLE 3 is obtained from the file BAGTAG.DAT in conjunction with the table published by
the USPS in the DMM. TABLE 3 reflects the contents of bag tags printed for the sacks filled in accordance
with the execution of the program ANALYZE__MAIL.

Each bag tag has its first three lines of text generated in accordance with the format prescribed by the
Domestic Mail Manual. In addition, a forth line of text tells the operator what group was run, and which bins
to collect together for insertion into the bag. For example, the first bag tag generated for Group 1 reads:

32



10

15

20

25

30

35

40

45

50

55

EP 0 481 569 A2

PROVIDENCE RI 028

3C LTRS MXD 5-DG PKG
EVANSTON IL 602

1:3 - 1:34 Sack: 2

indicating that Group 1 bins 263 - 263: are to be collected together for insertion into a sack bearing sack
number ("bag number") "2".

Thus, using the bag tags generated by the sorter 20 as a result of the execution of program
ANALYZE MAIL, an operator can visibly determine, for each group, which bins 26 are to have their
contents loaded into a given sack, as well as the sack number for that sack. Moreover, advantageously the
bins having contents for the same sack are consecutively arranged (i.e., arranged in successive physical
relationship), so that the operator need not jump around from bin to bin, as by walking around the large
sorting machine 20, for example.

The Job Summary Report in TABLE 4 is produced using information from the file CLIENT.DAT, which
file was produced byt he function MAKE__CLIENT__COUNTS. The Job Summary Report demonstrates the
accounting capabilities of the program ANALYZE _MAIL. The report is a brief summary of total fed and total
reject mailpiece counts maintained by individual mailstreams.

The Postage Summary and Postage Summary by client/mailstream is display in TABLE 5 and TABLES
6 - BA, respectively. These reports are produced from information obtained from the file CLIENT.DAT.
These reports demonstrate the requirements for maintaining detail counts during execution of the program
ANALYZE__MAIL.

The Bag Audit Report shown in TABLE 7 demonstrates a unique advantage of the program
ANALYZE _MAIL. This report is generated from information in the file ANAL_CNT.DAT. The program
ANALYZE MAIL organizes data in such a way that counts are made available by package, bag, client,
mailstream, and ZIP class categories. This feature is needed to verify the accuracy of the sort process and
the accounting.

While the invention has been particularly shown and described with reference to the preferred
embodiments thereof, it will be understood by those skilled in the art that various alterations in form and
detail may be made therein without departing from the spirit and scope of the invention. For example,
although not specifically mentioned herein, it should be understood that many of the files can be written to
random access memory devices, such as a magnetic disk.

33



10

15

20

25

30

35

40

45

50

55

GROUP

EP 0 481 569 A2

TABLE 1
[ING FILE:

FIRST PASS RESULTS

For further sorting,..
Mark the mail as follows:

BIN

Pa T WSS T b Y at. ~ TN Yo ~RuN I p Y 3y P g €N ]

17

GROUD #

CRLAICRI [ = pm e e

LA IO w0000 w0

e et e

18

34



EP 0 481 569 A2

5S¢ 8ye 221
SE 26 /]
5G 69(50 21
S5 e£gye /o]
SE e 20l
5G  pLire I6
5C  ¥9Ite db
SE /20 [8
§¢ 820 g
§5¢ 5l ll
§5 89610 oL
€8 b9 /g
8 £G 10440 &9
£5 15009 /5
y £G  9y[co ¢
S G 91650 [b
BH G 01629 oy
O G C62d [F
GH G 16820 of
O 5 29800 [2
G4 G /80 cc
SH G 99920 /]
Gd G Groce ol
..... Gk G.__9lBc@ /__ .____
ar 8 d diz N
-

a1

MM W WVWUILI LI

IO U WIWILI MWW I MUWIMEILIMM

15

19

L\ -t
»l =
[=e] [Sa)
N
fe~
= LO— D vt Ot b= homi¥ o]
=l NMF% ST UUD

20

el

11

Fplan

— S

a1

MMM IINWL

DIVBWIVWINLINIDNLIEINIWIMM MW MU LIWIM

¥Z TI9YL

25

8cBco 0

dil

30

--£1829 G__

NIg

*] SH S 4d 2l SE 6v9 £2
SE Cvd 611 St £49 811
S S 106%9 411 S5 1y840 £1]
S G 609Y0 60] S G ersys 891
St 6£0 Y91 St 129 £9i
St 1£9 66 56  686L9 96
35 10£E9 6 S6 520 £6
St 6cd 68 91 SE 829 99
S¢E 28 48 St £e8 £9
S & L19 6L St 918 8L
5S¢ 119 %L St 819 £L
SG T9.19 69 6 S S Gooig 89
£5 92440 %9 €5 2I¥a £9
9 £E 8EQ 65 £f ore 85
£e Jco %5 £6  bl1ce £5
SHG 61620 bY MG L1629 B
SHS  cl6co vy 4G 11628 £F
CH G 06D 6S SH G 996290 B2
SW G 56829 YE CH G  £68c8 £F
CH S 998c9 62 SH G G820 Bc
SH G 8820 ¥¢ SN 5 (829 &2
Ed G £9929 6] WG 19829 81
CH G 9Y820 §1 SH S [9929 €1
CWG  GcBcd 6 MG 81829 8
feee SMG _BD82 B 2 . QWG _98808 ©__
al € d diz Ng QI ¥ d4 dII NIg
. tpajuos >~mam~a.ou.ma [1tM suiq butkoyroy ayp
: L '9 ' 'yt ioyig

35

40

S5Yd 1SYI4 :WO¥d LNINI
- # dnoy9

45
50

55

35



EP 0 481 569 A2

10

15

20

25

30

ar ¢ d

NId

St 950 91
S & 958 £1
S5 leXe 8.
L5 18 F
g d diz N4

tpajos Afajagdeod agq [yim sutq Bupmopqoy ayl

d¢ FIEYL

35

40

8 GNId

5Std LSYId :WOMJ LNdNI
[~

# dN0y9

45
50

55

36



EP 0 481 569 A2

61

aI

»] u3 u3
RRIPIQ
[Tplipilpliplipliptelpiplipliviiplipliplieliplel el tpliolte il p Ll p]
x
[ng]
J
[N
S

u
=

~=

QJ

-~

(Vo)

(e~
[ and 88 [t [ 2 85 Faned
e oyt e g gt sy

o] [~

u2 O

[37] ~

0 -

(-~ [~

[ a3 L g A L e 2" L 3.0
XN 1 UG WO N =D SO0 NS S0~ - (U O

X
<
—
-}
=
(3 5]

29999 Lc
05999 ¢
5£099 LI
2999 ¢

cl
_emem/l -

d dIZ NIf

5
10

131

15

645 9LY90 921
G4 G SGr90 12
SHG  [Eh90 911
CH G £7490 111
EHS  Sih90 991
CHES  Tov ief
SHES  S/£99 96
SHE et I
G 9eEae 98
GH G JeEde 19
GH G 6[290 9L
GH G .6v299 il
S S 18299 99
NS  @dr9e 19
WS 27198 95
G5 /o190 iS
: m WW
EHG /6930 92
WG £4990 12
THE  £5990 9
SN S  6I0%0 I
W G __2nn9 9__
g d diZ NIg

20

LI
a1

£
rlielielleliellptele toltellplipilelipiiellpilpToiTplTplNelTp]

SW 5

g d

25

of999 Gl
81099 @i

--19999 G__
diZ  NId

o7 TI19YL

30

Y 821
# dNOY9 Nig
ISHO[[D) SE [TBN ay) Huey
+:urgaos Jayjang Jo4
cHS 99999 ¥l CHS  09v99 &2
CHG  Lyh99 611 CH S  €4h90 Bl
CHS  0Eh99 Y11 WS 92%99 ETI
G S 91%y90 60] CHS L1Y99 90i
CH S 01%99 Yol SH S SoY99 £ol
CW S 25598 66 CH S 6/£90 86
CHG  TL898 %6 CH S  BLEMW E6
cW G 56£99 68 CH S 4GE99 B9
CH 5 5SEE99 49 WS 4EE99 £8
9z 0 G 92E99 6L CWH S 16299 8L
SHS 6929 YL WS 99299 £L
CH S 14290 69 SH S 6£299 89
CH S 2rcId v9 CHS 18299 £9
CWG  9119@ 65 CHS L1190 8S
CWHS  DI199 45 CHS 60199 £5
CH S Co19n &Y 81 CH S 0199 8y
o m ¥ GRS ghR3e £y
TH m HE ¢
& : HE b
WG 25999 42 WS 15999 &2
CH §  6Y990 61 G & [£998 B
CWHES 62099 41 Gl S 92099 €I
CHS 9109 6 CHG L1908
9l SS_ 06y Sl S5 _ 8928 E
I d4 d dIZ NId @I 94 d dIz Nid
1pajaos Apajardeoa ag s sutq Buimojjoy ayy
6 SNIf
SSUd ISHI4 ‘Wo¥d INdNI
£ & dNoYy9

35

40

45

50

55

37



EP 0 481 569 A2
Y P Te e e e s e Ue el el iz e Uz el i laclac)

S £ 699 £01
890 0l St 190 10§ St 590 001 St %90 66 5S¢ £99 86
298 L6 5S¢ 192 96 L2 5¢ 990 56 cHS 19690 Y6 WG 99690 £6
50699 <6 WG £0690 16 92 GWS 10690 @6 CW G /6890 64 CW G 96590 88
£9899 L8 cW 5 09892 98 WS 8890 S8 CH 5 LL890 %8 WS 5899 €9
94890 <9 CY & GE§99 18 cW S 45890 09 CH G £5890 6L CH 5 15890 8L
95899 LL oS @he99 9. CH G 96899 SL oW G 18899 YL CH G 0E999 £L
02899 2L CHGS £1899 1L CH G 21899 oL CW G 11890 69 cY G 01890 €9
10990 19 oW 5 50890 99 oG 4099959 S SHG 19892 v9 oW S . 86099 £9
56199 <9 CWG 16098 19 CY & 06190 99 CWH G 18190 6§ CH 5 98.90 8S
48199 LS CWHS £8/99 95 CWS 6L199 55 WS 9198 45 CHG 98099 £5
c9.98 ¢5 CH S 65199 15 CW 5 15099 05 CH G 55/90 6Y oS cGL99 BY
15290 LY WS 91198 9 CWS 21198 5 oG 0190 Y oW S 89190 £Y
90199 <Y CWHS 50,90 1Y WS a9 @y b2 GH G cOL98 6 WS 21990 8E
11999 LF WS 91999 9% o5 99999 5€ CH 5 10999 %E SH G 9993% £F
£9999 <t GG 40998 It £2  GSHS 10992 @ oW G G599 bg c & 9590 92
61599 L2 S BI590 9 CWHS LIG9Y & CH S 91599 %¢ oS 51590 £¢
41699 22 CW G £1590 I2 CHS 21599 0c cH S 11599 61 22 SHG 0159 8]
B6Y99 L1 CWS L6499 91 CWH 5 coy9a 51 oW 5 96v99 4l CH S 6By £l
89599 <l WS 48Y99 11 CH S £9Y99 01 CW S ¢c8Y99 6 oY G 9ghoe 8
_ble L. . CM% __//b38 9. ___. GSMG_GH®WS._ .. SHS_E/WS0 L. - WS . 2lh98 Z. .
4 d dil NI

diz NI§ QI 6 d 412 NE @ d d diZ N® a 9 d diz NE
. ipajaos Apajafduod aq [IM sulg mc_zo_wow Y|

€ 49 KoHd LNdNI
b % dno¥s

daz FIadh

10
15
20
25
30
35
40
45

38

50
55



10

15

20

25

30

35

40

45

50

55

TABLE 2E

=)

w

-

S

=3

(¥

>~

—

Q

-

=]

—

(=W

=]

[~

[&]

"]

=i

—

o3 —

[dp) -

Er~=T
S So

- Y

== =

) e

[> AV oW o]
_— )

e~ &1

=

W "n wee

WVEN X

oZ o

O =t

2R L O -

Qe um

55
=0, as
o2 £
[da

iD

BIN

iD

B

p

D BIN ZIP

B

p

BIN ZIP

ID

1np b ID BIN 1IP

BIN

EP 0 481 569 A2

7 .

LU LI L LIWINI LYY
2 EEUE S N IR r (N (Y (I LA LILN

LI W LI WIWII LWL I WLEIWILILILINDM

==

|

|

R TN D et T ot e (e et SIS £ O i

1S D O W = (O S U (T () ) == D 1) A
I LI OB~ DS ~— ), R T O TV
Do g O O O QDI DRI
BN O NN O OV N
P QA= D O QU= 0 e O = DL 'Jl\l'\Jl\flJ
! ot O T 0N ST P00 D O = T D O“".".J
I J ™~

I — —

} [t ™~

h‘j WD LWIWIULILIWIUD
B S T X B E S E (I

LS UL LI WILTLWIUWIILIMINI]

1

!

MO D I UINS-T S LI S

S S~ O UMD D S L DOV ~— -2 2D 10 U (S

WILOILIUI U DG N P O S ~—= QIS A= SO UTIr203

OO O G RGN O O QO T CO QY e

S oy~ Ao uRs a R o v T a¥= p ¥ a Yo oY= a ¥ - pf = pl=plsplad« pl el plv ol

LG vt \ ) vmt ) S LD A} vt o SO vt o Sl et AL A et

; —t et O U)o~ UL OO = =R QO N gD
———t

1 [ = B - LR~ ~

i P x|

{ N~~~

RWILILALD uﬁln [Te)tplip)
X EE R E T MMIMMIIGIN LI

UMY WIWIOI I WU LISILIUBOILILICAN)

mr~<ra~<-r~<rmr~3-—-=n-—- S et et
= OO S OUIOIS D SO
u’:u':uju':u'xm-.ohhaas‘—«-cses--—-‘mq-mh
oo QO MO QO
[=aYonteoX= X ologloglagloal-aloploplonlopleoploalepl=gloplspl
NI S UISU ':rsudr:au'wc:au‘:su':rs‘
| et QI OIS T UIUD DD 00
-‘
| [=e] ——
bt —— ny
ll\ ~ P~

UL UINIILUIWILILD
EEEEEE :Ezr"fmmmmmmmmmm

UMW LU WU MIIMUIILILIMN

1

i

Pt O vt QO MDD QIQI M Y = O

5D vt vt O [T D v S 1 = 230N " BN T~
AIWININIUID =~ DD S+ (M0 ~T <" VD
OO @G YNNI QAN I X
[vaYoploplaalanloalepfopleptoploploplopleptepieplopdonioptsyl
Ko~ e N - OV N G T O S O
{ -t o=t CLIQII (D T U UL L M- D DTV
v) (o0} u2

ot — -—

{,\_ I~ o -

u?&j:g&%u]}‘: gzx:mmr-ummmmuamm

WU WU W W WL WILWIMUTILI FILIMNM

|

]

N - QU ) — D O O [V =T el ¥ ]
(57 vt et QU ot (RS D 1D i)
UL UIUIO P QDS G =t OV L EO D~ (VI O
[ A A A A A AL A A A L] T O G DT
AT T AP T INT T
[1Q3 1) @O IO S0 M) O M) D MY AT CO N0
} et QOIS U D DO - VTS

39



10

15

20

25

30

35

40

45

50

55

. HEREHEERHA
-H' GROUP SEPARRTOR ##
“#E: Broup @ H

FERERERRETFERREFEEEE

PROVIDENCE RI @28
3C LTRS MXD 5-DG #K6
EVANSTON IL 62
1:3 - 1:34 Sack: 2

MANCHESTER NH 8398
3C LIRS

EVANSTON IL 602
1:53 - 1:58 Sack: 5

DIS SPRINGFIELD MA @19
3C LTRS MA

EVANSTON IL 682

1:68 ~ 1:87 Sack: 9

DIS RORTLAND Mt 948
3C LTRS ME

EVANSTON  IL 582
1:199 - 1:123 Sack: 12

DIS WHITE RIVER JCT @58
3C LTRS VT

EVANSTON  IL 692

2:7 - 2:19 Sack: {4

HARTFORD CT @69
3C LTRS MXD 3-DG PG
EYANSTON IL 692
3:5 - 3:47 Sack: 17

NEW HAVEN CT 963
3C LTRS MXD 3-D6 PK6
EVANSTON 1L 602
3:79 - 3:10@ Sack: 298

EP 0 481 569 A2

TABLE 3

- XD CHICAGO IL 606

3C LTRS HXD STATES
EVANSTON IL 682
9:9 - 8:8 Sack: !

PROYVIDENCE RI @29
3C LTRS MXD S-DG PKG
EVANSTON  IL 682
1335 - 1:51 Sack: 3

PORTSHOUTH NH 938
3C LIRS

EVANSTON  IL- 602
1:59 - 1:39 Sack: 6

DIS SPRINGFIELD MA 810
3C LTRS WA

EVANSTON IL 682

1:68 - 1:87 Sack: 9

DIS PORTLAND ME 349
3C LTRS HE
EVANSTON

1:193 -

L §a2

I
123 Sach: 12

FEESHHEEHEREEERERRERE
#¢ GROUP SEPARATOR ##
#  Group 3 £
FEEFHTEFEEEEEFRESEEE

HARTFORD CT 969
3C LTRS XD 3-DB FX6
EVANSTON 1L 602
3:5 - 3:47 Sack: 17

NEW HAVEN CT 63
3C LTRS XD S-D6 PKG
EVANSTON * IL 682
3:79 - 3:108 Sack: 28

40

FHHE R
£+ GROUP SEPARATOR #t -

#  Group !
B 11

PROVIDENCE RI 629
3C LTRS MXD 5-D6 PKG
EVANSTON IL 602
1133 - 1:31 Sack: 3

PORTLAND ¥E 848
3C LIRS
EVANSTON  IL 602

1:68 - 1:61 Sack: 7

SCF PROVIDENCE RI 028
3C LTRS RI

EVANSTON IL 692
1:88 - {:89 Sack: 18

FEEEEEEFRFERRRERREY
#% GROUP SEPARATOR
#  Group 2 H

HEEEREREEERREEEEELELE

STORRS MANSFIELD CT 6268

3C LTRS
EVANSTON 1L 632
3:3 - 3:3 Sack: 1S

HARTFORD CT 96!

3C LTRS #XD 5-D6 PKG
EVANSTON IL 602
3:48 - 3:61 Sack: 18

NEW HRVEN CT @64
3C LTRS #XD 5-D6 PKG
EVANSTON 1L 602
3:1081 - 4:47 Sack: 2!

EVANSTON - IL 602
1:3 - 1:34 Sack: 2

BOSTON HA 82t

3 LTRS

EVANSTON IL 682
1:52 - 1:54 Sack: &

BANGOR ME 044

3 LTRS

EVANSTON IL 6@2
1162 - 1:67 Sack: 8

DIS MANCHESTER NH 036
3C LIRS M ’
EVANSTON 1L 602
1:98.- 1:104 Sack: if

WHITE RIVER JCT VT 837
3C LTRS

EVANSTON L 682

2:3 - 2:6 Sack: 13

STRMFORD CT 85382
3C LTRS

EVANSTON 1L 682
3:4 - 3:4 Sack: 18

HARTFORD CT 062
3C LTRS MXD 5-DG PKG
EVANSTON IL 682
3:b62 - 3:78 Sack: 19

NEW HAVEN CT 264
3C LTRS MXD 5-DG PKG
EVANSTON 1L 602
3:191 ~ §:17 Sack: 2!

-~ PROVIDENCE RI @28
" 3C LTRS MXD 5-DG PKG



10

15

20

25

30

35

40

45

50

55

EP 0 481 569 A2

TABLE 4

Client/Mailstream Count Summary based on first pass results

Client (QBZ): Insurance

——————————————————————— FED
(@) Quto 156267
(A1) LifTe 1478
(PBZ) Health 126394
Client Sub-Total . 170399
Client (@@&3): Utility Co.
FED
{(B22) Service bills 66385
Client Sub-Total 66385
Client (Q@&): Fublisher
_l - FED
(Q@BR) Magazine #3 . 22834
Client Sub-Tatal 2e834%

41

REJECTS
2608
121

114



10

15

20

25

30

35

40

45

50

55

MASTER FOSTAGE SUMMARY METERED AND FERMIT COMRBINED

EP 0 481 569 A2

TABLE 5

Based upon First Pass Counters

S DIGIT LEVEL
ZIF+4 Barcoded
ZIF+4

S DIGIT

S Digit Total

Percentage ZIF+4 Barcoded

Fercentage ZIFR+4

PIECE COUNT

179139

42

FER PIECE RATE

Q. 22
23632. 488

23633. 148

(Rejects Excluded): @
{Rejects Excluded): Qa

BASIC RATE LEVEL FIECE CDQNT FER FIECE RRTE CosT
ZIF+4 Barcoded @ Q. 187 2. g2
ZIP+4 @ @. 167 2. @
S DIGIT 83Zz7 2. 167 13954. 819
‘Pass 1 Non-8can 7acz a. 167 1172.674
Basic Total S@sS73 15126.693
S Digit and Basic 269618 28739. 84Q
Gualifying bercentage (Rejects Excludszd): 68



10

15

20

25

30

35

40

45

50

55

POSTAGE SUMMARY FOR CLIENT

Based upon First Pass Counters

12):

EP 0 481 569 A2

PER RIECE METERED RATE by Mailstream

(2RQ) Auto
(ea1)tLife
(Q@3Z)Health

S DIGIT LEVEL

Mailstream

Q. 127
Q. 000
2. 202

ZIP+4 Barcoded

ZIG+4

DIGIT

«

(22@)ARuto
(aai)Life
(@@3)Health
total
(229) Auto
(QB1)Life
(@@3)Health
total
(22@)Auto
(gai)life
(293)Health
total

(]
(=}
-
[1s]
o
¢t
|
o
ot
u
o

BASIC RATE LEVEL

Mailstrean

118+4 Barcoded

LIR+4

S DIGIT

Pass 1| Naon-Scan

({@eR)’uto
(Qatilife
(Q23)Health
total
{@Q2@) Auto
(ZRilLife
{233)Health
tatal
(Q@29) Auto
(221 Life
(2@2)Health
total
(20Q) Auto
(Q21)Life
(Q@Z)Health
tatal

43

TABLE 6
Insurance

PIECE COUNT PER PIECE RATE COST

] @. 132 @.660

Q @a.132 2. 092

Q 2,132 ¢. eQa

S 8. 560

"] Q.132 @. 220

@ 9.132 2. 202

" Q. 132 0. 200

2 Q. 200
i28zi2 8.132 16823. 984
1074 a.132 141,768
18988 8.132 143Q. 4186
149274 183i6. 168
148279 185i6. 828

.PIECE COUNT PER PIECE RATE - COST

8 2. 167 @. 2ea

@ 3. 167 Q. 208

2 @. 167 3. Goe

Q Q. 202

2 2. 167 2. 22a
? 2. 167 8, 00

2 8. 167 2. 200

2 3. 200
24442 Q. 167 4%81.814
=83 3. 167 47.261
1352 2. 167 259. 184
26277 4308.239
3608 0. 167 592.33
121 8. 167 20. 207
114 @. 167 19. @38
2843 641,781




10

15

20

25

30

35

40

45

50

55

EP 0 481 569 A2

Fostage Due (ﬁermit)

TABLE 6A

14132

{Fer=zit Fostape Adjusted to exclude rejects)

Postage Due (FPermit Rejects Excluded)

Postege Due (ileter)
Meterad FPoctage Paid
Additignal Metered Fostage Due

(Metered Postage Adjusted to exclude rejects)

Fostage Due {Meter)
Metered Fostage Paid
Additional Meteresd Postage Due

Quaiifying Fercentage f{Rejects Excluded):

54

Cercentage ZIF+4 Barcoded (Rejects Excluded): @

Parcentage IIF+4 (Rejects Excluded):

44

@

1937.874

1898. 629

21608.994
19845.91¢
1763. 084

£1086.438
19387.6%4
1618. 764



10

15

20

25

30

35

40

45

50

55

EP 0 481 569 A2

i
11 QT O G Tt T U ) S D N O TS D v U0 = )= N ot
4o - - - am
e -t
’_
(R ’ .
> QN @G O D v G (U D vt N G Gyt I (U ) ) U 3 N
=4 — - — [y}
e -~
=
<
+ S8s S8 S8 SSSSSEISSSCSENSSSSNESSOSSOO0IST
[ .
-
N
< 4
+ eSS oSS S8 SCSSSSSSSSESSISSSSSESISNSSSESISIS
[uR=o]
—
N
o &
it Sl Sl S SOSUSMUSUSUSSUSUUSSUUMLUEUMUSHUG M
G (1] am [ ] SESMSHMSMSMSSMSMMNSSMHEMMISMNMMSMAISME)
FEaY] S St St SIS A TS 7t (5 vt S e (S S vt 5 et v (5 S5 vt vt o et (5 et vt (5 7t S ot vt
w o ' . s * 8 w 3 3 ®m 3 %R oTE % ® EE N R oMoms e w3k BT AR E
o~ (M) S SS SSSSESSISCIS/TIISSESSCISICSOSOT
a.
=N
S w n n wnuy B o ¥y n 01 m n w o w
~ 33 ] -t - - [l B T e e ™ -
= (%) Lol ("} H-—‘-—'l’"‘-!f"lu-lf“v-‘f‘ln-h-'f“]-*f“]f)Hﬁfﬂfﬂfﬂf‘]ﬂf"}rﬂl"}-—lf‘)ﬂf‘)ﬂ
E = 3 et i Mﬂ#ﬂ#ﬂ#ﬁ#ﬁﬁ#d##dﬂ####ﬂ###n#dt# -
I m O ~ 0O - 0 rm~ .D.D.D O 0 0 a0 o [0 L 0 ~_]
% zZ w LK) ] [N W G v 0 O W v oo oo mmm U oG
= i . UEP UCH UCH JUUCOUCOCUCAUVCOUCCUUEECLCOCCCUEOE P
o UrG UrO Um0 U Urm Uormt Uomt Uomt (J Uormt Urrmtort (J Uertortortomt (rmtortort (rrt Qeetemt 00
ol own P PSP erteriormt Dot Mert Dot Nowtort Iormt N Nomtord 1R Pemt B Nemt Nert N NGO
- - >h >, > >>>BO>B>GI>H>OGO>GHO>GHGEU> GGH>TE> GG
0 - Ll L0 L@ AL L O O O O 4 % OO L OIS, IO O a1 i)
Cul G ~—um Ul oG VUUTUBUTOTOBGUGETLB GGGV TEEC TGS G
G = MOE SWE NNE SONNENENEZNEZNNENEZNVEEEEZNEZEZINENEE
sl i} PR N N N N O N N S S N
= ] [} [y}
“ ] S S
ox @ =}
Y [+1] ] a o -
- . s o M w s e . P R} . s # M . .
=22 iiYe] G0 GO X000 0 0O © 00 ©O [=X-] =] o Q s ]
xyu O XOUL XOL UO00S0S0L0S00L0L00% %2055 500055 T
o5 U @ U o ¢ & © g o @ © @ OO sy woL O Vo @
juNé)] GRE GRE BAE L OIINE RNERNERNEINC ICLIRCLCLONCLLONCRLL
w P O Qon OpPpn PP WP NP NP VPP RPN ARN PO VUNP NP AR
X Jp— e et Derieed teemtord -t s
et U Pt Pt et red
e BT R o RS o R P N U'Iu—i'-i-r'l.Qorc,Q--l_ﬂ-ﬂn-ﬁ-ﬁ.ﬂ-dﬂ.ﬂu#n-(.ﬂn.ﬂ.ﬂ-ﬂ.g.n-n'ﬂ.ﬂ'r(ee
[ p— g"_p:. e 2 o = ,..(_p,p_p .,p"i = FLNL IR Bl _p,p"""'ﬁ_pﬂ‘."._p‘-_p_‘_u
o Q =3 EDQ 33& QDDDQDuDuD&DD&J&uDDuﬂuﬂDQ&QD&J&u
=
aw ———t O v GG O L THNNNCOMEIT N G 0IMO RO OB
] GMM o U3 SMMMEE TS T IDNNNINWWOGON SN COODTD
Be O >86 >0 >88 LSS8955959850595985SS98S880885858
CTL = =AM A =)N) SRR HYO DUV
M- ~N LSS LeS LeS P&SSSSSSS&S&SSSSSSSSSSS&SSSSS&SS

Claims

1.

A sorter apparatus comprising:
hopper means into which a plurality of mailpieces-to-be-sorted are introduced;

reader means for reading postage address destination information provided on said mailpieces-to-
be-sorted;

a plurality of bins into which said mailpieces are sorted;

conveying means for conveying said mailpieces from said hopper means, past said reader means,
and toward said plurality of bins;

gating means for directing a mailpiece into a selected one of said plurality of bins;

control means for controlling said gating means, said control means being connected to said reader
means for obtaining therefrom signals indicative of said destination information for said mailpieces, said
control means including logic means for determining how said mailpieces should be classified
according to predetermined criteria into packages of mailpieces and how said packages of mailpieces

45



10

15

20

25

30

35

40

45

50

55

10.

11.

12,

EP 0 481 569 A2

should be classified according to predetermined criteria into sacks, with said control means connected
to control the activation of said gating means whereby mailpieces classifiableable in a sack but stored
by reason of said criteria in a plurality of bins are gated into a plurality of physically adjacent bins
without destroying the package classification of said mailpieces.

The apparatus of claim 1, further comprising:

means responsive to said control means for generating labels for attachment to said sacks, said
labels bearing information including the bins from which mailpieces should be extracted for inclusion in
a sack.

The apparatus of claim 2, wherein said labels also bear a sack number.

The apparatus of claim 1, wherein upon an initial reading pass of each of said mailpieces-to-be-sorted
through the sorter, said control means associates said mailpieces into groups by gating the mailpieces
of each group into a set of bins corresponding to their group, said sets of bins having a plurality of bins
being comprised of physically adjacent bins of the sorter, and wherein said control means provides an
indication of which bins contain each group of mailpieces.

The apparatus of claim 4, wherein said control means associates said mailpieces into groups for the
purpose of subsequently feeding each group separately into said hopper means for a subsequent pass
through said sorter.

The apparatus of claim 5, wherein said control means associates said mailpieces into groups and by
gating the mailpieces of each group into an associated set of bins, each of said groups being assigned
a group number and each bin having a bin number, and whereby, as the group numbers monotonically
increase during said assignment, the bin numbers included in the associate set also monotonically
increase.

A method of sorting mailpieces comprising:

introducing a plurality of mailpieces-to-be-sorted into a hopper means;

conveying said mailpieces from said hopper means, past said reader means, and toward a plurality
of bins;

reading postage address destination information provided on said mailpieces-to-be-sorted using
said reader means;

classifying said mailpieces, according to predetermined criteria, into packages of mailpieces and in
turn classifying packages of mailpieces, according to predetermined criteria, into sacks;

using gate means to direct mailpieces into selected ones of said plurality of bins;

whereby said classification whereby mailpieces classifiable in a sack but directed by reason of said
criteria in a plurality of bins are gated into a plurality of physically adjacent bins without destroying the
package classification of said mailpieces.

The method of claim 7, further comprising:
generating labels for attachment to said sacks, said labels bearing information including the bins
from which mailpieces should be extracted for inclusion in a sack.

The method of claim 8, wherein said labels also bear a sack number.

The method of claim 7, wherein upon conveying said mailpieces on an initial reading pass through the
sorter, said said mailpieces are associated into a plurality of groups by gating the mailpieces of each
group into a set of bins corresponding to their group, said sets of bins having a plurality of bins being
comprised of physically adjacent bins of the sorter, and wherein an indication is provided regarding the
bins which contain each group of mailpieces.

The method of claim 10, wherein said mailpieces are associated into groups for the purpose of
subsequently feeding each group separately into said hopper means for a subsequent pass through

said sorter.

The method of claim 11, wherein said mailpieces are associated into groups by gating each of the

46



10

15

20

25

30

35

40

45

50

55

EP 0 481 569 A2

mailpieces of each group into an associated set of bins, each of said groups being assigned a group
number and each bin having a bin number, and whereby, as the group numbers monotonically increase
during said assignment, the bin numbers included in the associated set also monotonically increase.

47



EP 0 481 569 A2

FIG. 1

I
26| m\E i/w
" ~

841 98 \
:{:U 5 77 e Lul—ﬁ\—/\/
126 W=\ T ||
s 88, | 90
>
64\JEK a1 (~86 N\
821 100
38 I BAR CDDE}]
\READER E
36— 33
] INK JET:ZI 32
S 8
34— © e
62 60 T (0CR
N il
=V |-
| (T

aw— 40 L 44
. AEIERRERRNRRRNRNER
S0 46 A

\ \
70 72 30

48



EP 0 481 569 A2

| KEYBOARD

OPERATOR CONSOLE

49

FIG &2 120 —_| LEFT GATE RIGHT GATE
65 SOLENDID SOLENDID >
? f 120, ,
BIN PAIR
CONTROLLER| “—1224
LEFT GATE | : [RIGHT GATE
120156™ SOLENDID SOLENDID |
f 1 120,
BIN PAIR
CONTROLLER| 1224
LEFT GATE RIGHT GATE
1201577 SOLENDID SOLENDID
T 1 120,
BIN PAIR
CONTROLLER| 1225
LEFT GATE RIGHT GATE
12015671 SOLENDID SOLENDID
0 =
BIN PAIR
ca CONTROLLER| 1224
“ i
LABEL PRINTER la—— 124
38 ~—
] BAR CODE READER ja—
36
54 4 INK JUET PRINTER e
CPU ._ll PENITDR | | DCRLJ
DISK el .J
DRIVE 1/0 -—
INTERFACE (=
REPORT f e
PRINTER I
58 50
?a R 1 r’



EP 0 481 569 A2

FIG 3

50



EP 0 481 569 A2

NY
HId

WY
I

WY
b1

k14
9I4

AV
I

ary
014

Iry
HId

IV
914

HY
HId

Dy

914

v

914

|4

9Id

cdv
OI4

1ay
I

v
I

av
OI4

(44
OI4

r OI4

51



r?ﬂ5§?:§ﬁ§?:ﬁé§§} {_

CREATE FILE
COUNT.DAT

l 20e
L~

CREATE FILE
AGGR.DAT

y

CREATE FILE
CLIENTLDAT

|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|

EP 0 481 569 A2

i

CHECK COUNTERS
TO DETERMINE IF
EACH POTENTIAL
SACK HAS MAIL
PIECES. REASSIGN
IF INSUFFICIENT

1 266
,/

CREATE RECORD
IN FILE SACK2.TMP
FOR EACH

FIG 4A

Z§§Rﬁ[§%€§&i§§_]f_—7E§3@€]§i§§f__}
250 || 260 |
=~ || |
DE TERMINE ||| .DETERMINE WHICH |,

POTENTIAL ‘S TYPE PACKAGES
THREE DIGIT | || ARE LARGE ENOUGH ||
PACKAGES | ||_T0 FORM A SACK ||
252 || 262 |
e 2
DETERMINE || COMPILE CDUNTERS:'
POTENTIAL | |y mixep_rive_ ||
STATE ||| SACK_COUNTIERS)||
PACKAGES |||@ THREE pIGIT_ |

‘ SACK_COUNTIERS)
osa ||| (3) STATE_SACK_ ||
e COUNT(ERS) |

(4) MIXED_STATE_

CREATE RECORD || CDUNT_[ERS] l
IN FILE SACKITMP| || |
FOR EACH i 264 |
ZIP CODE | L |
(@
| |
| |
| |
| |
| |
[BE

52

ZIP CODE




EP 0 481 569 A2

FIG 4B

FIRST_Pass. /91| Make_soRT. 0 c8s
PACKS ~ 1| RecdRos ~
FIND SIMPLE CASE WHILE READING WHILE
OF FULLY SORTED FILE SACK2TMP. | &l READING FILE
BIN BY COMPARING FOR S TYPE SACKD TMP.
NUMBER OF MAIL- RECORDS CREATE FOR °S” TYPE
PIECES IN BIN A RECORD RECORDS STORE
WITH SUM OF EITHER IN FILE SACK TYPE
MAILPIECES IN SORTRECLTMP OR IN ARRAY
ALL PACKAGES FULLSORTLTMP STATE_SACK_
IN BIN r TYPE

7| 1> "T=
CREATE FILES: WHILE READING WRITE 3 DIGIT
(1) STATE_PACKL_ FILE SACK2.TMP. PACKAGE

FILE FOR "3" TYPE RECORDS IN
(2) THREE_PACK_ RECORDS STORE EITHER FILE
FILE BIN NUMBER IN FULLSORTLTMP

WHILE READING ARRAY OR
SACK2.TMP THREE_DIG_BIN SORTRECL.TMP

l 274 l 284 l 292
DETERMINE IF WHILE READING WRITE STATE
POTENTIALLY FILE SACK2.TMP, PACKAGE
FULLY SORTED FOR "3 TYPE RECORDS IN
STATE PACKAGES RECORDS STORE EITHER FILE
ARE SPREAD SACK TYPE IN FULLSORTLTMP
THROUGH ARRAY THREE._ OR
PLURALITY OF DIGIT_.SACK_TYPE SORTRECLTMP
BINS

l 276 l 286

il Y

DETERMINE IF WHILE READING
POTENTIALLY FILE SACK2 TMP.
FULLY SORTED FOR 'S” TYPE
THREE DIGIT RECORDS STORE ||
PACKAGES ARE BIN NUMBER
SPREAD THROUGH IN ARRAY
PLURALITY OF STATE_BIN
BINS

53



EP 0 481 569 A2

CREATE FILE
SORTREC2.TMP

S

SORT RECORDS
IN FILE

SORTREC2.TMP
BY SACK TYPE

| 7

SORT RECORDS
IN FILE
SORTREC2.TMP
WITHIN SACK
TYPE BY
PACKAGE TYPE

P

SORT RECORDS
IN FILE
SORTREC2.TMP
WITHIN PACKAGE
TYPE BY ZIP ID

54



EP 0 481 569 A2

MAKE _COMBOS FIG. 4D
l 310 316
< ENTIRE
READ NEXT STATE_PACK N YES

YES

RECORD IN FILE
STATE_PACK_FILE

FILE READ FOR
THIS STATE?

330
—
312 READ FIRST
RECORD IN
ARRAY THREE _DIGIT-
FULL_SORT_BIN PACK_FILE
INDICATE BIN FOR
THIS RECORD
FULLY 342
SORTED? ~

YES

314
NO LOCATION SCF
~ )
SET FLAG IN
ARRAY BIN_USAGE
FOR BIN IN RECORD
7T\ N
>4
340 NO 354
~ ALL

READ NEXT RECORD

IN THREE_DIGIT_
PACK_FILE

THREE DIGIT
PACKAGES
PROCESSED?

332 356
ARRAY —~
FULL_SORT_ GO TO
BIN INDICATE BIN ROUTINE
FULLY SORTED? MAKE _SACK_
COMBOS
g 334 336
~ ~
STORE ZIP IN SET FLAG
LOCATION # IN ARRAY
THREE_DIG_ZIP BIN_USAGE

Y

55

STORE ZIP AT



EP 0 481 569 A2

FIG 4D(2)

318

L~

CALL FUNCTION
CHECK_COMBOS

® TO SET UP
DATA IN ARRAY
BIN_COMBOS

320
NO_~"MORE \JYES

STATES?

f/

SET FLAG IN

ARRAY
BIN_USAGE

348

/

CALL FUNCTION

CHECK_COMBOS
TO SET P fe——

DATA IN ARRAY
BIN_COMBOS

l 350
fJ

THREE _DIG_ZIP
=SCF

y

SET FLAG IN
ARRAY
BIN_USAGE

56



MAKE _SACK_COMBOS
370

/./

READ INITIAL

RECORD FROM i

EP 0 481 569 A2

FIG 4E
378 398
/_/ /J
READ NEXT GO TO
RECORD IN FUNCTION
SORTREC2.TMP BUILD_TREES

SORTREC2.TMP
372

L

STORE ZIP ID
IN LOCATION
LAST_SACK.ZIP_ID

374

L C

STORE SACK
TYPE IN
LOCATION

LAST_SACK_TYPE

l 376

rJ

LAST YE

RECORD?

A
‘MIXED STATES”
SACK?

SET FLAG FOR
BIN IN ARRAY
BIN_USAGE

STORE ZIP 1D
FROM RECORD AT
LOCATION

SACK_ZIP_ID

394

/J

CALL FUNCTION
CHECK _COMBOS
TO UPDATE
BIN_COMBOS

l 396

f/

CLEAR ARRAY

386

CHANGE ~\NO

S

>

CALL FUNCTION
CHECK_COMBO
FOR LAST RECORD

388

f’j

=i

SET FLAG FOR
BIN IN ARRAY
BIN_USAGE

BIN_USAGE

l 390
LAST_ZIP_ID=
SACK_ZIP_ID

l 392

57

LAST_SACK_TYPE
= SACK.TYPE




BUILD_TREES
r/4OO
DETERMINE THE
NUMBER 0OF
QUALIFYING
PACKAGES IN EACH
STATE /3-DIGIT
FORCED BIN
COMBINATION
AND STORE IN
ARRAY

EP 0 481 569 A2

FIG 4F

410

~

CONSIDERATION

DETERMINE
INITIAL BIN
i UNDER

QUAL _PER_COMBO

|

INITIALIZE
CUTOFF _CNT

l 404
~

INITIALIZE
TREE_CNT=1

|

INITIALIZE
QUAL_CNT=0

l 408
/
INITIALIZE

QUAL _PER_COMBO

QUAL _CNT=

(BIN_COMBOLN

s

INCLUDED IN THIS
FORCED COMBINATION,
SET CORRESPONDING

FOR EACH BIN

ELEMENT IN
ARRAY
MAJ_TREE=

422

g

418

_

MAJ_TREEIil=
TREE_CNT

417

A

BIN_COMBO_
USAGEIBIN_COMBO(N

TREE_CNT

TEMP_CNT=0

58

=]




BUILD_TREES (CONT)

422

420
L

COMPUTE BIN
NUMBER OF
NEXT BIN

TEMP_CNT=
PACKS_PER_BINIil

EP 0 481 569 A2

FIG 46

424
/

TEMP_CNT=
QUAL _PER_COMBO
(BIN_COMBOLi

l 428
,J

L

QUAL_CNT=
QUAL _CNT+
TEMP_CNT

QUAL _CNT
EXCEED NUMBER
OF AVAILABLE
BINS?

INCREMENT
TREE_CNT

l 434
-

QUAL _CNT=

438

L~

COMBINED

FOR EACH BIN
INCLUDED IN THIS
FORCED COMBINATION.
SET CORRESPONDING

N ELEMENT IN
BIN? ARRAY
MAJ_TREE=
442 TREE _CNT
1 [
MAJ_ Elil=
TREE_CNT ~
: BIN_COMBO._

TEMP_CNT

59

USAGE [BIN_COMBONN
-1

446
PREPARE
FILE
SRTREEDAT




EP 0 481 569 A2

FIG 4H

TREESORT
—

DETERMINE
NUMBER OF
ENTRIES PER
EACH TREE

——~l 452
~

SET MEMORY
POINTER AND
FLAG FOR
EACH TREE
WHICH WILL
FIT INTO
MEMORY

l 454
/

AS EACH
RECORD IN
FILE IS READ.
COPY RECORD
INTO MEMORY

PER MEMORY
POINTER FOR
TREE TO
WHICH RECORD
BELONGS
456
/
COPY MEMORY
TO FILE
460
fJ
FIRST.
PASS_
SACKS

60



EP 0 481 569 A2

FIG 4
FIRST_PASS_SACKS IG I 470
472
READ INITIAL
RECORD IN FILF f@————— INITIALIZE
FULLSOR2.TMP
-i 474
f‘/
OBTAIN NEXT
RECORD
484
NEW et
RECORD IN YES | SET FLAG
SAME SACK AS IN ARRAY
PREVIOUS? BIN_USAGE 486
/
ADD BIN PIECE
COUNTS TO
SACK_BIN_CNT

SUM PARTIAL

478 | PACKAGE COUNTS
\\
CLEAR FLAG 490

ALL _FROM_PASSI

SACK_CNT=

493
S~

SACK_BIN_CNT

INCREMENT

4?8 FIRST_PASS_SACKS
SET FLAG ~ l
ALL _FROM_ MARK THE
PASSI COMPLETELY
DEPENDING SORTED BINS WITH
ON SACK F A UNIQUE
TYPE AND PACKAGE
VALUE OF ~ - ggﬁyngl%g
COUNTER IRST_PASS_SACKS)
SN REINITIALIZE -
4
496
S e
GO TO
PROCESS
Y S RECORDS? LAST el FUNCEION
PACKAGE BAGS

61




EP 0 481 569 A2

FIG 4Jl]
MAKE _BAGS =00 16
Vand e
INITIALIZE OBTAIN
LAST_BAG_ASSIGNED=0 ™ SACK_ZIP_ID
l 502
/
ASSIGN FIRST BAG
THE MIXED
STATES BAG 504
! ~
INITIALIZE
LAST_ID=-1 FIRST_PASS_BAGCNT
LAST_TYPE=-1 +=SACK PACKAGE CNT
o et R
S06 SACK.NO=
READ RECORD BAG.ND
FROM FILE /{ i S24
FULLSOR2.TMP =
WRITE TO FILE
508 FULLSORT
549
LAST WRITE TO
RECORD FROM N FILE
SAME BAGTAG_
SACK? HANDLE
550
' -
GO TO
STEP
554
SACK NO=1
514
548
WRITE im FICE/ /
FULLSORT LAST_TYPE= @

‘ SACK.STYPE

62



EP 0 481 569 A2

FIG 4J2

l o28
pd

| WRITE TO FILE
BAGTAG_HANDLE

COMPUTE VALUE OF
PREV_ASSIGN_PTR | ~ 230
DEPENDING ON
SACK STYPE

534

/

INCREMENT
LAST_BAG_ASSIGNED

l 536

//
BAG_NO=

NO_~PREV_ASSIGN_
PTR=NULL AND

532

YES

538

_

BAG_NO=
*PREV_ASSIGN_PTR

LAST_BAG_ASSIGNED

542

~

*PREV_ASSIGN_
PTR=BAG_NI

544

540

PREV_
ASSIGN_PTR
#NULL?

)

CREATE RECORD
FOR ARRAY
FRST_PASS_BAGS

P

LAST_ID=

SACK_ZIP_ID

546

63



EP 0 481 569 A2

FIG 4K

MAKE_BAGS (CONTINUED)

INITIALIZE CUS_GROUP = O
LAST_ID = -1. LAST_TYPE = -1
BAG_DATACNT = 0O

'i 556

READ SRTREEDAT
RECORD

558

ANY SRTREE NO

354

S72

e

RECORDS
REMAINING?

YES S0
s

INCREMENT
CUS_GROUP

o62

ANY
GROUPS
REMAINING IN
PRESENT
TREE?

NO

ASSIGN PACKAGES
PER BIN BIN_CNTIL.

S

SET SORTRECI3TMP FILE
SEEK POSITION FOR NEXT
PACKAGE RECORD

& MAKE.CLIENT.CNTS

565 |
v

566

ANY
MORE
BINS ASSIGNED
TO THIS
GROUP?

YES

NO - sy

YES 568

S

READ SORTREC3.TMP
RECORD

l 570
Ve

PROCESS RECORD AS
AS FIRST PASS
PACKAGE RECORD

64



EP 0 481 569 A2

FIG 4L

MAKE _CLIENT_COUNTS

600
INITIALIZE
602 604 606
FIND RECORD IN DETERMINE
READ NEXT
el MK el o FIUE AU | SPOE
COUNT DAT
ZIP CODE AS FOR ZIP CODE
RECORD IN FILE |
COUNT DAT
&10 608

STYPE =
FIVE_DIGIT

CLIENTHL QUAL _TOT.COUNTS +
CNT_RECORD.CNTS

CLIENTGL QUAL_TOT.ZIP4 +
CNT_RECORD.ZIP4

CLIENTGL QUAL_TOT.BARCODE +
CNT_RECORD.BARCODE

CLIENTHINQUAL _TOT.COUNTS +
CNT_RECORD.CNTS

CLIENTGINQUAL_TOT.ZIP4 +
CNT_RECORD.ZIP4

CLIENTHINQUAL _TOT.BARCODE +
CNT_RECORD.BARCODE

614 616
S~
N[O LAST YES
RECORD? %%%aﬁzg

65



EP 0 481 569 A2

CORRELATE_BAGS FIG. 4Mi
‘ ~— 640 658
READ RECORD FROM NO
cagl FILE SACK2TMP
) 642 660 YES
WRITE r~ N
RECORD ASSICN
TO FILE GET PTYPE o STon
SACK3.TMP _
646 644 l 662
f ~ YES =
SACKCND WRITE RECIRD
) 7O FILE
SACK3.TMP
NO 650 ,
~ 664
OBTAIN ~
PACKAGE _ZIP_ID ———
l £so FLAG TRUE
/ —
INITIALIZE 666
MATCH_FLAG=FALSE INCREMENT (—~
CURRENT_INDEX=0 CURRENT_
: INDEX
653\ ‘ N :
READ RECORD FROM
FILE SORTRECDAT
656 —
OBTAIN 1

CURRENT_PTR

LAST

NO RECORD?

66



EP 0 481 569 A2

FIG 4M2
678
NO

680 YES
N

ASSIGN
BAG NO

l 682
J

WRITE RECORD
T0 FILE
SACK3.TMP

l 684
~

SET MATCH_
FLAG TRUE

l 686

A YES ~"MATCH_FLAG

TRUE?

674

(/

READ NEXT RECORD
FROM FILE
FULLSORT.DAT

LAST
RECORD IN FILE
FULLSORT.DAT?

T_ N

672

. i= L ~—"

ERROR

67



SAVE_ANAL_CNT  ~700
/’

READ INITIAL
SACK3.TMP RECORD

—————-————ti 702

J
READ
COUNT DAT
RECORD

704

ANY
COUNT DAT
RECORDS?

712

EP 0 481 569 A2

FIG 4N

—

SET_POST_CNTS

READ RECORD
FROM FILE
ANAL _CNT.DAT

/r-730

.

SACK3.TMP
RECORD IN
SAME ZIP CODE AS
COUNT DAT
RECORD?

NO

YES L
READ
e— SACK3.TMP
RECORD
Y
708
WRITE
ANAL_CNT LS
RECORD WITH
INFO FROM
BOTH
COUNT.DAT
AND
SACK3 TMP

LAST
RECORD?

INCREASE INCREASE
‘QUALIFYING | ["NON-QUALIF YING
COUNTERS” COUNTERS”
‘ ]
740

742
INCLUDE REJECT |«
COUNTS
‘ 744
VRITE FILE L/
PSSIAGGR.DAT
| 746
WRITE FILE |~
PSS2AGGR.DAT

68




	bibliography
	description
	claims
	drawings

