
Europaisches Patentamt

European Patent Office

Office europeen des brevets © Publication number: 0 4 8 1 5 6 9 A 2

E U R O P E A N PATENT A P P L I C A T I O N

© Application number: 91202690.3

@ Date of filing: 16.10.91

Int. CI 5 B07C 3 / 0 0

® Priority: 16.10.90 US 598189 © Applicant: BELL & HOWELL PHILLIPSBURG
COMPANY

@ Date of publication of application: 5215 Old Orchard Road
22.04.92 Bulletin 92/17 Skokie, Illinois 60077(US)

© Designated Contracting States: @ Inventor: Kostyniuk, Paul F.
CH DE FR GB IT LI 539 Park Avenue

Wilmette, Illinois 60091 (US)

© Representative: Mittler, Enrico et al
c/o Marchi & Mittler s.r.l. Viale Lombardia, 20
1-20131 Milano(IT)

CM

CO

© Mail sorting apparatus and method.

© A mail sorting machine (20) includes an input hopper (30); a mailpiece reading and processing section (22);
and, a sorting bin section (24) comprising a plurality of bins (26i -26i2s). The reading and processing section
(22) includes a CPU (54) which executes a program ANALYZE MAIL for sorting third class mailpieces. The
program ANALYZE MAIL sorts the mailpieces included in a batch into packages, and then associates the
packages into sacks or bags. The program ANALYZE MAIL constructs the packages and sacks to obtain
maximum postage discounts. Upon an initial pass of all mailpieces of a batch through the sorting machine (20),
the program ANALYZE MAIL generates output (TABLE 1) advising how the bins (26) are to be grouped for
subsequent passes. The program ANALYZE MAIL also generates output (TABLES 2A - 2E) advising, for each
group, which bins (26) are to have their packages associated together for insertion into the same bag or sack.
Advantageously, the mailpieces are sorted so that the bins (26) to be associated together are physically adjacent
one another in the sorting machine (20). Bag tags are generated to tell an operator which bins are to be
collected together to form a sack or bag, as well as the sack number and group number. The program
ANALYZE MAIL also includes an accounting capability for billing postage to a possible plurality of clients
having mailstreams included in the batch, and for allocating postage costs in accordance with whether the
client's mailpieces qualify for postage discounts.

00

Rank Xerox (UK) Business Services

EP 0 481 569 A2

'5

26iC

2 W T

62

FVG. 1

ib6 |4

4 '

>41 98

34-
60 OCR

76 Afl

Booaaqo

ao-

V.24
102 94

96 ^ 104
90 J \,*>\

db3

1U4
?61

□0

22

»4 40 i l | l ll ll l
50 r̂ — 46

> 58 74 70 72 30

2

EP 0 481 569 A2

BACKGROUND OF THE INVENTION

I. FIELD OF THE INVENTION

5 This invention pertains to apparatus and method for sorting postal envelopes prior to mailing, and
particularly to such apparatus and method for presorting envelopes in order to obtain postage discounts
offered by the United States Postal Service.

II. PRIOR ART AND OTHER CONSIDERATIONS
10

The United States Postal Service is handling an ever increasing volume of domestic mail. A large
component of the domestic mail volume is attributed to postal patrons who introduce large or bulk
shipments of mail into the Postal Service. Examples of such postal patrons include financial institutions
(such as banks and credit card companies that mail out periodic statements to their customers); utilities

75 (which mail out monthly or quarterly bills); charitable and non-profit institutions; and, advertising agencies.
The United States Postal Service affords more favorable postage rates for postal patrons who cooperate

with the United States Postal Service by preparing bulk shipments of mail in a manner more easily handled
by the United States Postal Service. The United States Postal Service defines its postage class structure,
and the requirements for obtaining the more favorable postage rates for bulk mail patrons, in a publication

20 called the Domestic Mail Manual (also known as the "DMM").
By way of example for the foregoing, the DMM sets forth a schedule of rates and fees for third class

mail, with the postage rate for third class mail depending upon a presort level of the mail. In this respect, for
third class mail the DMM prescribes the following presort levels for bulk rate mail: basic; basic ZIP + 4; 5
digit; 5 digit ZIP + 4; ZIP + 4 barcoded; and, carrier route. Of these presort levels, the basic level is the

25 most expensive, the basic ZIP +4 the second most expensive, and so on with the carrier route presort level
being the least expensive. Indeed, a patron preparing a bulk shipment of mail can achieve a considerable
postage savings depending upon the extent to which the mailpieces included in the shipment qualify for the
less expensive presort levels.

Qualifying for a particular presort level involves more than the degree (five or nine digit) and manner
30 (barcoded or not) by which ZIP code information is provided on the mailpieces. For a mailpiece to qualify

for most of the presort levels, the DMM further requires that the mailpiece be included as a part of a
package (a specified number, such as 10 or more) of mailpieces packaged (i.e., associated by a
rubberband) in accordance with specified criteria (such as the same carrier route, same 5 digit ZIP code
destination, same 3 digit ZIP code prefix destination, for examples). In addition, to qualify for most of the

35 presort levels, in accordance with specified criteria the postal patron must place the packages in a sack
along with other mailpieces, and the sack must contain at least a specified minimum number of pieces (or
have at least a specified minimum weight). Examples of such specified criteria for inclusion of mailpieces in
the same sack are that the mailpieces either be destined to the same carrier route, the same 5 digit ZIP
code destination, or the same 3 digit ZIP code prefix destination.

40 In addition to complying with the foregoing package and sack requirements, the postal patron must
apply a label or tag, having a prescribed format, to each sack. As required by the DMM, the sack tag or
label must include select information regarding the contents of the sack.

Thus, in order to obtain the maximum possible postage savings for each mailpiece, a postal patron
must presort the mailpieces in accordance with ZIP code; must attempt to associate mailpieces in

45 accordance with DMM specifications into packages; must attempt to associate packages in accordance with
DMM specifications into sacks; and, must generate a label for each sack in accordance with the format
prescribed by the DMM. It should become apparent that factors such as insufficient quantity and thin
geographical distribution may disqualify many of the mailpieces included in a bulk shipment from receiving
the most favored presort level. A greater postage rate associated with a less favored presort level must be

50 paid for a mailpieces disqualified from the most favored presort level.
Large bulk shipments of mail can be presorted in ZIP code groupings using automated sorting

machines, such as those provided by the Bell & Howell Phillipsburg Company. Examples of such
automated sorting machines include the Bell & Howell Phillipsburg Company model 1000, 800, and 600
Mail Processing Systems. These automated sorting machines read optical characters and/or bar code and

55 sort mail into bins.
While the prior art automated sorting machines cited above perform admirably for their initially intended

purposes, the machines still required much human thought in the preparation of packages and associating
of packages into sacks for obtaining the more favorable presort levels. In this respect, a human operator

3

EP 0 481 569 A2

must mentally determine how to associate into packages and sacks mailpieces from numerous and often
non-adjacent bins of the sorting machine. Such tedious determinations are subject to human error.
Erroneous packaging and sacking of mailpieces causes considerable consternation with the United States
Postal Service, and may jeopardize or render suspect the entire bulk mail shipment.

5 In order to qualify as many mailpieces as possible for the most favored presort levels, many companies
and organizations send their bulk shipments to a third party company such as a presort agency for
combining with the bulk shipments of other companies and organizations. By combining the bulk mail
shipments of several postal patrons, and by presorting the combined mail for the several patrons on the
automated sorting machines described above, the presort agencies are often able to leverage the quantity

io and geographical distribution factors in order to qualify the maximum number of mailpieces for the most
favored presort levels. Unfortunately, since some mailpieces do not achieve the most favored presort levels,
it is very difficult for the presort agencies to allocate the postage costs (e.g., qualified discount vs. non-
qualified postage rate) incurred among the contributing patrons.

Moreover, some postal patrons meter the mailpieces included in a bulk shipment with postage prior to
is conducting their own in-house sorting or prior to sending the shipment to a presort agency. In such cases, it

may turn out that a mailpiece pre-metered at a rate for a favored presort level may not qualify for that
presort level, with the result that additional postage must be applied to that mailpiece. When the mailpieces
of more than one patron are combined or commingled, as at a presort agency, it is very difficult from an
accounting standpoint to allocate the resultant postage increase triggered by the non-qualifying pre-metered

20 mailpiece to the postal patron from whom the mailpiece came.
As mentioned above, some postal patrons meter the mailpieces included in a bulk shipment prior to the

sorting operation (either in-house or at a presort agency). Other postal patrons use the "permit" mail
provisions of the United States Postal Service. Traditionally the United States Postal Service has refused to
accept bulk shipments that include both pre-metered and permit mail, in view inter alia of the difficulty in

25 verifying the accuracy of the computed postage amounts.
In view of the foregoing, it is an object of the present invention to provide a sorting method and

apparatus for associating mailpieces in a manner conducive for collection and associating into packages
and sacks for obtaining desired postage presort levels.

An advantage of the present invention is the provision of method and apparatus for sorting mailpieces
30 and for providing reports indicative of the postage presort levels into which mailpieces are classified.

Another advantage of the present invention is the provision of method and apparatus for sorting
mailpieces wherein sack labels are automatically generated for sacks of mail.

SUMMARY
35

A mail sorting machine includes an input hopper; a mailpiece reading and processing section; and, a
sorting bin section comprising a plurality of bins. The reading and processing section includes a CPU which
executes a program ANALYZE MAIL for sorting third class mailpieces. The program ANALYZE MAIL
sorts the mailpieces included in a batch into packages, and then associates the packages into sacks or

40 bags. The program ANALYZE MAIL constructs the packages and sacks to obtain maximum postage
discounts.

Upon an initial physical pass of all mailpieces of a batch through the sorting machine, the program
ANALYZE MAIL generates output advising how the bins are to be associated for subsequent passes. As a
result of the first physical pass, the program ANALYZE MAIL classifies the mailpieces of the batch into a

45 plurality of "groups". A "group" is a set of mailpieces which is to be separately sorted, independently from
the remainder of the batch, during one or more "passes" of the sorting machine. For example, after the first
or initial physical pass, for a first subsequent pass only a first group of mailpieces is loaded into the input
hopper; for a second subsequent pass only a second group of mailpieces is loaded into the input hopper;
and so forth. In general, during the first physical pass, mailpieces belonging to a first group are assigned to

50 a first set of bins; mailpieces belonging to a second group are assigned to a second set of the bins; and so
forth.

In addition to assigning mailpieces to specified groups (i.e., bins) during the first physical pass, the
program ANALYZE MAIL also generates a report which informs the operator from which bins to collect
each group. Advantageously, each group is collected from physically adjacent bins. Moreover, the program

55 ANALYZE MAIL also generates a report for each group, which report indicates from which bins mailpieces
are to be collected into sacks. Advantageously, the sack is composed of mailpieces from physically
adjacent bins. Further, the program ANALYZE MAIL generates "bag tags" (also known as "sack tags") for
each sack, with the bag tag bearing information to apprise the operator from which bins to gather the

4

EP 0 481 569 A2

contents of the sack, as well as the sack and group number.
The program ANALYZE MAIL also includes an accounting capability for billing postage to a possible

plurality of clients having mailstreams included in the batch, and for allocating postage costs in accordance
with whether the client's mailpieces qualify for postage discounts.

5
BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features, and advantages of the invention will be apparent from the
following more particular description of preferred embodiments as illustrated in the accompanying drawings

io in which reference characters refer to the same parts throughout the various views. The drawings are not
necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.

Fig. 1 is a top schematic view of a sorter apparatus according to an embodiment of the invention.
Fig. 2 is a schematic view of electronic circuitry included in the sorter apparatus of the embodiment of

Fig. 1.
is Fig. 3 is an isometric view of an edge post and hook assembly provided thereon according to the

embodiment of Fig. 1 .
Fig. 4 is a schematic view showing the interrelationships between Figs. 4A - 4N.
Figs. 4A - 4N are schematic views showing a series of functions and their constituent steps executed in

accordance with a program ANALYZE MAIL by the sorter apparatus of the embodiment of Fig. 1.
20

DETAILED DESCRIPTION OF THE DRAWINGS

Fig. 1 shows a sorter apparatus 20 according to an embodiment of the invention. The sorter 20 includes
a reading and processing section 22 and a sorting bin section 24. The sorting bin section 24 includes a

25 plurality of bins 26 into which mailpieces are ultimately sorted. In one embodiment, 128 such bins 26,
numbered as bins 26i-26i28, are provided (although not all of the 128 such bins 26 are illustrated in Fig. 1).
It should be understood that in other embodiments a different number of bins are provided.

The processing section 22 includes an input hopper 30; a feeder 31; and a mailpiece transport
assembly 32 which directs mailpieces along a processing path 33. Along the processing path 33 are various

30 processing stations also included in the processing section 22, including an optical character recognition
(OCR) station 34; an ink jet printer station 36; a bar code reader station 38.

As shown in Fig. 1, a plurality of hopper floor belts 40 and hopper augers 42 transport incoming
mailpieces on edge in the direction of arrow 44 toward the feeder 31 . The feeder 31 , being of a rotating belt
variety, feeds the leading mailpiece in the hopper 31 in the direction of the processing path 33 (i.e., in the

35 direction of arrow 46). The mailpieces travel on edge down the processing path 33 along the OCR station
34, the ink jet printer station 36, the bar code reader section 38, and into the sorting bin section 24.

The processing section 22 also includes an operator console 50 and a data processing system 52. The
data processing system 52 includes a central processing unit (CPU) 54 and an I/O interface 56 (see Fig. 2).
The CPU 54 communicates through the I/O interface 56 to various peripheral devices, including a keyboard

40 58; a monitor 60; a report printer 62; a bag tag or sack tag printer 64; and, a disk drive 66 (see Fig. 2). In
addition, the CPU 54 communicates through the I/O interface 56 to electronics for the aforementioned OCR
station 34; ink jet printer station 36; bar code reader station 38; and, operator console 50.

The operator console 50 includes a start switch 70 and stop switch 72, as well a feed select switch 74
and a series of status indicator lights 76. The feed select switch 74 is used to control the rate at which the

45 feeder 31 feeds mailpieces from the input hopper 30 toward the mail processing path 33.
The sorting bin section 24 includes a central transport assembly 80 which directs mailpieces along a

sorting path that is collinear with the processing path 33 of the processing section 22. That is, the central
transport assembly 80 of the sorting bin section 24 continues to transport a mailpiece in the direction of
arrow 46 through the sorting bin section 24 until the mailpiece is deflected into an appropriate one of the

50 bins 26. The central transport assembly 80 includes a plurality of unillustrated transport belts.
As shown in Fig. 1, bins are provided on both sides of the sorting path in paired relationship. That is, at

the same distance from the processing section 22, bin 26i is paired with bin 26i2s; a little further
downstream bin 262 is paired with bin 26127; and so forth until the downstream-most pair of bins 26g+ and
26G5.

55 The sorting path is defined by a plurality of diverter gates 82 and sorting path walls 84. Each bin 26 has
a diverter gate 82 and a sorting path wall 82 associated therewith. When activated, a diverter gate 84 pivots
about a pivot point (such as pivot point 86 shown with respect to diverter gate 82i of bin 261) for diverting a
mailpiece from the sorting path into its respective bin. Each sorting path wall 84 has a rear ramp surface 88

5

EP 0 481 569 A2

inclined with respect to the sorting path. The rear ramp surface 88 and the diverter gate 82 form a planar
surface inclined with respect to the sorting path when the diverter gate 82 is pivoted to deflect mailpieces
out of the sorting path and into the bin 26. The angle of inclination of this planar surface including the rear
ramp surface 88 facilitates direction of the on edge mailpiece into the queue of mailpieces developing in the

5 bin.
In addition to the rear ramp surface 88, a bin 26 is defined by a horizontal bin floor 90 and a leading

edge abutment rail 92. The leading edge abutment rail is suspended above the horizontal bin floor 90
between the sorting path wall 84 and a vertical edge post 94. As shown in Figs. 1 and 3, the leading edge
abutment rail extends through an aperture provided in a travelling vertical plate 96. The bin floor 90 has an

io auger 98 provide therein which transports mailpieces diverted into the bin 26 in a direction perpendicular
and away from the sorting path. For example, with reference to bin 26i , the auger 98i directs deflected
mailpieces away from the sorting path in the direction of arrow 100. The leading or first such mailpiece
deflected into a bin 26 contacts the travelling plate 96. As successive mailpieces are diverted into a bin 26
and interposed between the ramp surface 88 and the previous mailpiece, the travelling plate 96 is slidingly

is pushed along the abutment rail 92 away from the sorting path toward the edge post 94. Near the edge post
94 a pressure sensor switch 102 is provided to detect when a bin 26 is becoming full. In this respect, when
a sufficient number of mailpieces are diverted into a single bin 26 such that the travelling plate 96 closes
the pressure sensor switch 102 for that bin, the sorting operation is temporarily halted an a diagnostic
message is provided to the operator so that mailpieces diverted to the bin can be manually removed for

20 accommodating additional mailpieces in that bin.
As is shown in Fig. 3, each edge post 94 has hook assembly 104 provided thereon for engaging mail

sacks, for example. The hook assembly 104 comprises two perpendicular bracket members 106a and 106b.
The hook assembly 104 is mounted on the edge post 94 by fasteners 108 which extend through the bracket
member 106a. The bracket member 106b has two U-shaped hooks 110 provided thereon. The hooks 110

25 engage one of the metal rings 112 provided around the mouth of a mail sack 114.
Referring again to the diverter gates 82 provided along the sorting path, each diverter gate 82 is

activated by a solenoid 120. The solenoids 120 of each pair of bins are controlled by bin pair controller 122,
there being 64 such bin pair controllers 122 shown in the embodiment of Fig. 1. Bin pair controller 122i
controls the solenoids 120i and 120i28 for bins 26i and 26i28, respectively; bin pair controller 1222

30 controls the solenoids 1202 and 12O127 for bins 262 and 26127, respectively; and so forth.
The bin pair controllers 122 are connected in series to the I/O interface 56 of the data processing

system 52 in shift register fashion along line 124. The signal carried on line 124 is a digital signal indicative
of the bin number to which a mailpiece should be directed in accordance with the sorting operation. The
signal from the I/O interface 56 is first applied to the bin pair controller 122i as a mailpiece approaches

35 diverter gates 82i and 82i28- If the signal indicates that the mailpiece is destined for either bin 261 or bin
26128, the bin pair controller, upon evaluating the signal, causes activation of the appropriate solenoid 120.
If the signal indicates that the mailpiece is destined for another downstream bin 26, the signal for that
mailpiece is shifted downstream to the bin pair controller 1222 as the mailpiece approaches diverter gates
822 and 82i27 associated with bins 262 and 26127- The bin pair controller 1222 then either activates an

40 appropriate solenoid 120 or shifts the signal yet further downstream along with the travelling mailpiece.
The data processing system 52, and particularly the CPU 54 executes a set of instructions that control

the operation of the sorter 20. That set of instructions in collectively referred to as program
ANALYZE MAIL. The program ANALYZE MAIL consists of numerous subsets of instructions coded in the
"C" programming language, which subsets are referred to herein as "functions". Execution of the program

45 ANALYZE MAIL and its constituent functions causes the sorting machine 20 to operate in the manner
described below. In connection with the ensuing description of the operation of the sorting machine 20, it
should be understood that the word "bundle" is often used interchangeably with "package", and that the
word "bag" is often used interchangeably with "sack".

50 OPERATION

In the operation of the sorting machine 20 of Fig. 1, a batch of third class mail is placed in the input
hopper 30. The batch may comprise a plurality of mailstreams from a plurality of patrons. In the example
discussed hereinafter particularly with reference to the TABLES, the batch includes mailstreams from an

55 insurance company patron, a utility company patron, and a publishing company patron. The insurance
company actually contributes three separate mailstreams to the batch, in particular an automotive insurance
mailstream, a life insurance mailstream, and a health insurance mailstream.

After the mailstreams are all loaded into the input hopper 30, and when the CPU 54 is running the

6

EP 0 481 569 A2

program ANALYZE MAIL and the start switch 70 is turned on, the operator activates the feed select switch
74. Activation of the feed select switch 74 initiates a first physical pass of the mailpieces through the sorter
20, which includes transport of the mailpieces through the input hopper 30 in the direction of arrow 44;
through the processing section 32 (in the direction of arrow 46); and, into the sorting bin section 24. As

5 each mailpiece is transported through the processing section 22, the OCR 34 reads the character address;
the ink jet printer 36 prints a barcode corresponding to the character-read ZIP code; and, the bar code
reader 38 verifies the printed bar code.

As discussed hereinbefore, the program ANALYZE MAIL executed by sorting machine 20 collectively
sorts the entire batch, comprising the mailstreams of all the patrons, in order to achieve the optimum third

io class postage discounts in accordance with the DMM. In order to do so, the program ANALYZE MAIL
associates the mailpieces of the batch into "packages" (also known as "bundles"), and the packages are
associated into sacks or bags.

In the above regard, the program ANALYZE MAIL creates four different package types, notably: five
digit (or "5") packages; three digit ("3") packages; state ("S") packages; and, mixed state (or "M")

is packages. Generally, packages must consist of ten (10) or more mailpieces satisfying the same package
ZIP code rule. For example, all the mailpieces in a FIVE DIGIT package must be destined for the same
five digit zip code. All the mailpieces included in a THREE DIGIT package must have the same three initial
three ZIP code digits (e.g., 22151, 22153, 22155, 22165). All the mailpieces included in a single STATE
package must have initial ZIP code digits which destine the mailpieces to the same state (e.g., to Illinois).

20 As is more fully explained by the DMM, to qualify for certain third class postage discounts, the
packages must in turn be placed into sacks consisting of a minimum number of mailpieces (or a minimum
weight). Typically the minimum number of mailpieces per sack is 125, or alternatively the minimum weight
is 15 pounds. Accordingly, the program ANALYZE MAIL creates four different sack types: FIVE DIGIT
sacks; THREE DIGIT sacks; STATE sacks; and MIXED STATE sacks.

25 As a result of the first physical pass, the program ANALYZE MAIL classifies the mailpieces of the
batch into a plurality of "groups". A "group" is a set of mailpieces which is to be separately sorted,
independently from the remainder of the batch, during one or more "passes" of the sorting machine 20. For
example, after the first or initial physical pass, for a first subsequent pass only a first group of mailpieces is
loaded into the input hopper 30; for a second subsequent pass only a second group of mailpieces is loaded

30 into the input hopper 30; and so forth. In general, during the first physical pass, mailpieces belonging to a
first group are assigned to a first set of bins 26; mailpieces belonging to a second group are assigned to a
second set of the bins 26; and so forth.

In addition to assigning mailpieces to specified groups (i.e., bins) during the first physical pass, the
program ANALYZE MAIL also generates a report in the form of TABLE 1 which informs the operator from

35 which bins 26 to collect each group. Advantageously, each group is collected from physically adjacent bins
26. Moreover, the program ANALYZE MAIL also generates a report in the form of TABLE 2A for each
group, which report indicates from which bins mailpieces are to be collected into sacks. Advantageously,
the sack is composed of mailpieces from physically adjacent bins 26. Further, the program
ANALYZE MAIL generates "bag tags" (also known as "sack tags") for each sack, with the bag tag bearing

40 information to apprise the operator from which bins 26 to gather the contents of the sack, as well as the
sack and group number. A format for a plurality of bag tags is illustrated in TABLE 3.

In addition, during the first physical pass, the program ANALYZE MAIL generates a number of
accounting reports as exemplified by TABLES 4, 5, 6, and 6A discussed infra.

45 Function FIRST_SORT_PASS

As a result of the execution of a function FIRST SORT PASS, three files are created during the first
physical pass, including file COUNT.DAT, file AGGR.DAT, and CLIENT1.DAT. The creation of these three
files is indicated by steps 200, 202, and 204 in Fig. 4A.

50 The size of the file COUNT.DAT (i.e., the number of records in the file) depends on the number of
unique zip codes and mailstreams encountered during the first physical pass.

The format of each record in file COUNT.DAT is as follows:

55

7

EP 0 481 569 A2

b y t e
o f f s e t

I
Zip Code - 4 b y t e s (l o n g i n t e g e r) 0

5 S t r e a m I n d e x - 1 b y t e (h e x / b i n a r y v a l u e) 4
C l i e n t I n d e x - 1 b y t e (h e x / b i n a r y v a l u e) 5
Bin - 1 b y t e (h e x / b i n a r y v a l u e) 6
5 D i g i t OCR/BCR c o u n t - 2 b y t e s (u n s i g n e d i n t e g e r) 7
Zip + 4 OCR c o u n t - 2 b y t e s (u n s i g n e d i n t e g e r) 9

?o Zip + 4 B a r c o d e d c o u n t - 2 b y t e s (u n s i g n e d i n t e g e r) 1 1

After the first physical pass, the records in file COUNT.DAT are sorted in ascending order. In this
respect, a primary sortation is done by ZIP code. For ZIP codes repeated due to their usage in different

75 client/mailstreams, a secondary sortation is performed by first sorting the client index number, followed by
the stream index number.

The following is an example of how multiple records in the file COUNT.DAT are stored (note that the
binary values are converted to ascii for display purposes):

20

25

30

35

40

45

50

55

ZIP CODE stream client bin 5 Digit ZIP + 4 ZIP + 4
Barcoded

203460000 2 1 3 12 3 7
203500000 1 1 3 1 0 3
203500000 3 1 3 0 0 1
203500000 2 3 3 1 0 0
203500000 0 7 3 0 2 0
302530000 2 1 4 0 0 5
406770000 1 1 5 0 1 3

File AGGR.DAT is a binary file of fixed length. Each entry is four bytes long representing a long integer.
The first 256 entries is an array of bin counts where each individual bin count is indexed by bin. The 257th
entry represents the total number of mailpieces fed, the 258th entry represents the total number of
mailpieces read, and the last entry represents the total 5 Digit ZIP count (OCR and Barcoded mailpieces).
The following summarizes the file format for file AGGR.DAT:

counts by bin - 256 entries, each entry 4 bytes
total fed - 1 entry 4 bytes long
total read - 1 entry 4 bytes long
total 5 Digit count - 1 entry 4 bytes long
The file CLIENT1.DAT is a binary file containing ten bytes per record. Each record contains the

following data and is presented in order:

S t r e a m I n d e x
C l i e n t I n d e x
T o t a l Fed C o u n t
T o t a l R e j e c t C o u n t

b y t e
o f f s e t #

1 b y t e (h e x / b i n a r y v a l u e) 0
1 b y t e (h e x / b i n a r y v a l u e) 1
4 b y t e s (l o n g i n t e g e r) 2
4 b y t e s (l o n g i n t e g e r) 6

File CLIENT1.DAT contains a variable number of records, depending on the number of unique clients and
mailstreams used. The records in this file are sorted in ascending order. A sortation is performed by first
sorting the client index number followed by the stream index number.

The following discussion describes other steps executed by the CPU 54 in connection with a plurality of
functions included in the program ANALYZE MAIL.

Function ASSIGN PACKAGES

8

EP 0 481 569 A2

The function ASSIGN PACKAGES (see Fig. 4A) takes records from file COUNT.DAT and assigns
package types to each zip code. The package types are reflected by the numbers "5" and "3" and the
letters "S" and "M". A package type of "5" refers to a five digit package; a package type of "3" refers to a
three digit package; a package type of "M" refers to mixed states package; a package type of "S" refers to

5 a state package.
During the first pass through the records in the file COUNT.DAT, the function ASSIGN PACKAGES

initially examines each record in the file COUNT.DAT in the record order noted above in order to determine
potential three digit packages (i.e., packages wherein all the mailpieces have identical first three ZIP code
digits, but which do not qualify as five digit packages) [reflected by step 250] and potential state packages

w [reflected by step 252]. In this regard, the function ASSIGN PACKAGES examines the field ZIP CODE for
the current record to determine whether the record has the same ZIP code as did the next previous record.
(Consecutive records might have the same ZIP codes when the same ZIP codes are present in different
mailstreams). If the ZIP code for the currently examined record is the same as the previous record, the
function ASSIGN PACKAGES determines the total number of mailpieces represented by the record by

is adding the values in the "5 Digit", "ZIP + 4", and "ZIP + 4 Barcoded" fields of the record and adds that sum
to a running total mailpiece counter (in location CNT) for this ZIP code.

If the ZIP code for the currently examined record differs from the previous record, the function
ASSIGN PACKAGES momentarily lays aside the current record to process the mailpiece count for the
previous ZIP code (i.e, the ZIP code for the previous record). In this respect, the function

20 ASSIGN PACKAGES determines whether the number of mailpieces for the previous ZIP code was less
than the predetermined minimum bundle size. If it was, the function ASSIGN PACKAGES realizes that the
previous ZIP code might qualify for a three digit package. To do this, the function ASSIGN PACKAGES
determines to what 3 Digit ZIP code the previous ZIP code belongs (i.e, determines the first three digits of
the previous ZIP code).

25 The function ASSIGN PACKAGES then assigns the total count of the number of mailpieces for the
previous ZIP code (stored at location CNT) to a three digit package counter for the 3 Digit ZIP code to
which the previous ZIP code belongs (i.e, to counter THREE_DIGIT_PACK_CNT[3_DIGIT_ZIP]).

After processing the mailpiece count for a previous ZIP code in the manner described above, the
function ASSIGN PACKAGES returns to processing the ZIP code for the current record. At this juncture,

30 the function ASSIGN PACKAGES assigns to the mailpiece counter CNT the sum of the values in the "5
Digit", "ZIP + 4", and "ZIP + 4 Barcoded" fields of the current record. The function ASSIGN PACKAGES
then examines the next record in the file COUNT.DAT, and continues the process described above for each
such record until an end of file is encountered.

After determining the potential three digit packages at step 250, the function ASSIGN_PACKAGES
35 attempts to locate potential state packages (step 252). In this regard, the function ASSIGN PACKAGES

compares the number of mailpieces assigned to each 3 Digit ZIP code with the predetermined minimum
number of mailpieces necessary to make up a package (e.g., 10). If the actual number of counted
mailpieces for an 3 Digit ZIP code is less than the predetermined minimum, the function
ASSIGN PACKAGES determines with which state the 3 Digit ZIP code is associated, and increments a

40 state package counter for that state (i.e., STATE PACK CNT(i); where i = a number corresponding to the
associated state). Also, if the number of counted mailpieces for an 3 Digit ZIP code is less than the
predetermined minimum, the corresponding three digit package counter (THREE DIGIT PACK CNT) is
set to zero.

Having determined potential three digit packages and potential state packages in the manner described
45 above (steps 250 and 252), the function ASSIGN PACKAGES then conducts a second pass through the

file COUNT.DAT in order to create a temporary file SACK1.TMP (step 254). As will be seen later, the file
SACK1.TMP is used by function ASSIGN_SACKS to generate a file SACK2.TMP. The file SACK1.TMP
contains multiple records of the following structure:

50

55

s t r u c t
{

PACKAGE

u n s i g n e d l o n g Z I P _ I D ;
u n s i g n e d l o n g CNT;
c h a r PTYPE ;
u n s i g n e d c h a r B I N ;

/* z i p i d e n t i f i e r * /
/* c o u n t * /
/* p a c k a g e t y p e * /
/* b i n a s s i g n m e n t * /

9

EP 0 481 569 A2

Thus, the file SACK1.TMP is much reduced in size from the file COUNT.DAT since the multiple zip id
entries due to client/mailstream selections are combined. Also, the three different count categories
("ZIP + 4"; "5 Digit"; and "ZIP + 4 Barcoded") are combined into one count value (CNT) since the sortation
of mail only depends on the combined count. The file SACK1.TMP is created in ZIP code order.

5 As mentioned above, the function ASSIGN PACKAGES creates the file SACK1.TMP during the second
pass through the file COUNT.DAT (step 254). During the second pass through file COUNT.DAT the function
ASSIGN_PACKAGES examines each record of file COUNT.DAT in a manner similar to the first pass. The
function ASSIGN PACKAGES determines whether the ZIP code for each currently examined record in file
COUNT.DAT is the same as for the previous record. If the ZIP code is the same, the function

io ASSIGN PACKAGES determines the total number of mailpieces represented by the record and adds that
number to a cumulative counter (CNT) for the total number of mailpieces for that ZIP code.

When, during the second pass through file COUNT.DAT, the function ASSIGN PACKAGES encounters
a record having a ZIP code which differs from the previous ZIP code (i.e., the ZIP code of the previous
record), the function ASSIGN PACKAGES prepares a record for file SACK1.TMP for the previous ZIP

is code. In this respect, in creating the record, the previous ZIP code is stored in the ZIP ID field of the
structure PACKAGE and the current value of the counter CNT is stored in the CNT field of the structure
PACKAGE. A value for the bin assignment (BIN) for the mailpieces for this package is obtained from the
corresponding "bin" field from the record in the COUNT.DAT file. The value for the package type (PTYPE)
is determined as follows.

20 In determining the package type (PTYPE) for a package of mailpieces, the function
ASSIGN PACKAGES determines whether the total number of mailpieces for the ZIP code (stored in
location CNT) exceeds the predetermined minimum package size (e.g., 10). If the predetermined minimum
is equalled or exceeded, the function ASSIGN PACKAGES assigns a "5" value to the PTYPE field for the
record in the structure PACKAGE associated with this ZIP code. The "5" value in the PTYPE field is

25 indicative of the fact that the package is a "5 Digit Package", meaning that all the mailpieces in this
package have the identical first five digit ZIP codes.

If the total number of mailpieces for the ZIP code is less than the predetermined minimum package
size, the function ASSIGN PACKAGES determines to what 3 Digit ZIP code this ZIP code belongs. Then
the function ASSIGN PACKAGES determines whether the three digit package counter

30 (THREE_DIGIT_PACK_CNT[3_DIGIT_ZIP]) for the 3 Digit ZIP code equals or exceeds the predeter-
mined minimum package size. If (THREE_DIGIT_PACK_CNT[3_DIGIT_ZIP]) for the 3 Digit ZIP code
equals or exceeds the predetermined minimum package size, then the function ASSIGN PACKAGES
assigns a "3" value to the PTYPE field for the record in the structure PACKAGE.

If the total number of mailpieces for the 3 Digit ZIP code is less than the predetermined minimum
35 package size, the function ASSIGN PACKAGES determines to what state this 3 Digit ZIP code belongs.

Then the function ASSIGN PACKAGES determines whether the state package counter
(STATE PACK CNT) for this state equals or exceeds the predetermined minimum package size. If the
state package counter for this state equals or exceeds the predetermined minimum package size, then the
function ASSIGN PACKAGES assigns a "S" value to the PTYPE field for the record in the structure

40 PACKAGE.
If the function ASSIGN PACKAGES cannot assign a "5", "3", or "S" value to the PTYPE field for this

record in the SACK1.TMP file, a "M" value (indicative of "Mixed State Packages) is assigned to the PTYPE
field.

45 Function ASSIGN_SACKS

Function ASSIGN_SACKS (see Fig. 4A) uses the file SACK1.TMP created by function
ASSIGN PACKAGES to generate another file (file SACK2.TMP). In so doing, function ASSIGN_SACKS
makes tentative sack assignments.

50 The file SACK2.TMP is a temporary work file for making sack assignments to ZIP codes. Once created
by function ASSIGN_SACKS, the file SACK2.TMP contains multiple records of the following structure:

55

10

EP 0 481 569 A2

s t r u c t SACK
{

5

s t r u c t
i n t
c h a r

PACKAGE p a c k a g e ;
NO;

STYPE
\ * b a g ID number* \
\ * s a c k t y p e * \

}

io where the structure PACKAGE is as formerly defined.
There are five possible sack assignments: FIVE_DIGIT; MIXED_FIVE; THREE DIGIT; STATE; and

MIXED STATES.
The function ASSIGN_SACKS reads through the file SACK1.TMP in two passes. During the first pass,

the function ASSIGN SACKS obtains certain sack counts. During the second pass, the function
75 ASSIGN_SACKS generates the file SACK2.TMP.

During the first pass through the file SACK1.TMP, function ASSIGN_SACKS determines the 3 Digit ZIP
code and the package type (PTYPE) assigned to each record in the file SACK1.TMP. If the package type
(PTYPE) of a record is "5", the package count (CNT) for that package is checked to determine whether the
package contains enough mailpieces to be its own sack (step 260). This is done by comparing the package

20 count (CNT) value of the package to a predetermined minimum mailpiece number necessary to make up a
sack ("MIN MAIL"). If the package count (CNT) does not qualify the package to be its own sack, then the
function ASSIGN_SACKS realizes that this "5" type package may be part of a MIXED_FIVE;
THREE DIGIT; STATE; or MIXED STATES sack. Accordingly, for the 3 Digit ZIP code corresponding to
the ZIP code for the current package, the function ASSIGN SACKS adds the package count (CNT) to a

25 "mixed five sack counter" (MIXED_FIVE_SACK_CNT[3_DIGIT_ZIP]) [step 262].
For packages belonging to the other types (PTYPE = 3, S, or M), the function ASSIGN_SACKS adds

the package count (CNT) to the appropriate counter (step 262). For example, for a record in SACK1.TMP
having a PTYPE = 3, the function ASSIGN_SACKS adds the package count (CNT) of that record to a
"three digit sack counter" (THREE_DIGIT_SACK_CNT[3_DIGIT_ZIP]) for the 3 Digit ZIP code for the

30 ZIP code of the record. Similarly, a unique counter exists for each state (STATE SACK CNT) and each
mixed state (MS_SACK_CNT).

The function ASSIGN SACKS then checks the potential mixed five, three digit, and state sack counts
(step 264). First, for each 3 Digit ZIP code, the function ASSIGN_SACKS checks the value of the counter
MIXED FIVE SACK CNT to determine whether each potential mixed five sack has the predetermined

35 minimum number of mailpieces to be a sack. If the counter MIXED FIVE SACK CNT falls short of the
predetermined minimum number, then it is assumed for the moment that these mailpieces, previously
thought to comprise a mixed five sack, should now comprise a three digit sack. To this end, the value of the
counter MIXED_FIVE_SACK_CNT[3_DIGIT_ZIP] for this 3 Digit ZIP code is added to the counter
THREE_DIGIT_SACK_CNT[3_DIGIT_ZIP] for the 3 Digit ZIP code. The value of the counter

40 MIXED_FIVE_SACK_CNT for this 3 Digit ZIP code is then re-initialized at zero.
In the same manner the function ASSIGN SACKS checks the number of mailpieces in each potential

three digit sack to insure that the potential sack has the predetermined minimum number of mailpieces to
qualify as a sack. If the value of THREE_DIGIT_SACK_CNT[3_DIGIT_ZIP] does not have the predeter-
mined minimum number of mailpieces, it is assumed that these mailpieces should now be part of a state

45 sack. Accordingly, a state sack counter (STATE SACK CNT) for the state having the concerned 3 Digit
ZIP code is incremented by the value of the THREE_DIGIT_SACK_CNT[3_DIGIT_ZIP], and the value
of the counter THREE_DIGIT_SACK_CNT[3_DIGIT_ZIP] is reinitialized at zero.

In the same manner the function ASSIGN SACKS checks the number of mailpieces in each potential
state sack to insure that the potential state sack has the predetermined minimum number of mailpieces to

50 qualify as a sack. If the value of STATE SACK CNT for the state does not have the predetermined
minimum number of mailpieces, it is assumed that these mailpieces should now be part of a mixed state
sack. Accordingly, a mixed state sack counter (MS SACK CNT) is incremented by the value of the
STATE SACK CNT for the affected state, and the value of the counter STATE SACK CNT for the
affected state is reinitialized at zero.

55 During the second pass through the file SACK1.TMP the function ASSIGN_SACKS uses the data in the
file SACK1.TMP and the various sack counters described above (MIXED_FIVE_SACK_CNT;
THREE DIGIT SACK CNT; STATE SACK CNT; and, MS_SACK_CNT) to create the new file
SACK2.TMP (step 266). As the function ASSIGN_SACKS reads through each record in file SACK1.TMP,

11

EP 0 481 569 A2

the function ASSIGN_SACKS again examines the package type (PTYPE) and obtains the 3 Digit ZIP Code
corresponding to the ZIP code stored in the record. For records in SACK1.TMP having a record type "5"
(i.e., PTYPE = 5) and a package count (CNT) exceeding the predetermined minimum number required to
form sack, a record is created in file SACK2.TMP having a five digit sack type value (STYPE =

5 FIVE_DIGIT).
If a record has a record type "5" but does not represent the predetermined minimum number of

mailpieces for a FIVE DIGIT sack, the associated count is compared to see if it exceeds the minimum
sack count for the next lowest priority sack type (i.e., sack type MIXED FIVE) to which it belongs. If it
does, a record is created in file SACK2.TMP having a mixed five sack type value (STYPE =

70 MIXED FIVE). If the record does not represent the minimum sck count, the same type process is repeated
for the remaining lower priority sacks in the order THREE DIGIT, followed by STATE. If the record does
not meet the minimum number for any of the above sack types, it is assigned a MIXED STATES sack
type.

For records in SACK1.TMP having a package record type of "3", a similar count comparison is
75 performed as above. However, the check begins with the THREE DIGIT sack count level so only

THREE DIGIT, STATE, and MIXED STATES assignments can be made.
For records in SACK1.TMP having a package record type of "S" a similar count comparison is

performed as above. However, the check begins with the STATE sack count level so that only STATE and
MIXED STATES assignments can be made.

20 Finally, all records having package type "M" are assigned a MIXED STATES sack type.

Function FIRST_PASS_PACKS

The function FIRST PASS PACKS (see Fig. 4B) determines which bins, as a result of the first sort
25 pass, consist of completely sorted packages. In this regard, function FIRST PASS PACKS prepares an

array FULLSORT BIN having elements corresponding to each of the 128 bins 26 included in the sorter. As
a result of the execution of function FIRST PASS PACKS, bins which do not contain a fully sorted
package as a result of the first sort pass have a zero value stored in their corresponding element in array
FULLSORT BIN. For example, if bin 263 does not include a fully sorted package, a "zero" value is stored

30 in FULLSORT BIN[3]. For any bin consisting of fully sorted packages, a unique non-zero number is stored
in the element in array FULLSORT BIN corresponding to that bin number.

In the simple case (reflected by step 270), the determination of function FIRST PASS PACKS is
made by comparing the number of mailpieces in a bin with the sum of the number of mailpieces included in
all the packages in the bin. If the number of mailpieces in a bin equals the sum of the number of mailpieces

35 included in all the packages in the bin, then the bin consists of fully sorted packages. For any bin consisting
of fully sorted packages, a unique non-zero number is stored in the element in array FULLSORT BIN
corresponding to that bin number.

For three digit and state packages the comparison is complicated by the fact that completely sorted
package contents could end up in several first pass bins. Therefore, for three digit and state packages, the

40 partial package counts from several bins making up one complete package are compared against the same
several bins total piece count.

In order to process the three digit and state packages, the function FIRST PASS PACKS reads
through every record in the file SACK2.TMP (which was created by function ASSIGN_SACKS) and creates
two additional work files, i.e., STATE PACK FILE and THREE PACK FILE (step 272). For every record

45 encountered in file SACK2.TMP that concerns a state package (PTYPE = S), the function
FIRST_PASS_PACKS duplicates that record in the file STATE PACK FILE. Likewise, for every record
encountered in file SACK2.TMP that concerns a three digit package (PTYPE = 3), the function
FIRST_PASS_PACKS duplicates that record in the file THREE PACK FILE.

To determine whether a potentially completely sorted state package is spread through a plurality of bins
50 (step 274), for each state the function FIRST PASS PACKS determines what records in the file

STATE PACKS FILE have ZIP codes belonging to that state. When a record in file
STATE PACKS FILE pertains to the state, the function FIRST_PASS_PACKS sets a flag in an element
of an array BIN USAGE corresponding to the bin number indicated in the record. For example, if bins 267,
2655, and 2692 all have mailpieces belonging to a completely sorted state package, flags are set at

55 BIN_USAGE[7], BIN_USAGE[55], and BIN_USAGE[92].
Having noted the bins in which completely sorted state packages may reside, the function

FIRST PASS PACKS then compares the total number of mailpieces in the state package with the total
number of mailpieces in all the bins for which a flag was set in array BIN USAGE for the state of interest.

12

EP 0 481 569 A2

Recall that the number of mailpieces for each bin 26 is obtainable from the file AGGR.DAT which was
created during the first sort pass (i.e., at step 202).

If the total number of mailpieces in the state package is equal to the total number of mailpieces in all
the bins for which a flag was set in array BIN USAGE, then those bins are known to include mailpieces for

5 the fully sorted state package. For the bins including mailpieces for the fully sorted state package, the same
non-zero number is placed in the elements of array FULLSORT BIN corresponding to those bins. The non-
zero number placed in each of the elements of array FULLSORT BIN for the state is unique number which
does not appear in array FULLSORT BIN for any other state or any other purpose.

It should be understood that the foregoing processing related to state packages is conducted separately
io for each state. This requires that certain parameters, including the array BIN USAGE, be reinitialized for

each state. Likewise, whatever number entered into one or more elements of the array FULLSORT BIN for
a particular state will be a number unique to that state.

The function FIRST PASS PACKS also determines whether fully sorted three digit packages are
spread through more than one bin (step 276). This determination is made in a similar manner as was the

is determination for state packages. That is, for each 3 Digit ZIP Code value the function
FIRST_PASS_PACKS reads through the file THREE PACK FILE which it created, and determines
whether mailpieces belonging to that 3 Digit ZIP Code are in a plurality of bins. If so, the function
FIRST PASS PACKS sets flags in array BIN USAGE in the same manner as with the state packages.
Then, in like manner as with the state packages, the function FIRST PASS PACKS determines whether

20 the total mailpiece count of the particular three digit package equals the sum of the bin counts for each of
the bins in which the three digit package is spread. If an equality is determined, then function
FIRST_PASS_PACKS realizes that the bins for which flags were set in array BIN USAGE contain the
completely sorted three digit package. As with the completely sorted state packages, a unique number
associate with this three digit package is assigned to each element in array FULLSORT BIN corresponding

25 to the bins wherein mailpieces belonging to this completely sorted three digit package reside.
Thus, upon completion of the execution of function FIRST PASS PACKS, an example of the contents

of a portion of array FULLSORT BIN might be as follows:

so FULLSORT_BIN[001] = 0
FULLSORT_BIN[002] = 1
FULLSORT_BIN[003] = 0
FULLSORT_BIN[004] = 2
FULLSORT_BIN[005] = 2

35 FULLSORT_BIN[006] = 3
FULLSORT_BIN[007] = 3

40 FULLSORT_BIN[127] = 0
FULLSORT_BIN[128] = 0

Where a FULLSORT BIN value of "0" indicates that the bin does not contain a completely sorted package;
45 a value of "1 " indicates that a first fully sorted package is contained in bin 26i ; a value of "2" indicates that

a second fully sorted package (perhaps a state package) is contained in bins 26+ and 265; and, a value of
"3" indicates that a third fully sorted package (perhaps a three digit package) is contained in bins 26g and
267.

50 Function MAKE SORT RECORDS

The function MAKE SORT RECORDS (see Fig. 4B) makes a file (file SORTREC1 TMP) which lists
packages for second pass sorting and makes another file (file FULLSORT1 TMP) which lists packages that
will not be sorted in a subsequent pass. The function MAKE SORT RECORDS creates the files

55 SORTREC1 TMP and FULLSORT1 TMP after reading through the file SACK2.TMP (which was created by
function ASSIGN_SACKS).

In reading each record from the file SACK2.TMP, the function MAKE SORT RECORDS determines to
which type of package the record relates. In particular, the function MAKE SORT RECORDS checks to

13

EP 0 481 569 A2

see if the PTYPE for the record is either "5", "3", or "S".
For a record in file SACK2.TMP having a PTYPE of "5", corresponding to a five digit package, the

function MAKE SORT RECORDS duplicates the record either in file SORTREC1 TMP or file
FULLSRT1.TMP (step 280). To determine to which file to duplicate the record, the function

5 MAKE SORT RECORDS further checks to determine whether this five digit package is in a fully sorted
bin. This further check is conducted by noting the bin number included in the record, and then indexing into
the array FULLSORT BIN for that bin number. If the array FULLSORT BIN contains a non-zero value for
that bin, the routine ASSIGN PACKAGES concludes that the record is fully sorted and duplicates the
record from SACK2.TMP in the file FULLSORT1 TMP. Otherwise the function MAKE SORT RECORDS

w duplicates the record from SACK2.TMP in the file SORTREC1 TMP.
If the function MAKE SORT RECORDS determines that the PTYPE for a record in file SACK2.TMP is

"3", corresponding to a three digit package, the function MAKE SORT RECORDS determines the 3 Digit
ZIP Code to which the record pertains. Then the function MAKE SORT RECORDS notes the bin number
stored in the record, and stores that bin number in an element of an array THREE DIG BIN correspond-

15 ing to the pertinent 3 Digit ZIP Code (step 282). Likewise, the function MAKE SORT RECORDS notes
from the record the sack type assignment (from STYPE), and stores that sack type in an element of an
array THREE DIGIT SACK TYPE corresponding to the pertinent 3 Digit ZIP Code (step 284).

If the function MAKE SORT RECORDS determines that the PTYPE for a record in file SACK2.TMP is
"S", corresponding to a state package, the function MAKE SORT RECORDS determines the state to

20 which the record pertains. Then the function MAKE SORT RECORDS notes the bin number stored in the
record, and stores that bin number in an element of an array STATE BIN corresponding to the pertinent
state (step 286). Likewise, the function MAKE SORT RECORDS notes from the record the sack type
assignment (from STYPE), and stores that sack type in an element of an array STATE SACK TYPE
corresponding to the pertinent state (288).

25 After reading all the records in file SACK2.TMP, after storing information in the arrays
THREE DIG BIN and THREE DIGIT SACK TYPE for three digit package records, and after storing
information in arrays STATE BIN and STATE SACK TYPE for state package records, the function
MAKE SORT RECORDS is prepared to complete the writing of the two output files SORTREC1 TMP and
FULLSORT1 TMP. The function MAKE SORT RECORDS first writes three digit packages to the appro-

30 priate one of the two output files (step 290), and then the state packages to the appropriate one of the two
output files (292), with the result that the two output files are sorted first by package type, and then within
each package type by package ZIP.

In writing the three digit packages to the appropriate file (file FULLSORT1 TMP or file SORTREC1 TMP)
at step 290, the routine MAKE SORT RECORDS checks to determine which elements of array

35 THREE DIGIT PACK CNT (generated by the function ASSIGN PACKAGES), i.e. which 3 Digit ZIP
Codes, have non-zero values, and write a record to the appropriate file only for those 3 Digit ZIP Codes.
Similarly, the routine MAKE SORT RECORDS writes the state packages to the appropriate file (file
FULLSORT1 TMP or file SORTREC1 TMP) at step 292 only for those states having a number of mailpieces
exceeding the predetermined minimum bundles size.

40 The formats for file FULLSORT1 TMP and SORTREC1 TMP are identical. In particular, the formats are
both files are prescribed by the structure SACK, which was defined above in connection with the discussion
of function ASSIGN SACKS as including the structure PACKAGE (which, in turn, was defined above in
connection with the discussion of the function ASSIGN PACKAGES). But in creating these two files, the
routine ASSIGN PACKAGES must store the proper information in the structure PACKAGE portion of the

45 structure SACK, particularly the fields for ZIP ID, CNT and BIN. It should be noted that only one record is
written to a 3 Digit ZIP code, e.g., 60202 is written to ZIP ID 602. Furthermore, only one record per state is
written to FULLSOR1 TMP and SORTREC1 TMP.

For each three digit package, the function MAKE SORT RECORDS obtains the information for fields
CNT and BIN from the corresponding elements in the respective arrays THREE DIGIT PACK CNT and

50 THREE DIGIT BIN. Recall that array THREE DIGIT BIN was generated by the function
MAKE SORT RECORDS and that the array THREE DIGIT PACK CNT was generated by the function
ASSIGN PACKAGES. To determine whether a record should be written to file FULLSORT1 TMP or to file
SORTREC1 TMP, the function MAKE SORT RECORDS checks the status of array FULLSORT BIN for
the bin whose number is stored in the array THREE DIGIT BIN for the pertinent 3 Digit ZIP Code. If the

55 value stored in array FULLSORT BIN is non-zero, then a record is written to file FULLSORT1 TMP.
Otherwise a record is written to file SORTREC1 TMP.

For each state package, the function MAKE SORT RECORDS obtains the information for fields CNT
and BIN from the corresponding elements in the respective arrays STATE PACK CNT and STATE BIN.

14

EP 0 481 569 A2

Recall that array STATE BIN was generated by the function MAKE SORT RECORDS and that the array
STATE PACK CNT was generated by the function ASSIGN PACKAGES. To determine whether a record
should be written to file FULLSORT1 TMP or to file SORTREC1 TMP, the function
MAKE SORT RECORDS checks the status of array FULLSORT BIN for the state. If the value stored in

5 array FULLSORT BIN for the pertinent state is non-zero, then a record is written to file FULLSORT1 TMP.
Otherwise a record is written to file SORTREC1 TMP.

Function SACK_SORT

w The function SACK_SORT (see Fig. 4C) creates a file SORTREC2.TMP using file SORTREC1 TMP
(step 300). Each record in file SORTREC2.TMP has the format of the structure SACK described above.

The function SACK_SORT sorts the records in file SORTREC1 TMP by sack type (step 302), then
within sack type by package type (step 304), and within package type by package ZIP id (step 306). The
resultant sort creates the file SORTREC2.TMP. At the end of execution of the function SACK_SORT, mail

is is not yet in the final "sack and bag" order, since further sorting is required by major tree as described
below.

Function SACK_SORT begins by scanning the file SORTREC1 TMP and writing all FIVE_DIBIT sack
package entries to the output file SORTREC2.TMP. While scanning the input file, the count for each
package type entry is recorded. Since the file SORTREC1.TMP has been sorted by package type, the

20 package type counts are used to determine the starting position of each different package type's entries.
Next, the file SORTREC1 TMP is scanned from the beginning and all MIXED_FIVE SACK package

entries are appended to the output file.
Since only one package type could go into FIVE DIGIT and MIXED FIVE sacks, it was a simple

matter of copying sequential records marked with the appropriate sack type to the output file. For the
25 remaining sack types (THREE DIGIT, STATE, and MIXED STATES) multiple package types are allowed.

Therefore, much searching is required to find the apprpriate next entry for the output file.
The THREE DIGIT sack can be composed of both FIVE_DIGIT and THREE DIGIT packages. The

first step is to determine if any entries exist for all possible package types. Then the function SACK SORT
repeatedly determines which of the existing package entries of sack type THREE DIGIT (which are located

30 in the input file by the starting position previously saved and count values of records already processed)
corresponds to the first THREE DIGIT sack entry and the appropriate record is appended to the output file
with the ZIP ID corresponding to the three digit ZIP of the sack. In addition, the processed record count for
the selected package type is incremented. This is done until all package entries have been processed.

The MIXED STATES sack can be composed of both FIVE_DIGIT, THREE DIGIT, STATE, and
35 MIXED STATE packages. The first step is to determine if any entries exist for all possible package types.

Since there is only one MIXED STATES sack, packages are written in package priority order until all
entries are exhausted.

Upon completion of the execution of function SACK SORT, the ZIP ID field in a record in file
SORTREC2.TMP is the package ZIP id, which is no longer necessarily the long integer value of the full 5

40 digit zip code with four zeros trailing in the " + 4" position. The ZIP ID for non-5 digit package mail may be
the 3 digit zip (range 0 - 999) for 3 digit packages and a state index number (range 0 - 99) for state
packages. The BAG field of the records in file SORTREC2.TMP are undefined at this point, since further
processing is necessary to determine the appropriate values for this field.

45 Function MAKE COMBOS

The function MAKE COMBOS (Fig. 4D) determines mandatory combinations of first pass bins for
making up state packages and three digit packages. Function MAKE COMBOS sets up the required data
in an array BIN COMBOS to force mailpieces scattered across numerous bins by ineffective first pass sort

50 schemes back into a single second pass group. Bins fully sorted on the first sort pass are pulled out since
they are not part of second pass records.

The function MAKE COMBOS first handles state packages. For each state at step 310 the function
MAKE COMBOS reads each record in the STATE PACK FILE (which was created by function
FIRST_PASS_PACKS) and determines (by reference to array FULLSORT BIN) whether the particular bin

55 number contained in the record is a fully sorted bin (step 312). If the bin number for that record is fully
sorted and the record belongs to the current state, the function MAKE COMBOS goes on to the read the
next record in the array STATE PACK FILE (i.e., to step 310). If the bin is not fully sorted, the function
MAKE COMBOS sets a flag in an element of array BIN_USAGE corresponding to that bin, thereby

15

EP 0 481 569 A2

indicating that the bin has mailpieces for the current state (step 314).
After the entire file STATE PACK FILE has been read for a particular state (determined at step 316),

at step 318 the function MAKE COMBOS calls another function, function CHECK_COMBOS, which
actually sets up the data in array BIN COMBOS giving consideration to possible conflicting bin assign-

5 ments. A detailed discussion of the function CHECK COMBOS is provided below.
After the function CHECK COMBOS has been called for a particular state, as indicated by the

affirmative result at step 320 the function MAKE COMBOS moves on the next state and repeats the afore-
described state package handling for that next state, including a call to function CHECK COMBOS after
reading through the entire STATE PACK FILE for that next state. The function MAKE COMBOS

io conducts the afore-described state package handling procedure for each state.
The function MAKE COMBOS executes much the same procedure for the three digit packages as it

did for the state packages. In handling the three digit packages, at step 330 the function MAKE COMBOS
reads the first record in the file THREE DIGIT PACK FILE (which was created by function
FIRST PASS PACKS). As reflected by step 332 for example, in handling the state packages, the function

75 MAKE COMBOS ignores any records in the file THREE DIGIT PACK FILE which pertain to fully sorted
bins (determined by reference to array FULLSORT BINS).

At step 334 the function MAKE COMBOS obtains the first three digit ZIP code from the first record in
the file THREE DIGIT PACK FILE and stores that first ZIP code in a location THREE DIG ZIP. At
step 336 the function MAKE COMBOS determines the bin number contained in that record; and, sets a

20 flag in the element of array BIN USAGE corresponding to that bin number.
Having processed the first record in file THREE DIGIT PACK FILE, the function MAKE COMBOS

then reads through further records in the file THREE DIGIT PACK FILE (as reflected by step 340),
noting the ZIP code stored in the record and storing the first three digits of the ZIP code in a location SCF
(step 342). At step 344 the function MAKE COMBOS checks to determine if the value in location SCF (the

25 ZIP code for the most recently read record) is the same as the value in THREE DIGIT ZIP (see the
preceding paragraph). If so, the function MAKE COMBOS (1) at step 346 sets a flag in an element of the
array BIN USAGE corresponding to the bin number included in the most recently read record from file
THREE DIGIT PACK FILE (thereby indicating that the three digit ZIP code has mailpieces in that bin as
well), and (2) goes on to read the next record in file THREE DIGIT PACK FILE (i.e., returns to step

30 340). If the next record in file THREE DIGIT PACK FILE is read at this point, the function
MAKE COMBOS repeats the steps described in this paragraph with respect to that next record.

If the function MAKE COMBOS determines at step 344 that the value in location SCF (the ZIP code
for the most recently read record) is not the same as the value in THREE DIGIT ZIP, the function
MAKE COMBOS concludes its processing of the ZIP code whose value is stored in location

35 THREE DIGIT ZIP by: (1) calling function CHECK_COMBOS (described below) at step 348 to set
appropriate values in the array BIN_COMBO; (2) setting the value in location THREE DIGIT ZIP equal to
the value in location SCF (at step 350); (3) at step 352 setting a flag in an element of the array
BIN USAGE corresponding to the bin number included in the most recently read record from file
THREE DIGIT PACK FILE; and, (4) repeating the steps of the preceding paragraph for the next record

40 in file THREE DIGIT PACK FILE (e.g., by returning to step 340). The processing of three digit packages
continues in this manner until all three digit packages have been processed (step 354), after which the
function MAKE_SACK_COMBOS is called (step 356).

Function CHECK_COMBOS
45

The function CHECK_COMBOS is called by the function MAKE COMBOS (described above) in order
to resolve any conflicting bin assignments and to store data in the array BIN COMBOS. The routine
MAKE COMBOS calls the function CHECK_COMBOS as the routine MAKE COMBOS finishes with each
state, and as the routine MAKE COMBOS finishes with each three digit ZIP value.

50 As indicated above, the function CHECK_COMBOS stores values in the array BIN_COMBO to
indicate which first pass bins are to be mandatorily combined together. As an example of how the array
BIN COMBOS might appear upon completion of the execution of function CHECK COMBOS, consider
the following:

55

16

EP 0 481 569 A2

BIN_COMBO[001] = 0
BIN_COMBO[002] = 0
BIN_COMBO[003] = 1
BIN_COMBO[004] = 0
BIN_COMBO[005] = 2
BIN_COMBO[006] = 1
BIN_COMBO[007] = 2
BIN_COMBO[008] = 0

BIN_COMBO[127] = 0
BIN_COMBO[128] = 0

75 where a zero ("0") assignment indicates that there is no forced combination for a bin; where bins assigned
a "1 " are to be forced into combination (i.e., bins 3 and 6); and, where bins assigned a "2" are to be forced
into combination (i.e., bins 5 and 7). Thus, each forced combination has a unique combination number
associated therewith, and the bins forced into combination together have the same combination number
assigned to their corresponding elements in the array BIN COMBOS.

20 When function CHECK_COMBOS is called, function CHECK_COMBOS initially executes two steps:
(1) initializes a counter COLLISION CNT; and, (2) counts the number of bins for which a flag has been set
in array BIN USAGE for the current package. If the number of flags set is only one, then function
CHECK COMBOS knows that no combination of bins is required and returns control to the calling function
MAKE COMBOS.

25 Assuming that the function CHECK COMBOS does not immediately return control to the calling
function MAKE COMBOS, the function CHECK_COMBOS checks to determine whether any of the bins
for which a flag was set in array BIN USAGE has already been forced into a combination. This check is
implemented by checking the element in array BIN COMBO corresponding to that bin to determine if a
non-zero combination number has already been assigned to the bin. If a non-zero combination number has

30 already been assigned, the function CHECK COMBOS notes a "collision".
The function CHECK COMBOS counts the number of collisions detected using a counter

COLLISION_CNT. In addition, the function CHECK_COMBOS stores the numbers of the bins subject to
collision in an array COLLISION COMBO. For example, if a first collision occurred in bin 67 and a second
collision occurred in bin 48, COLLISION_COMBO[1] = 34 and COLLISION_COMBO[2] = 48.

35 Having searched for collisions, the function CHECK COMBOS executes different steps in determining
the combination number to be stored in BIN COMBOS, depending upon whether no collisions, one
collision, or multiple collisions were detected.

If no collisions were encountered during the execution of function CHECK COMBOS, the function
CHECK COMBOS would then select the next available number for use as a combination number. For

40 example, in the example, if the highest number thus far stored in the array BIN COMBOS was "2", the
function CHECK_COMBOS would then store a "3" in every element in array BIN_COMBOS for which a
flag was set in a corresponding element of array BIN USAGE. The function CHECK COMBOS would then
return control to the calling function MAKE COMBOS.

If only one collision were encountered during the execution of function CHECK COMBOS, the function
45 CHECK COMBOS would assign the combination number stored in the first element of

COLLISION_COMBO to the elements in array BIN_COMBOS corresponding to the elements in array
BIN USAGE having flags set. For example, if bins 67 and 102 were utilized for the current package as
indicated by flags being set in the 67th and 102nd elements of array BIN USAGE, if the only collision
detected by function CHECK COMBOS for the current package occurred with respect to bin 67, and if the

50 combination number assigned to bin 67 were "5", then the function CHECK COMBOS would assign the
combination number "5" to bins 67 and 102 (i.e., to BIN_COMBO[67] and BIN_COMBO[102]). The
function CHECK_COMBOS would then return control to the calling function MAKE COMBOS.

In the more complex case where multiple collisions are encountered, the function CHECK COMBOS
replaces all the elements of array BIN COMBO affected by the collision with the combination number of

55 the first detected collision, i.e., all collision bins are assigned the value COLLISION COMBO[0] and are
properly placed in the BIN_COMBO array. Then the combination number in COLLISION_COMBO[0] is
assigned to any new bins that might not have collided. This is done by setting the array elements in
BIN_COMBO to COLLISION_COMBO[0] using the corresponding elements marked in array BIN USAGE.

17

EP 0 481 569 A2

Since the value in COLLISION COMBO[0] may not have been the lowest forced combination indicator out
of multiple such indicators, a numbering gap could possibly occur.

A numbering gap, if it occurs, is fixed by placing all non-zero elements from the BIN COMBO array
into another array UNIQUE COLLISIONS along with counting the number of elements in array

5 UNIQUE_COLLISIONS. All elements in the array UNIQUE_COLLISIONS are sorted in numerical order,
then each element repeating the value of the previous element is removed from the array, thereby shrinking
the array in size. The array UNIQUE COLLISIONS makes it possible to easily reassign forced bin
combination numbers without gaps to the BIN COMBO array. This is accomplished by searching both the
BIN_COMBO array and the UNIQUE_COLLISIONS array for matching contents. When the contents

io match, a new sequential number is assigned into yet another array COMBO TRANSLATION corresponding
to the position of the UNIQUE_COLLISIONS array. Finally, the BIN_COMBO array is updated by
assigning the value in the COMBO TRANSLATION array which is indexed by the contents of the
BIN_COMBO array.

15 Function MAKE_SACK_COMBOS

The function MAKE SACK COMBOS (see Fig. 4E) determines mandatory combinations of first pass
bins for forming sacks. That is, the function MAKE SACK COMBOS sets up the required data to force a
sack's packages scattered across bins by the first pass sort scheme back into a single second pass group.

20 The function MAKE SACK COMBOS (which forces a sack's packages together) is somewhat simpler
than the function MAKE COMBOS (which determined combinations of first pass bins for making up state
packages and three digit packages). The simplicity results from two factors. First, the function
MAKE COMBOS has already forced zip codes scattered across bins to form packages. Second, an input
file (i.e., SORTREC2.TMP) of subsequent pass packages sorted by sack zip ID already exists. The file

25 SORTREC2.TMP was created by the function SACK_SORT. The file SORTREC2.TMP is sorted by sack
type, within sack type by package type, and within package type by package zip. Therefore, the file
SORTREC2.TMP is effectively sorted by sack zip ID.

At step 370 the function MAKE_SACK_COMBOS reads the initial record in the file SORTREC2.TMP.
At step 372 the sack ID value obtained from the first record is stored in location LAST_SACK_ZIP_ID. At

30 step 374 the sack type value obtained from the first record is stored in location LAST SACK TYPE. At
step 376 a flag is set in the element of array BIN USAGE corresponding to the bin value obtained from the
first record of file SORTREC2.TMP.

At step 378 the function MAKE SACK COMBOS begins a loop of reading and processing records in
the file SORTREC2.TMP. The next record is read at step 378. If the record was not the last record (as

35 determined at step 380), at step 382 the function MAKE_SACK_COMBOS checks whether the sack type
value of the record indicates a "MIXED STATES" sack. There is no forced combination with respect to any
MIXED STATES sacks, so that an affirmative result at step 382 results in the continuation of the loop with
the reading of the next record at step 378. If the record does not indicate a MIXED STATES sack, the ZIP
ID value from the record is stored at location SACK ZIP ID (step 384).

40 At step 386 the function MAKE_SACK_COMBOS determines whether the next record indicates a
change of sack types from the previous record. A change of sack types occurs when the current records
has two critical parameters that differ from the previous records. That is, when SACK ZIP ID is not equal
to LAST SACK ZIP ID, and when the sack type read from the current record is not equal to
LAST SACK TYPE, a change of sack type has occurred.

45 When, at step 386, a change in sack type is determined not to have occurred, the function
MAKE_SACK_COMBOS sets a flag in an element of the array BIN USAGE corresponding to the bin
value obtained from the current record in the SORTREC2.TMP file (step 388). The value in location
SACK_ZIP_ID is then stored in location LAST_SACK_ZIP_ID (step 390), and a value indicative of the
sack type obtained from the current record is stored in the location LAST SACK TYPE (step 392). The

50 function MAKE SACK COMBOS then loops back to step 378 for the reading of another record from file
SORTREC2.TMP.

When, at step 386, a change in sack type is determined to have occurred, at step 394 the function
MAKE_SACK_COMBOS calls the function CHECK_COMBOS (described above) to update the array
BIN COMBOS. The function CHECK COMBOS resolves conflicting bin assignments for sacks in essen-

55 tially the same manner as described above in connection with the resolution of conflicting bin assignments
for packages. After the call to function CHECK_COMBOS, at step 396 the function
MAKE_SACK_COMBOS clears the array BIN_USAGE in anticipating of processing the next sack type.
The function MAKE_SACK_COMBOS then sets a flag in an element of the array BIN USAGE cor-

18

EP 0 481 569 A2

responding to the bin value obtained from the current record in the SORTREC2.TMP file (step 388). The
value in location SACK_ZIP_ID is then stored in location LAST_SACK_ZIP_ID (step 390), and a value
indicative of the sack type obtained from the current record is stored in the location LAST SACK TYPE
(step 392). The function MAKE_SACK_COMBOS then loops back to step 378 for the reading of another

5 record from file SORTREC2.TMP.
After the last record is read from file SORTREC2.TMP (as determined at step 380), the function

MAKE_SACK_COMBOS calls the function CHECK_COMBOS at step to update the array BIN_COMBOS
with respect to the last record. Thereafter, as indicated by step 398, processing continues with the function
BUILD TREES, which is described immediately below.

10
Function BUILD TREES

The function BUILD TREES (see Figs. 4F and 4G) builds a major tree array, i.e. array MAJ TREE,
which associates particular bins with a sort tree. In addition, the function BUILD TREES develops pointer

is information in a file SRTREE.DAT. The file SRTREE.DAT contains key pointer and offset information used
to process individual subsequent pass groups within a properly ordered input file containing package
information for multiple groups.

As an example of how the major trees built by function BUILD TREES appear, after the execution of
function BUILD TREES, the array MAJ TREE might have values such as the following:

25

MAJ_TREE[000] = 0 (b i n 0 n o t u s e d)
MAJ_TREE[001] = 0 (no m a j o r t r e e a s s i g n m e n t)
MAJ_TREE[002] = 1 (f i r s t s o r t t r e e)
MAJ_TREE[003] = 2 (s e c o n d s o r t t r e e)
MAJ_TREE[004] = 2 (s e c o n d s o r t t r e e)
MAJ_TREE[005] = 0 (no m a j o r t r e e a s s i g n m e n t)
MAJ_TREE[006] = 3 (t h i r d s o r t t r e e)

30

MAJ_TREE[128] = 0 (no m a j o r t r e e a s s i g n m e n t)

35 The function BUILD TREES takes the number of different packages coming from a first pass bin or a
required combination of bins and forms information for "groups" (including "groups" requiring even more
passes). This is done by comparing the package count with the number of available bins. Several first pass
bins may be combined together if the total package count is less than the number of bins available.

At the beginning of the execution of function BUILD TREES, as reflected by step 400, the function
40 BUILD TREES determines the number of packages in each state/3-digit forced bin combination and stores

that value in an array QUAL PER COMBO. This is done by determining which bins have the same value
stored in the array BIN COMBO (e.g., which bins are forced into combination), and summing the number
of packages for all bins combined together. The number of packages in each bin is available from the array
PACKS_PER_BIN, which was developed in the previous function MAKE SORT RECORDS.

45 At steps 402 - 408 the function BUILD TREES initializes various parameters. At step 402 the counter
CUTOFF CNT is initialized at a value equaling the number of available bins. This initialization value may
not be 128, since some bins may be designated as reject bins, or may not be used, or may be used for
other purposes. At step 404 the counter TREE CNT, which counts the number of sort trees, is initialized at
1. At steps 406 and 408, respectively, the counters QUAL_CNT and TEMP CNT are initialized at zero.

50 Commencing at step 410 the function BUILD TREES attempts to find the first bin belonging to a tree.
In so doing, the function BUILD TREES considers only bins having packages stored therein which are not
fully sorted during the first pass, or bins which have been forced into combination (e.g., bins having a non-
zero value in their corresponding element in array BIN COMBO).

At step 412 the function BUILD TREES determines whether the considered bin was forced into
55 combination by checking for a non-zero value at the corresponding element in array BIN COMBO. If the

considered bin was involved in a forced combination, at step 414 the qualifying package counter
QUAL CNT has the value of the number of packages included in the combined bins added thereto. Where
"i" stands for the bin under consideration, the number of packages included in the combined bins is

19

EP 0 481 569 A2

obtained from array QUAL_PER_COMBO[BIN_COMBO[i]]. Values were stored in array
QUAL_PER_COMBO at step 400 of function BUILD TREES. Also for the considered bin involved in the
forced combination, for each bin included in the forced combination, at step 416 the function
BUILD TREES sets elements corresponding to each such bin in array MAJ TREE equal to the value in

5 counter TREE CNT, which is presently "1". The function BUILD TREES then sets BIN_COMBO-
USAGE[BIN COMBO[i]] = 1 at step 417, indicating that all bins in this combination have been accounted
for. Processing then continues at step 420 as indicated by path 422.

The function BUILD TREES locates a bin not involved in a combination (e.q., a bin for which the
corresponding element in array BIN COMBO is zero) at step 412. Upon locating a non-combined bin, the

io function BUILD TREES stores the current value of counter TREE CNT (i.e., "1 "), in the element of array
MAJ TREE corresponding to the located non-combined bin (step 418). From thence processing continues
with step 420 as indicated by path 422.

At step 420 the function BUILD TREES computes the number of the next-highest numbered bin by
incrementing the number of the bin located at step 412. Then, using the incremented bin number

is (symbolically expressed by "i"), at step 422 the function BUILD TREES checks to see if the bin was
involved in a forced combination by checking the value of BIN COMBO[i]. If the bin was involved in a
forced combination, the number of packages involved in the combination (i.e., QUAL PER COMBO-
[BIN_COMBO]) is stored at the temporary counter TEMP CNT (step 424). If the bin was not involved in a
forced combination, the number of packages in the bin (i.e., PACKS PER BIN[i]) is stored at the

20 temporary counter TEMP CNT (step 424). After execution of step 424 or step 426, the function
BUILD TREES adds the value of TEMP CNT to the counter QUAL CNT (step 428).

At step 430 the function BUILD TREES determines whether the value in counter QUAL CNT
(updated at step 428) exceeds the number of available bins (i.e., exceeds the value of the counter
CUTOFF CNT initialized at step 402). If an excess is determined at step 430, at steps 432 and 434,

25 respectively, the function BUILD TREES increments the value in counter TREE CNT and stores the value
in TEMP CNT in counter QUAL CNT before proceeding to step 436. In so doing, the function
BUILD TREES begins another sort tree beginning with the current bin and initializes the value in counter
QUAL CNT for the new tree on the basis of the count determined at the appropriate one of steps 424 or
426.

30 At step 436 the function BUILD TREES again discerns whether the current bin was involved in a
forced combination. If the current bin was involved in a forced combination, at step 438 the function
BUILD TREES sets the corresponding elements in array MAJ TREE equal to the current value of counter
TREE CNT for each bin included in forced combination with the current bin. Then, at step 440, a flag is
set in array BIN_COMBO_USAGE at element BIN_COMBO[i] thereof.

35 If at step 436 the function BUILD TREES discerns that the current bin was not involved in a forced
combination, at step 442 the function BUILD TREES assigns the value of the counter TREE CNT to the
element i in array MAJ TREE for this bin (i.e., MAJ TREE[i] = TREE CNT).

After processing either step 442 or step 440, the function BUILD TREES checks at step 444 if all bins
have been processed. If not, execution loops back to step 420 for processing the next bin.

40 After all bins have been processed by function BUILD TREES as determined at step 444, at step 446
the function BUILD TREES prepares the file SRTREE.DAT (described below). The file SRTREE.DAT
contains key pointer and offset information eventually used to process individual "groups" within a properly
ordered input file, containing package information for multiple groups.

The file SRTREE.DAT contains records of the following structure:
45

50

t y p e d e f s t r u c t
{
u n s i g n e d i n t QUAL_PTR;
p r i o r to t h i s m a j o r t r e e * /
u n s i g n e d i n t QUAL_TRE:

/* n u m b e r of p a c k a g e d a t a e n t r i e s

/* number p a c k a g e s (b i n s) r e q u i r e d
p e r m a j o r t r e e * /
/* g r o u p s p e r m a j o r t r e e * /
/* n u m b e r of g r o u p s p r i o r to t h i s
m a j o r t r e e

u n s i g n e d i n t GRPS_TRE;
u n s i g n e d i n t GROF_TRE :

55
} TREE_DATA

20

EP 0 481 569 A2

In preparing the file SRTREE.DAT, the function BUILD TREES finds the bins belonging to each sort
tree. Then, for each sort tree, the number of qualifying packages for all the bins included in the tree is
summed to obtain a total package count for the tree (stored in location QUAL CNT [which is re-initialized
at zero before checking each tree]). This value is stored in field QUAL TRE for the appropriate record in

5 file SRTREE.DAT for the tree of interest.
To determine the value for field GRPS TRE for a record in filed SRTREE.DAT, the function

BUILD TREES evaluates the expression:
1 + (QUAL CNT - 2)/(TOT_BINS - 1)
assuming QUAL CNT is greater than zero, and wherein TOT BINS is as described with respect to step

10 402 supra. If the value of counter QUAL CNT is zero, the value for field GRPS TRE becomes "1 ".
The values of fields QUAL PTR and GROF TRE, respectively, for each record in file SRTREE.DAT,

are obtained by maintaining running summations of the values QUAL TRE and GRPS TRE for previous
trees.

15 Function TREESORT

The function TREESORT (see Fig. 4H) takes the input file SORTREC2.TMP and produces an output file
SORTREC3.TMP. Whereas the records in input file SORTREC2.TMP are sorted by sack type, then within
sack type by package type, and within package type by ZIP ID, the records in output file SORTREC3.TMP

20 are sorted by major tree, then within major tree by sack type, then within sack type by package type, then
within package type by ZIP ID.

At step 450, the function TREESORT determines the number of entries (i.e., the number of records)
belonging to each tree. This is done by making a first pass through the input file SORTREC2.TMP. As each
record in file SORTREC2.TMP is read, the bin number for that record is obtained from the record. Using the

25 bin number extracted from the record as an index, the function TREESORT determines the major tree to
which the record belongs by checking the array MAJ TREE. The entries for each tree are counted as the
input file SORTREC2.TMP is read.

All the records from input file SORTREC2.TMP for as many trees as possible are stored in dynamic
memory by the function TREESORT. All the records for all the trees may not fit into dynamic memory

30 simultaneously, so for each execution of a loop (consisting of steps 452, 454, 456, and 458), the records for
as many trees as possible are stored in dynamic memory. The lowest numbered trees are handled during
the first execution of the loop, with successive loop executions involving progressively higher numbered
trees.

Before conducting another pass of the records included in the input file SORTREC2.TMP, at step 452
35 the function TREESORT sets a memory pointer for each tree which will fit into dynamic memory for the

current execution of the loop. The memory pointer is easily determined since the number of entries for each
tree is known from step 450, and the size of each record is standardized in accordance with the format
discussed supra.

At step 454 each record in the input file SORTREC2.TMP is again read. As a record is read, it is copied
40 into dynamic memory at the location specified by the memory pointer for the tree to which the record

belongs. After each record is written to dynamic memory, the memory pointer for its tree is advanced to the
next record location for that tree in dynamic memory.

When all the trees being handled by this execution of the loop have been written into dynamic memory,
at step 456 the contents of the dynamic memory is written to the output file SORTREC3.TMP. Thus, the

45 output file SORTREC3.TMP is sorted first by tree, then by sack, then by package, and then by ZIP ID.
At step 458 the function TREESORT checks to determine if all trees have been processed. If further

trees remain, the function TREESORT goes back to the beginning of the loop (i.e., back to step 452) to
handle further trees and to continue writing to the output file SORTREC3.TMP in the manner just described.
If all trees have been written, processing continues with function FIRST PASS SACKS (as indicated by

50 step 460).

Function FIRST_PASS_SACKS

Function FIRST PASS SACKS (see Fig. 41) determines first pass bins containing completed sorted
55 sacks. In this regard, the function FIRST_PASS_SACKS uses the file FULLSOR2.TMP to prepare an array

FULL SACK BIN, which is an array of completely sorted first pass sacks indexed by first pass bin. An
example of the appearance of a portion of array FULL SACK BIN upon completion of execution of
function FIRST PASS SACKS is as follows::

21

EP 0 481 569 A2

FULL SACK BIN [000] = 0 -
FULL SACK BIN [001] = 0
FULL SACK BIN [002] = 0
FULL SACK BIN [003] = 1 -
FULL SACK BIN [004] = 0
FULL SACK BIN [005] = 1 -
FULL SACK BIN [006] = 2 -
FULL SACK BIN [007] = 0
FULL_SACK_BIN[008] = 0

•

FULL SACK BIN [12 7] = 0
FULL_SACK_BIN[128] = 0

b i n 0 n o t u s e d

b i n s 3 and 5 form one s a c k

b i n s 3 and 5 form one s a c k
2nd s a c k f rom o n l y one b i n

In the simple case, function FIRST PASS SACKS determines completely sorted sacks by comparing
the sack count with the bin count of the bin where the sack contents was assigned. If the two counts are
equal, the bin is completely sorted.

20 For Mixed five digit, three digit, and state sacks the comparison is complicated because the sack
contents could end up in several first pass bins. Therefore the partial sack counts from several bins making
up one complete sack are compared against the same several bins total piece count. In addition, only the
file containing the first pass package records is scanned, so records that end up in the subsequent pass
package record file are not included. To account for this, the sack count arrays containing both first pass

25 and subsequent pass data are compared against the first pass sack count.
Describing now in detail the steps executed by function FIRST PASS SACKS, various arrays and

parameters are initialized at step 470. For example, the output array FULL SACK BIN has all its elements
set equal to zero, and the array BIN USAGE is set to a logical FALSE value at step 470. In addition, the
counters SACK_BIN_CNT and FIRST_PASS_SACKS, and the location SACK_CNT are initialized at

30 zero.
At step 472 the function FIRST_PASS_SACKS reads the first record from file FULLSOR2.TMP. The

file FULLSOR2.TMP was created by the function SACK SORT, and is a file containing one record per
completely sorted first pass package. In reading the first record from file FULLSOR2.TMP at step 472, the
function FIRST PASS SACKS obtains the ZIP ID and the sack type from the initial record, and stores

35 those values at the respective locations LAST_SACK_ZIP_ID and LAST SAC K TYP E .
At step 474 the function FIRST PASS SACKS begins a loop of reading and processing further

records in the file FULLSOR2.TMP. In so doing, the function FIRST_PASS_SACKS obtains the ZIP ID and
the sack type from the new record, and stores those values at the respective locations SACK ZIP ID and
SACK TYPE.

40 At step 476 the function FIRST PASS SACKS determines whether the most-recently read record is in
the same sack as the previous record. This is affirmatively determined when SACK ZIP ID =
LAST_SACK_ZIP_ID and SACK_ZIP_ID = LAST_SACK_ZIP_ID. If it is determined at step 476 that
the most-recently read record is not in the same sack as the Previous record, processing continues at step
478. Otherwise processing branches to step 480.

45 At step 480 the function FIRST PASS SACKS determines whether the most recently read record
involves a new bin. A new bin is involved if the element corresponding to the new bin in array BIN USAGE
is still FALSE. If a new bin is not involved, processing continues with step 482. Otherwise, processing
branches to step 484.

When a new bin is involved, at step 484 the function FIRST PASS SACKS sets the element in array
50 BIN USAGE corresponding to the new bin to a TRUE value. Then, at step 486, the function

FIRST PASS SACKS adds the count of the number of mailpieces in that new bin to the counter
SACK BIN CNT. It will be remembered that the count of the number of mailpieces in the new bin is
obtained from the file AGGR.DAT, which was created at step 202.

At step 482, reached either from step 480 or step 486, the function FIRST_PASS_SACKS sums the
55 partial package counts by adding the adding the package count from the most recent record to the counter

SACK_CNT. At step 478, reached either from step 476 or step 482, the function FIRST_PASS_SACKS
initializes the logical flag ALL_FROM_PASS1 to a logical zero.

At step 488 the function FIRST_PASS_SACKS examines the value of the location

22

EP 0 481 569 A2

LAST SACK TYPE to determine what type of sack is being processed, with a view to determining
whether the flag ALL_FR0M_PASS1 should be changed from FALSE to TRUE for this sack, thereby
indicating that the sack is not split into first and second pass records. FIVE DIGIT sacks cannot be split
into first and second pass records, so if the value of LAST SAC K TYP E is FIVE_DIGIT, the flag ALL-

5 FROM_PASS1 is set TRUE.
For the other sack types, function FIRST PASS SACKS at step 488 determines whether the value of

an appropriate counter equals the current value of the counter SACK CNT (calculated at step 482). In this
respect, the equality determination at step 488 is made with respect to the appropriate one of the counters
MIXED FIVE SACK CNT, THREE DIGIT SACK CNT, or STATE SACK CNT for the last sack

At step 490 the function FIRST_PASS_SACKS determines whether the flag ALL_FROM_PASS1 is
TRUE and whether the value in counter SACK_CNT equals the value in the counter SACK_BIN_CNT
(see step 486). When both determinations are affirmative, the function FIRST PASS SACKS realizes that
it has encountered a completely sorted first pass sack. If either determination is negative, the function

75 FIRST_PASS_SACKS continues processing at step 492; otherwise the function FIRST_PASS_SACKS
branches to steps 493 followed by step 494.

Both determinations at step 490 being affirmative reflect the location of a completely sorted sack, and
cause a branch in processing to step 493. At step 493 the counter FIRST PASS SACKS is incremented
to a value which will be used as a unique identifying value for the just-located completely sorted sack. At

20 step 494 the value of FIRST_PASS_SACKS is stored in every element of array FULL SACK BIN which
corresponds to a bin which has mailpieces included in the completely sorted sack. The bins which have
mailpieces included in this most-recently located completely sorted sack are reflected by the elements in
array BIN USAGE which have been set to a logical TRUE value.

At step 492, reached either from step 490 or step 494, the function FIRST_PASS_SACKS reinitializes
25 the counters SACK_CNT and SACK_BIN_CNT at zero; sets every element in array BIN USAGE to a

FALSE value; and, stores the value from location SACK_ZIP_ID in location LAST_SACK_ZIP_ID and
the value from location SACK TYPE in the location LAST SAC K TYP E .

At step 495 the function FIRST PASS SACKS determines whether any more records remain for
reading in file FULLSOR2.TMP. If records remain, processing loops back to step 474, at which the repetition

30 of the above-described steps occurs for the next record. If no further records remain in file
FULLSOR2.TMP, the function FIRST_PASS_SACKS processes the last-read record at step 496. In this
regard, the processing of step 496 is essentially the same as steps 488 through 494 inclusive, except there
is no step corresponding to reinitialization step 492. At step 497 processing is transfered to function
MAKE BAGS.

Function MAKE BAGS

Function MAKE-BAGS (see Figs. 4J and 4K) assigns unique identification numbers to each bag
destination and determines the number of pieces assigned to a destination. In addition, the bag identifica-

40 tion numbers get corresponding assignments to subsequent pass groups and bins.
At step 500 the function MAKE BAGS initializes the value of location LAST BAG ASS I G N E D at

zero. At step 502 the function MAKE BAGS handles mixed states bags, assigning all mixed states records
to the bag number "one". As part of step 502, the function MAKE BAGS increments the value at location
LAST BAG ASS I G N E D (so that the value is "1"), and then sets BAG NO = 1. Further, at step 502 the

45 function MAKE BAGS creates a record in a file BAGTAG HANDLE, with the record having the following
format and values:

70 ZIP ID.

35

50
BAG_DATA . Z I P_I D
BAG_DATA . BAG_ID_NO
BAG_DATA. BEG_GROUP
BAG_DATA. BEG_BIN
BAG DATA. END GROUP

0
BAG. NO
0
0
0
0

55
BAG_DATA . END_BIN
BAG_DATA.S_TYPE
BAG DATA. CNT

MIXED STATES
MS SACK CNT

23

EP 0 481 569 A2

Having handled the mixed states bags at step 502, the function MAKE BAGS determines the number
of first pass bags containing either some or all completely sorted first pass packages. These sacks must
have their bag ID assignment before subsequent pass groups are handled. The completely sorted first pass
bags are processed by steps 504 through 550 of the function MAKE BAGS. Thereafter, at steps 554

5 through 572, the subsequent bags are processed.
In the above regard, at step 504 the function MAKE BAGS initializes various values for handling the

first pass bags. The function MAKE BAGS sets LAST ID = -1; LAST TYPE = -1; and,
FRST_PASS_BAGS.CNT = 0.

At step 506 the function MAKE BAGS reads, as a first step in a loop, a record from file
w FULLSOR2.TMP. The file FULLSOR2.TMP was created by the function SACK_SORT. Assuming at step

508 that the record read is not from the same sack as the last record in the file FULLSOR2.TMP, at step
510 the function MAKE BAGS checks whether the record just read from the file FULLSOR2.TMP pertained
to a mixed states sack. If so, the function MAKE BAGS realizes that it has already handled (at step 502)
the mixed states bag, and at step 512 sets SACK_NO = 1. Also, at step 514, the function MAKE BAGS

is writes a corresponding record (i.e., the record read from file FULLSOR2.TMP with the bag number updated)
to file FULLSORT. After execution of step 514, processing loops back to step 506 for the reading of another
record from file FULLSOR2.TMP.

Assuming that the function MAKE BAGS determined at step 510 that the record just-read pertained to
a sack type other than a mixed states sack, at step 516 the function MAKE BAGS obtains the ZIP ID from

20 the record and stores that ZIP ID in location SACK_ZIP_ID. At step 518 the function MAKE BAGS
checks whether the record just-read from file FULLSOR2.TMP signals a change of sack. A change of sack
is signalled when SACK ZIP ID does not equal the value stored in location LAST ID.

If a change of sack is not encountered at step 518, the function MAKE BAGS adds the value in the
field SACK.PACKAGE.CNT from the record just-read to the counter FRST PASS BAG. CNT (step 520).

25 Location SACK.NO is then set to the value at location BAG. NO (step 522). At step 524, a corresponding
record is written to file FULLSORT. After the corresponding record is written at step 524, execution loops
back to step 506 for the reading of yet another record from the file FULLSOR2.TMP.

If a change of sack is encountered at step 518, the function MAKE BAGS determines whether the
record just-read from file FULLSOR2.TMP was the very first record in file FULLSOR2.TMP (step 526). For

30 all but the very first record in file FULLSOR2.TMP, the function MAKE BAGS writes a corresponding
record in the file BAGTAG HANDLE (step 528).

At step 530 the function MAKE BAGS computes a value for pointer PREV_ASSIGN_PTR. In this
regard, at step 530 the function MAKE BAGS uses the value of SACK_ZIP_ID obtained from the record
just-read as an index for an appropriate one of arrays MIXED FIVE BAG NO; STATE BAG NO;

35 THREE DIGIT BAG NO; depending on the value of SACK.STYPE obtained for the record just-read.
(These arrays were also initialized at step 500). The value obtained by indexing into the appropriate array is
stored in the pointer PREV_ASSIGN_PTR. If the value of SACK.STYPE obtained from the record just-read
is other than MIXED_FIVE; THREE DIGIT; or STATE; the pointer PREV_ASSIGN_PTR is assigned the
value NULL at step 530.

40 At step 532 the function MAKE BAGS checks to determine if PREV_ASSIGN_PTR is NULL or the
contents thereof is zero. If either value is stored in pointer PREV ASSIGN PTR, at step 534
LAST BAG ASSIGNED is incremented and at step 536 that incremented value is stored in location
BAG NO. Otherwise, at step 538, BAG NO has the value from *PREV_ASSIGN_PTR stored therein.

Step 540 is reached either from step 536 or step 538. At step 540, the function MAKE BAGS checks
45 whether the pointer PREV_ASSIGN_PTR has the value NULL stored therein. If so, at step 542 the value of

BAG NO is stored in location *PREV_ASSIGN_PTR.
At step 544, which follows either step 540 or step 542, the function MAKE BAGS creates a record for

the array FRST PASS BAGS. The record created at step 544 has the following format and values:

50

55

24

EP 0 481 569 A2

FRST_PASS_BAGS . Z I P _ I D
FRST_PASS_BAGS . BAD_ID_NO
FRST_PASS_BAGS . BEG_GROUP
FRST_PASS_BAGS . BEG_BIN
FRST PASS BAGS. END GROUP

= S A C K _ Z I P _ I D
= BAG NO

5

FRST_PASS_BAGS . END_BIN
FRST_PASS_BAGS . S_TYPE
FRST PASS BAGS. CNT

= 0
= 0
= 0
= 0
= SACK.STYPE
= SACK. PACKAGE. CNT

w

After creating a record for file FRST_PASS_BAGS at step 544, the function MAKE BAGS stores the
value in location SACK ZIP ID in location LAST ID (step 546) and stores the value in location
SACK.STYPE in location LAST TYPE (step 548). Then function MAKE BAGS jumps back to execute

is steps 522 and 524 before reading another record from file FULLSOR2.TMP at step 506. In this respect, as
explained before, at step 522 the location SACK.NO is then set to the value at location BAG. NO and, at step
524, a corresponding record is written to file FULLSORT.

After all records from file FULLSOR2.TMP have been read as determined by step 508, the final
FIRST_PASS_BAGS record is written to file BAGTAG HANDLE at step 549. Then, as indicated by

20 symbol 550 processing continues at step 554 (see Fig. 4K) for handling package records for subsequent
pass sorting (i.e., package records from file SORTREC3.TMP).

At step 554, which is somewhat akin to step 504, various parameters are initialized, i.e., CUS GROUP
= 0; LAST ID = -1; LAST TYPE = -1; and, BAG DATA.CNT = 0. The file SRTREE.DAT is read to
determine if any more tree structures remain. In the case of remaining tree structures, CUS GROUP is

25 incremented by one (step 560). Then a check at step 562 is made to determine if there are any more
groups defined by the present tree record. If there are not more groups, the function continues at step 556
where the file SRTREE.DAT is read for another tree structure. In the case where a group remains in the
present tree (deterimed at step 562), at step 564 an array BIN CNT is set declaring the number of
packages to be placed in the present group's bins. In addition, at step 565 a file seek position is set in file

30 SORTREC3.TMP, for the first record in the present group being processed, by using tree record information
and the present group within the tree. At step 567 the array BIN CNT contents are checked for a value of
one. This indicates that no more groups are required to sort the next record found in SORTREC3.TMP. For
all bins such that BIN CNT[i] = 1 a record is read from the file SORTREC3.TMP (step 568). In the case
where no more bins remain, processing proceeds to step 560 where a new group is used. Where a record

35 is read from SORTREC3.TMP the record is processed at step 570 in the same way as for a first pass sort
record. Step 570 is the same as steps 506 through 549 except in step 506 where a record is read from file
FULLSOR2.TMP it is now read from file SORTREC3.TMP. After processing the package record from file
SORTREC3.TMP the process continues by going to step 566 where a check is made to determine if any
more bins have been assigned to the present group.

40 In the case where no more trees are left at step 558, the program is ready to go to the function
MAKE CLIENT CNTS (as indicated by step 572).

Function MAKE CLIENT COUNTS

45 The function MAKE CLIENT COUNTS (see Fig. 4L) sets up several count categories for each client.
These counts are subsequently used in postage reporting and client billing.

The function MAKE CLIENT COUNTS uses the input file COUNT.DAT created by function
FIRST_SORT_PASS and the input file SORTREC2.TMP created by the function SACK_SORT. It will be
recalled that the format of file COUNT.DAT is as follows:

50

55

25

EP 0 481 569 A2

b y t e
o f f s e t #

Zip Code - 4 b y t e s (l o n g i n t e g e r) 0
S t r e a m I n d e x - 1 b y t e (h e x / b i n a r y v a l u e) 4
C l i e n t I n d e x - 1 b y t e (h e x / b i n a r y v a l u e) 5
Bin - 1 b y t e (h e x / b i n a r y v a l u e) 6
5 D i g i t OCR/BCR c o u n t - 2 b y t e s (u n s i g n e d i n t e g e r) 7
Zip + 4 OCR c o u n t - 2 b y t e s (u n s i g n e d i n t e g e r) 9
Zip + 4 B a r c o d e d c o u n t - 2 b y t e s (u n s i g n e d i n t e g e r) 1 1

The records in file COUNT.DAT are sorted in ascending order. In this respect, a primary sortation is done
by ZIP code. For ZIP codes repeated due to their usage in different client/mailstreams, a secondary
sortation is performed by first sorting the client index number, followed by the stream index number.

At step 600 the function MAKE CLIENT COUNTS initializes several counter arrays. In this respect, at
step 600 the following are initialized at zero:

CLIENT [i] . QUAL_TOT . COUNT5
CLIENT [i] . QUAL_TOT . Z I P 4
CLIENT [i] . QUAL_TOT . BARCDE
CLIENT [i] . NQUAL_TOT . COUNTS
CLIENT [i] . NQUAL_TOT . Z I P 4
CLIENT [i] . NQUAL_TOT . BARCDE

where i represents the client index (the number associated with a particular client). CLIENT[i]-
.QUAL TOT.COUNT5 will ultimately contain the total number of mailpieces from client "i" which qualify for
the 5 Digit OCR/barcode postage discount; CLIENT[i].QUAL_TOT.ZIP4 will ultimately contain the total
number of mailpieces from client "i" which qualify for the ZIP + 4 OCR postage discount; CLIENT[i]-
.QUAL TOT.BARCDE will ultimately contain the total number of mailpieces from client "i" which qualify for
the ZIP + 4 barcoded postage discount; CLIENT[i].NQUAL_TOT.COUNT5 will ultimately contain the total
number of 5 Digit OCR/barcoded mailpieces from client "i" which do not qualify for the 5 Digit
OCR/barcoded postage discount; CLIENT[i].NQUAL_TOT.ZIP4 will ultimately contain the total number of
ZIP + 4 OCR mailpieces from client "i" which do not qualify for the ZIP + 4 OCR postage discount; and,
CLIENT[i].NQUAL TOT.BARCDE will ultimately contain the total number of ZIP + 4 Barcoded mailpieces
from client "i" which do not qualify for the ZIP + 4 Barcoded postage discount

At step 600 the following are also initialized at zero:

TOTALS [0] . COUNT 5
TOTALS [0] . COUNT9
TOTALS [0] . BAR_CNT

TOTALS [1] . COUNTS
TOTALS [1] . COUNT9
TOTALS [1] . BAR_CNT

TOTALS [2] . COUNT 5
TOTALS [2] . COUNT9
TOTALS [2] . BAR_CNT

At step 602 the function MAKE CLIENT COUNTS reads a record in the file COUNT.DAT. As noted
above, each record in file COUNT.DAT has a ZIP ID field. At step 604 the function
MAKE CLIENT COUNTS searches the file SACK2.TMP to find the record in file SACK2.TMP having the
same ZIP ID as the current record in file COUNT.DAT. At step 606 the function MAKE CLIENT COUNTS
consults the record found in file SACK2.TMP to determine the sack type (STYPE) assigned to the sack

26

EP 0 481 569 A2

containing mailpieces for the current ZIP ID.
At step 608 a determination is made whether the record in file SACK2.TMP for the current ZIP ID

indicates that mailpieces having the current ZIP ID are contained in FIVE DIGIT or MIXED FIVE sacks
(thereby qualifying for the applicable postage discounts). If the determination at step 608 is affirmative, the
function MAKE CLIENT COUNTS adds values from the appropriate fields of the current COUNT.DAT
record to "qualifying" counters for the client having the client index borne by the current COUNT.DAT
record. In this respect, for client "i" at step 610 the counter CLIENT[i].QUAL_TOT.COUNT5 is incremented
by the value contained at byte offset 7 in the COUNT.DAT record; the counter CLIENT[i].QUAL_TOT.ZIP4
is incremented by the value contained at byte offset 9 in the COUNT.DAT record; and, the counter CLIENT-
[iJ.QUAL TOT.BARCDE is incremented by the value contained at byte offset 11 in the COUNT.DAT record.

On the otherhand, if the determination at step 608 is negative, at step 612 other "non-qualifying"
counters for client "i" are incremented by the values contained at byte offsets 7, 9, and 11, namely
counters CLIENT[i].NQUAL_TOT.COUNT5 , CLIENT[i].NQUAL_TOT.ZIP4, and CLIENT[i]-
.NQUAL TOT.BARCDE, respectively.

If other records remain in file COUNT.DAT (as determined at step 614), the function
MAKE CLIENT COUNTS loops back to step 602 to obtain the next record and to execute the steps of
Fig. 4L for that next record. After all records in file COUNT.DAT have been processed by function
MAKE CLIENT COUNTS, several "totals" are computed at step 616.

At step 616 the function MAKE CLIENT COUNTS determines the following totals:

TOTALS [0]. COUNT5 (The n u m b e r of m a i l p i e c e s f o r a l l
c l i e n t s q u a l i f y i n g f o r t h e 5 D i g i t
O C R / b a r c o d e p o s t a g e d i s c o u n t)

TOTALS [0]. COUNT4 (The n u m b e r of m a i l p i e c e s f o r a l l
c l i e n t s q u a l i f y i n g f o r t h e Z I P + 4
OCR p o s t a g e d i s c o u n t)

TOTALS [0]. BAR_CNT (The n u m b e r of m a i l p i e c e s f o r a l l
c l i e n t s q u a l i f y i n g f o r t h e Z I P + 4
b a r c o d e d p o s t a g e d i s c o u n t)

TOTALS [1]. COUNTS (The n u m b e r of n o n - q u a l i f y i n g 5
D i g i t O C R / b a r c o d e m a i l p i e c e s f o r
a l l c l i e n t s)

TOTALS [1] . COUNT 4 (The number of n o n - q u a l i f y i n g Z I P + 4
OCR m a i l p i e c e s f o r a l l c l i e n t s)

TOTALS [1] • BAR_CNT (The number of n o n - q u a l i f y i n g Z I P + 4
b a r c o d e d m a i l p i e c e s f o r a l l
c l i e n t s)

TOTALS [2]. COUNT5 = TOTALS [0]. COUNT5 + TOTALS [1]. COUNT5
TOTALS [2] . COUNT 4 = TOTALS [0] . COUNT4 + TOTALS [1] . C0UNT4
TOTALS [2] . BAR_CNT= T O T A L S [0] . B A R _ C N T +

TOTALS [1] . BAR_CNT

Then, at step 616, for j = 0, 1, and 2, the function MAKE CLIENT COUNTS determines TOTALS[j]-
TOTAL, which is evaluated for each j by the expression TOTALS[j]. TOTAL = TOTALS[j].COUNT5 +
TOTALS[j].COUNT9 + TOTALS[j].BAR CNT.

Function CORRELATE BAGS

The function CORRELATE BAGS (see Fig. 4M) determines the bag number (i.e., the sack number) for
each Zip Code and creates a file SACK3.TMP. The file SACK3.TMP is similar to the file SACK2.TMP which
is used to create file SACK3.TMP, but unlike file SACK2.TMP the file SACK3.TMP has a bag number
assigned to the "no" field in each record.

The input files utilized by function CORRELATE BAGS are file SACK2.TMP, file SORTREC.DAT, and
file FULLSORT.DAT. These input files are created by the functions ASSIGN_SACKS, MAKE BAGS, and
MAKE BAGS, respectively.

Function CORRELATE BAGS reads successive records from the file SACK2.TMP and attempts to first
match the current record with a record from the file SORTREC.DAT. If a match is found, the function

27

EP 0 481 569 A2

CORRELATE BAGS can assign a bag number for the Zip Code for the current record from the file
SACK2.TMP, and writes a record including that bag number to the new file SACK3.TMP. If a match is not
found in the file SORTREC.DAT, the function CORRELATE BAGS then attempts to match the current
record from the file SACK2.TMP with a record from the file FULLSORT.DAT. If a match is found, the

5 function CORRELATE BAGS assigns a bag number for the Zip Code for the current record from the file
SACK2.TMP, and writes a record including that bag number to the new file SACK3.TMP.

At step 640 the function CORRELATE BAGS reads a record from the file SACK2.TMP. At step 642 the
function CORRELATE BAGS obtains the value in the PTYPE field for the record just read from the file
SACK2.TMP. At step 644 a check is made to determine if the PTYPE value is "M", indicating a mixed

w states package. If the PTYPE is "M", the function CORRELATE BAGS knows that all MIXED STATES
packages are to go into the first bin, and accordingly at step 646 assigns SACK.NO the value "1 ". Then, at
step 648, a record is written to the new file SACK3.TMP, with the "no" field of the record having stored
therein the value of SACK.NO (i.e., "1 ").

If the PTYPE value for the current record from file SACK2.TMP is not an "M", at step 650 the function
75 CORRELATE BAGS obtains the PACKAGE_ZIP_ID value from the zip identifier field of the struct

PACKAGE included in the struct SACK comprising the record for the file SACK2.TMP. Then, preparatory to
a loop of reading records from file SORTREC.DAT, at step 652 the function CORRELATE BAGS initializes
the flag MATCH FLAG to have a TRUE value and the index CURRENT INDEX to have the value "0".

As indicated above, the function CORRELATE BAGS first attempts to match the current record in the
20 file SACK2.TMP with a record in file SORTREC.DAT. In this regard, at step 654 the function

CORRELATE BAGS requires the reading of a record from the file SORTREC.DAT. Then, at step 656, a
value for pointer CURRENT PTR is determined, which value reflects the physical position of the current
record in the file SORTREC.DAT relative to the beginning of the file SORTREC.DAT. As will be seen below,
the value of pointer CURRENT PTR is ultimately used to determine the bag number for the package

25 referred to by the current record in file SACK2.TMP.
At step 658 the function CORRELATE BAGS determines whether information from the current record

in file SACK2.TMP matches the corresponding information for the current record in file SORTREC.DAT.
Specifically, the PTYPE and zip identifier fields for the two current records are compared. In this regard, the
zip identifier information for the current record in file SACK2.TMP is stored in the location

30 PACKAGE_ZIP_ID previously determined at step 650.
If a "match" is located at step 658, the function CORRELATE BAGS performs three operations

depicted by steps 660, 662, and 664. At step 660 the value of CURRENT PTR is used to find the bag
number and set the SACK.NO. At step 662 a record is written to the new file SACK3.TMP, with the value of
SACK.NO as determined at step 660 being stored in the "no" field of the record. At step 664, the flag

35 MATCH FLAG is set to a TRUE value.
At step 666, reached either from step 664 after a "match" or from step 658 when a match is not found,

the index CURRENT INDEX is incremented. As explained above, the value of CURRENT INDEX is used
at step 656 to determine the value of CURRENT PTR, which in turn is used at step 660 to determine the
value of SACK.NO.

40 At step 668 the function CORRELATE BAGS checks to see if the flag MATCH FLAG has a TRUE
value, indicating that a match has just been found. If so, the function CORRELATE BAGS knows that it is
finished with the current record in file SACK2.TMP, and can go on to process the next record in file
SACK2.TMP, with the hope of finding a match for that next record as well. In this regard, an affirmative
determination at step 668 results in a branching back to step 640 for reading the next record in file

45 SACK2.TMP.
If a match were not found comparing the current record in file SACK2.TMP with the current record in

file SORTREC.DAT, at step 670 the function CORRELATE BAGS checks to determine whether there are
yet further records in the file SORTREC.DAT for which a comparison for prospective match can be made. If
additional records remain in file SORTREC.DAT, the function CORRELATE BAGS branches back to step

50 654 for reading the next record in file SORTREC.DAT. For that next record, the steps 658 through 668 of
Fig. 4M are executed, with that next record from file SORTREC.DAT becoming the "current" record from
file SORTREC.DAT.

If, at step 670, it is determined that the file SORTREC.DAT has been exhausted with no match for the
current record in file SACK2.TMP, as indicated above the function CORRELATE BAGS goes on to check if

55 a match for the current record in file SACK2.TMP can be found with a record in the file FULLSORT.DAT.
Before reading a record from the file FULLSORT.DAT, however, at step 672 a loop parameter "i" is
initialized at "0". As seen hereinafter, this loop parameter "i" plays a role in determining the SACK.NO
should a match occur.

28

EP 0 481 569 A2

At step 674 the function CORRELATE BAGS requires the reading of a record from the file FULL-
SORT.DAT.At step 678 the function CORRELATE BAGS determines whether information from the current
record in file SACK2.TMP matches the corresponding information for the current record in file FULL-
SORT.DAT. Specifically, the PTYPE and zip identifier fields for the two current records are compared. In

5 this regard, the zip identifier information for the current record in file SACK2.TMP is stored in the location
PACKAGE_ZIP_ID previously determined at step 650.

If a "match" is located at step 678, the function CORRELATE BAGS performs three operations
depicted by steps 680, 682, and 684. At step 680 the value of the loop parameter "i" (which points to the
first pass record with a match) is used to find the assigned bag number and to set SACK.NO. At step 682 a

io record is written to the new file SACK3.TMP, with the value of SACK.NO as determined at step 680 being
stored in the "no" field of the record. At step 684, the flag MATCH FLAG is set to a TRUE value.

At step 686, reached either from step 684 after a "match" or from step 678 when a match is not found,
the loop parameter "i" is incremented. As explained above, the value of the loop parameter "i" is used to
determine the value of SACK.NO.

w At step 688 the function CORRELATE BAGS checks to see if the flag MATCH FLAG has a TRUE
value, indicating that a match has just been found. If so, the function CORRELATE BAGS knows that it is
finished with the current record in file SACK2.TMP, and can go on to process the next record in file
SACK2.TMP, with the hope of finding a match for that next record as well. In this regard, an affirmative
determination at step 688 results in a branching back to step 640 for reading the next record in file

20 SACK2.TMP.
If a match were not found comparing the current record in file SACK2.TMP with the current record in

file SORTREC.DAT, at step 690 the function CORRELATE BAGS checks to determine whether there are
yet further records in the file FULLSORT.DAT for which a comparison for prospective match can be made.
If additional records remain in file FULLSORT.DAT, the function CORRELATE BAGS branches back to

25 step 674 for reading the next record in file FULLSORT.DAT. For that next record, the steps 678 through 688
of Fig. 4M are executed, with that next record from file FULLSORT.DAT becoming the "current" record
from file FULLSORT.DAT.

If, at step 690, it is determined that the file FULLSORT.DAT has been exhausted with no match for the
current record in file SACK2.TMP, an error message is created at step 692. When, at step 640, it is

30 determined that the file SACK2.TMP has been exhausted, and a match found for each record therein,
processing continues with the function SAVE ANAL CNT described below.

After the last record is read at step 640, processing continues with the function SAVE ANAL CNT.

Function SAVE ANAL CNT
35

The function SAVE ANAL CNT (see Fig. 4L) creates a first pass count file ANAL CNT. DAT which
resembles the file COUNT.DAT, except that the file ANAL CNT.DAT has the parameters package type
(PTYPE), bag type (STYPE), and bag id (SACK.NO) appended to each record.

In the above regard, the function SAVE ANAL CNT uses the files COUNT.DAT and SACK3.TMP as
40 input. The file COUNT.DAT was created by the function FIRST_SORT_PASS (see Fig. 4A); the file

SACK3.TMP was created by the file CORRELATE BAGS (see Fig. 4M).
The file ANAL CNT.DAT has its records sorted by zip code, then within zip code by client, and within

client by mailstream. Each record includes zip code counts by 5 Digit, ZIP + 4, and ZIP + 4 Barcoded
categories, first pass destination bin, package type (PTYPE), bag type (STYPE), and bag ID number

45 (SACK.NO).
Multiple records of the following structure are contained in the file ANAL CNT.DAT:

50

55

29

EP 0 481 569 A2

5

t y p e d e f s t r u c t {
CNT_DATA c n t _ d a t ;
c h a r PTYPE ;
c h a r STYPE ;
u n s i g n e d i n t BAG I D ;

/ ♦ p a c k a g e t y p e * /
/ * s a c k t y p e * /
/ * b a g ID n u m b e r * /

} ANAL_CNTS;

w h e r e

w t y p e d e f s t r u c t
{

u n s i g n e d i n t STREAM;
l o n g ZIP I D ; / * z i p c o d e * /

/ ♦ c l i e n t - m a i l s t r e a m * /

15

u n s i g n e d i n t BARCDE;
} CNT_DATA;

u n s i g n e d c h a r B I N ;
u n s i g n e d i n t CNT 5 ;
u n s i g n e d i n t ZIP4 ;

/ * b i n a s s i g n m e n t 1 s t p a s s * /
/ * 5 D i g i t c o u n t * /
/ * Z I P + 4 c o u n t * /
/ * Z I P + 4 B a r c o d e d c o u n t * /

20
Thus, the file ANAL CNT.DAT is sorted by Zip code, then within Zip code by client, then within client by
mailstream.

At step 700, the function SAVE ANAL CNT (see Fig. 4N) reads an initial SACK3.TMP record. Then
successive COUNT.DAT records are read and a corresponding ANAL CNT.DAT record is written for every

25 COUNT.DAT record read. Since there is only one record per package in file SACK3.TMP, and since
packages may be made up of multiple records, there will be more COUNT.DAT records than SACK3.TMP
records. After a COUNT.DAT record is read, at steps 702 and 704 the ZIP code is checked to see if it
belongs to the package from the SACK3.TMP record. If the ZIP code belongs to the packages, the package
type, bag type, and bag number information from the package is appended to the information in the

30 COUNT.DAT record and written to ANAL CNT.DAT at step 708. If the ZIP code did not belong to the
current SACK3.TMP record, another SACK3.TMP record is read and the new information is written to
ANAL CNT.DAT as in step 708 discussed above. This process repeats until all records in COUNT.DAT
have been processed.

35 Function SET_POST_CNTS

The function SET POST CNTS (see Fig. 4N) sets up initial counts files for postage reporting based
on the final sorting pass. In this respect, the function SET_POST_CNTS uses input files ANAL CNT.DAT
(generated by the function SAVE ANAL CNT) and AGGR.DAT (generated by the function

40 FIRST_SORT_PASS) to create two new files, file PASS1AGGR.DAT and file PASS2AGGR.DAT. The file
PASS1AGGR.DAT contains counts for all mailpieces that will not be fed during subsequent pass sorting.
The file PASS2AGGR.DAT contains counts for subsequent pass sorting. Both files PASS1AGGR.DAT and
PASS2AGGR.DAT include counts for both 5 Digit level rate (qualifying) and Basic level rate (non-qualifying)
mailpieces by 5 Digit, ZIP + 4, and ZIP + 4 Barcoded categories, and also include rejects.

45 The following data structure is employed for both files PASS1AGGR.DAT and PASS2AGGR.DAT:

The function SET_POST_CNTS basically creates the new files PASS1AGGR.DAT and

t y p e d e f s t r u c t
{ s t r u c t

{
50 l o n g COUNT 5 ;

l o n g COUNT9;
l o n g BAR_CNT;

55

} QUAL, NQUAL;
l o n g R E J E C T S ;

} POST_SUM CNT;

30

EP 0 481 569 A2

PASS2AGGR.DAT after reading all the records in the file ANAL CNT.DAT. At the beginning of a loop
commencing with step 730, the function SET_POST_CNTS reads a record from the file ANAL CNT.DAT.
At step 732 the function SET POST CNTS determines whether the bin number included in the bin field
from the record just read from file ANAL CNT.DAT is a bin containing fully sorted packages. This is done

5 by checking whether the element of array FULLSORT corresponding to that bin has a non-zero value. If a
zero value exists for the element in array FULLSORT corresponding to that bin, the function
SET POST CNTS loops back to step 730 for the reading of another record from the file
ANAL CNT.DAT. Otherwise, execution continues with step 734.

At step 734 the function SET_POST_CNTS examines the sack type (STYPE) field of the current
io record from the file ANAL CNT.DAT. If the value of STYPE is FIVE_DIGIT or MIXED_FIVE, the function

SET POST CNTS knows to go to step 736 to increase certain "qualifying" counters. Otherwise the
function SET POST CNTS will go to step 738 to increase certain "non-qualifying" counters.

In the above regard, at step 736 the function SET POST CNTS increases the following counters by
the values stored in corresponding fields in the current record from file ANAL CNT.DAT: counter

75 PASS1 .QUAL.COUNT5; counter PASS1 .QUAL.COUNT9; and, counter PASS1 .QUAL. BAR CNT. Alternative-
ly, at step 738 the function SET POST CNTS increases the following counters by the values stored in
corresponding fields in the current record from file ANAL CNT.DAT: counter PASS1 .NQUAL. COUNTS;
counter PASS1 . NQUAL. COUNT9; and, counter PASS1 .NQUAL. BAR CNT.

At step 740 the function SET POST CNTS determines whether the current record read from file
20 ANAL CNT.DAT was the last record. If not, processing loops back to step 730 for the reading of a new

record from file ANAL CNT.DAT, after which the steps 732 et seq. of function SET_POST_CNTS are
repeated, with the next record becoming the "current" record in accordance with the preceding discussion.

Upon the exhaustion of file ANAL CNT.DAT as determined at step 740, the function
SET_POST_CNTS reads the file AGGR.DAT in order to include reject counts (step 742). Then, at step

25 744, the function SET_POST_CNTS writes the entire file PASS1AGGR.DAT, which has the format
described above. Thereafter, at step 746, the function SET POST CNTS initializes all count values to
zero in the file PASS2AGGR.DAT in preparation for subsequent use.

Function INIT_GROUP_CNTS
30

Function INIT_GROUP_CNTS produces a file GRPCNTS.DAT that maintains counts, by group
number, of actually fed and rejected mailpieces. The file GRPCNTS.DAT is initialized with all zeros and is
intended to be updated during subsequent pass sorting. The file GRPCNTS.DAT is used for second pass
sorting display and insures that mailpieces fed in a wrong mode will not allow the reject count to go

35 negative. Records in the file GRPCNTS.DAT are of the following structure:

s t r u c t {
l o n g FED;
l o n g R E J ;

40 } GRP_CNT

Function PRINT_OUT
Function PRINT OUT serves to print information pretaining to the files created in the manner

45 described above. In particular, the function PRINT OUT generates hardcopies of the following reports:
Group Listing Report (see TABLES 1 , 2A - 2E); Bag Tags Report (see TABLE 3); Job Summary Report (see
TABLE 4); Postage Summary Report (see TABLES 5 - 6A); and, Bag Audit Report (see TABLE 7).

TABLE 1 is produced by printing out file ANAL SUM. DAT; file TOTQUL.DAT; file MAJ TREE. DAT;
file FRST PAK. DAT; and, file FRST SAK. DAT. TABLES 1, 2A - 2E show which bins 26 are to be grouped

50 together for subsequent for subsequent passes through the sorter apparatus 20. For example, bins 263 -
26?are to be grouped together as Group 1; bin 26s forms Group 2; bin 26g forms Group 3; bins 2610 - 26n
are to be grouped together as Group 5; and so forth. Some groups are noticeably absent from TABLE 1,
such as Group 4, for example. It will be seen below in connection with TABLES 2C and 2D that Group 4 is
ultimately generated during a second pass of the Group 3 mailpieces. Likewise, other groups not listed in

55 TABLE 1 are generated during successive passes (not the first passes) of other groups.
The output of TABLE 1 , and of TABLES 2A - 2E explained hereafter, are available upon completion of

the program ANALYZE MAIL after the initial pass of mailpieces through the sorter 20. Using the output of
TABLE 1 AND TABLES 2A - 2E, an operator knows how to group together mailpieces for subsequent

31

EP 0 481 569 A2

passes before those passes are executed. For example, after the initial pass is completed and the program
ANALYZE MAIL has generated TABLE 1 and TABLES 2A - 2E, the operator would manually retrieve the
Group 1 mailpieces from bins 263 - 267 and load those mailpieces into the input hopper 30 of the sorter 20.

TABLES 2A - 2E illustrate the output generated upon the printing of the Group Listing Report, which
5 reflects the contents of the bins 26 after passes of the various groups. Table 2A reflects the contents of the

bins 26 after the Group 1 mailpieces (gathered from bins 263 - 267 after the initial pass). Each bin 26 has a
package stored therein, since it is indicated that these bins are fully sorted.

TABLE 2A has five headings: "BIN"; "ZIP"; "P"; "B", and "ID". The "BIN" heading refers to the bins
26 of the sorting machine 20. For example, "bin 3" refers to bin 263 according to the nomenclature

10 previously adopted. "ZIP" refers to the Zip Code for the package of mailpieces stored in the associated bin.
The heading "P" refers to the type of package (PTYPE) stored in the bin. The heading "B" refers to the
type of sack (STYPE) in which the package in the bin is to be inserted. The heading "ID" refers to the bag
identification number, or sack number, of the sack which includes the mailpieces of the bin.

For example, from TABLE 2A it is seen that bin 263 contains a 5 Digit package for Zip code 02806,
is which is to be placed in a MIXED_FIVE ("M5") sack bearing sack number ("ID") "2". As TABLE 2A is

further read across the page, it is also seen that bin 26+ contains a 5 Digit package for Zip code 02809,
which is to be placed in the same MIXED_FIVE ("M5") sack bearing sack number ("ID") "2". In this
regard, if a number is not listed under the heading "ID" for a bin, it is understood that the mailpieces from
that bin are to be placed in the same sack with the preceding bin(s). Thus, from TABLE 2A it is apparent

20 that the packages from bins 263 - 263+ will all be placed in the same sack (i.e., the sack bearing sack
number "2"). Similarly, the packages from bins 2635 - 2651 are to be placed in sack number 3; the three
digit packages from bins 2652 - 265+ are to be placed in sack number 4; and so forth. Noticeably, bin 2612+
houses the MIXED STATES sack, which bears sack number 1 (see the function MAKE BAGS, step 502,
for an explanation in this regard).

25 After running Group 1 , and loading all the mailpieces from Group 1 into sacks bearing sack numbers 1 -
12 as indicated in TABLE 2A, the machine operator requests that a new sort scheme be loaded into
memory with instructions to direct pieces in Group 2 to the proper bins. This is done by referencing file
SORTREC.DAT (the creation of which has been described above). The operator also loads the mailpieces
of Group 2 (from bin 26s from the initial pass) into the input hopper 30 of the sorter 20. TABLE 2B explains

30 how the Group 2 mailpieces will be distributed across the bins 26. The Group 2 mailpieces from bins 263 -
26g are all to be collected for insertion in a THREE DIGIT sack which will bear sack number 13; the Group
2 mailpieces from bins 267 2619 are all to be collected for insertion into a STATE sack which will bear sack
number 14.

After collecting the Group 2 mailpieces into sacks 13 and 14 in accordance with TABLE 2B, the
35 operator loads the mailpieces for Group 3 into the input hopper 30 of the sorter 20. The sorter 20 directs

the Group 3 mailpieces to the bins 26 in accordance with TABLE 2C. In this regard, TABLE 2C directs how
the sacks numbered 15 through 21 inclusive are to be filled (i.e., from which bins packages are gathered for
filling the respective sacks). TABLE 2C also indicates that bin 26128 is to be further sorted as Group 4.
Recall that Group 4 was not listed in TABLE 1, the reason for which is now understood. Group 4 is derived

40 from Group 3, inasmuch as a secondary sorting pass arising from Group 3 necessitated the generation of
Group 4.

After collecting the packages from the bins 26 after the running of Group 3 as indicated in TABLE 2C,
the operator collects Group 4 from bin 26128 and places the Group 4 mailpieces in the input hopper 30 of
the sorter 20. TABLE 2D reflects the contents of the bins 26 after the running of the Group 4 mailpieces.

45 From TABLE 2D it is seen that packages from bins 263 - 2617 are also to be included in sack number 21
generated during the running of Group 4; that packages from bins 26is - 2630 are to be collected together
for insertion into sack number 22; and so forth through sack number 27.

Subsequent groups are run in accordance with TABLE 1 and in the manner of the foregoing discussion.
TABLE 2E reflects the contents of the bins 26 upon the running of the last group, i.e. Group 86. It is thus

50 seen that a total of 722 sacks were filled by the mailpieces run during the illustrative batch.
TABLE 3 shows a partial listing of bag tag data generated by the program ANALYZE MAIL. The data

for generating TABLE 3 is obtained from the file BAGTAG.DAT in conjunction with the table published by
the USPS in the DMM. TABLE 3 reflects the contents of bag tags printed for the sacks filled in accordance
with the execution of the program ANALYZE MAIL.

55 Each bag tag has its first three lines of text generated in accordance with the format prescribed by the
Domestic Mail Manual. In addition, a forth line of text tells the operator what group was run, and which bins
to collect together for insertion into the bag. For example, the first bag tag generated for Group 1 reads:

32

EP 0 481 569 A2

PROVIDENCE RI 0 2 8
3C LTRS MXD 5-DG PKG
EVANSTON IL 602
1:3 - 1 :34 S a c k : 2 5

indicating that Group 1 bins 263 - 263+ are to be collected together for insertion into a sack bearing sack
number ("bag number") "2".

Thus, using the bag tags generated by the sorter 20 as a result of the execution of program
70 ANALYZE MAIL, an operator can visibly determine, for each group, which bins 26 are to have their

contents loaded into a given sack, as well as the sack number for that sack. Moreover, advantageously the
bins having contents for the same sack are consecutively arranged (i.e., arranged in successive physical
relationship), so that the operator need not jump around from bin to bin, as by walking around the large
sorting machine 20, for example.

75 The Job Summary Report in TABLE 4 is produced using information from the file CLIENT.DAT, which
file was produced byt he function MAKE CLIENT COUNTS. The Job Summary Report demonstrates the
accounting capabilities of the program ANALYZE MAIL. The report is a brief summary of total fed and total
reject mailpiece counts maintained by individual mailstreams.

The Postage Summary and Postage Summary by client/mailstream is display in TABLE 5 and TABLES
20 6 - 6A, respectively. These reports are produced from information obtained from the file CLIENT.DAT.

These reports demonstrate the requirements for maintaining detail counts during execution of the program
ANALYZE MAIL.

The Bag Audit Report shown in TABLE 7 demonstrates a unique advantage of the program
ANALYZE MAIL. This report is generated from information in the file ANAL CNT.DAT. The program

25 ANALYZE MAIL organizes data in such a way that counts are made available by package, bag, client,
mailstream, and ZIP class categories. This feature is needed to verify the accuracy of the sort process and
the accounting.

While the invention has been particularly shown and described with reference to the preferred
embodiments thereof, it will be understood by those skilled in the art that various alterations in form and

30 detail may be made therein without departing from the spirit and scope of the invention. For example,
although not specifically mentioned herein, it should be understood that many of the files can be written to
random access memory devices, such as a magnetic disk.

35

40

45

50

55

33

■* U 481 &ba tKZ.

TABLL X
IOUP riNG FILE:

IRST PASS RESULIo

or further sorting...
ark the aail as follows:

.IN GROUP # BIN GROUP #•
3 1 56 46
4 1 57 46
5 ■ 58 47
6 \ 59 47
I k 68 49
ft 2 n AQ
/ 1
8 2
9 3
0 5
1 5
2 9
3 9
.4 9
5 9
.6 9
7 11
n (1

I $ 62 49
? i &3 49
i i 64 50
? 2 65 51
3 9Q 66 51
i ? 67 51
I I 68 55

a U 70 56
J I 8 5
:V3 13
»i 18
2 18
53 18
54 19

V6
41 34
42 35
43 37
44 38
45 39
46 39
47 40
48 40
49 41
50 41

I
a

22 18 I 59
23 18 7& U
24 19 ft 60
25 20 78 61
B6 20 79 62
27 28 80 63
23 21 81 63
£9 21 82 64
30 21 83 64
31 22 84 64
S 22 85 64

86 6j
34 25 87 67
35 26 88 67
36 27 89 67
37 $ 90 68
38 31 qi 69
29 w 90 71
4R 4̂ o-j 71
41 .i4 qi 71
4? 35]i g
It 7q 96 73
44 8̂ 98 73
\i § m ?2 46 tap 73
47 40 lff) l
48 40 99 79

» 41 103 82
51 t2 i@A 84
52 44 105 85 jd it ltfo (JO
53 44 106 86
54 45 107 86
55 45

53 W 106 66
54 45 107 86

— > ^ f-ÔjDI — cocncS — -»-«-<ru"J<S n-i cacocococococncncn — i<si-3--a-cnu" rucuoj ojcuc^cvjojojojr-g-<r-<(— i— cs <s <s> <s> <s> cs> ea s> es es> cs o q <s> s
2: r-~cur~-oji — <-ur~-oJr^ojr~ajr~-ojr-
co 1

1
• i Q I •— ' I 1

co ininLninminijTtrjinirj ie^ s: x: rsz: :e s: szsiro ro t̂ s coco co co co to co co to co co
a. u_3^bTir3in^UTinuTLnijTr̂ LnLnfTr'3roij"3ijTroijTU"3roro

I
cl .cn-a-cnm— <cn rocs mm <s>— > I >— < ^mLn.j3cocaiS'es--.ru-<r 1-— cn <s>u~> -3-1/0 n-» cococoa3cacocnc^cncncPC3<rca<^cn»xi"n~-3"Ojr- — 'I — ! ruW ĉ\JOJOJOJcyc,-iCijro-a--a — icur-it^r^^-a-ir-a-
Ẑl LO~- •v-O— ««Xi— <*X| •HiJ-h^ — .sjO— "v13— **j0 — <t*Ci—* vO — <»Xi— < g j -—l — 'OJC\jroro-̂ -̂ miO.J3.-Dr̂ r̂ a3cOcncnC3CS--'— <OJ

^ ro inr- — ■ aj

< CN
W Essrs^^^ss^ror^r^cocncococococncocococo
cq cl u^u^L^u^u l̂nu^u l̂nu l̂J l̂nu^u^Mr^Mlnu^^^u^u"5U"5r ̂§ !

cl r̂ ococij*«*"cr»ccroa3<j-is-̂ u3cois • euro c9<-ct<j3 1 — > 'OJLnusr̂ -coiS'O— nojro^so— < c5-3- — iror— n-» co co co co co co cn cn cn cn Sj <S -<x- co OJ co l/"3— *r*-OJ cur— or* «-Q ^ojfuC»jiruojojC>JC>JOjr5-<r-a---i — 1 — ■njnroro-a--o--a---j- C9 C9 C3 C3 C3 C9 C9 C3 (S CS C3 C9 C3 CS> C3 C3 CS C9 C9 <S C9 <S> C9 C3
i-< I —H-«CUCUl,*3f'0-iJ--a-LlTLlT»JDvJSr~-| — COCOcncniSCB-- »— *CU CQ I 1 111 1

*
-a C3 1 ai 1 — 1 1 -4-> I

! b ■
^ t e^s^s i^^s^s ro i r j ^coa jcn tnwcocncocococos

— CL tninoi-Oco-wOUTÎ OJCT' aj — 1 — . cn— . — a. 1 — 1 cscu^ruar — co cn co — . — < cues cp >s<s u3 ■ r*-i co co co co co co co cn CP* cn — ico<3-n~— ir*«-<J-cnro — * cn^cnio P DJ^cuwcuaJOjajojajcuro-ti — ■— ■-— 'ajOjrororo-a-<r-3-ce U SQiSSlSgcyQS(Seac3^c^^rafQfOfOrQi*tif«aroi*riri
— aj W"cn-*-cn-<i-cn-̂ -cn*̂ cn-3-cnw*-cn-<-cn-̂ cn-̂ -cn-*t*cn-̂ -cnH3* lo-q >— < 1 ■— <— ojc\jî or-o-a--̂ -ijTLnu3vrii — r— cococncnois— cu * co 1 i ■ . 1 1 1. 1 i CO ~ I CO - — i cc-«r 2 ru cn as ! O. Q I — . ! m f— < 1 j t— c 1

o; nolo
! lj- gi E^^s3£^fe^fcsroi^roc^coc^c/3cocococococococo

02: o I CCi— .— . I . **»u_cQr— « Cl coa3n-— i-ctOrOvjO-̂ r*-. 3- OJLO UTcn CS)— < 0 1 — ■ eg — 'ro.-oi — g a > o - <— «i — -—.eg n-co m-fl- : &CT ' * co ca cO co co co co rr̂ cr̂ cĵ - — 1 -(?- CS3 «-0 f ̂ co OJ rr* r-~ u"̂ ca 1 —) cr*
F— 2C r-ocorocorocorocof^aDrocoroaDr*Tcor^cofocof^cor*oeofo ^ 1 — ĉuojr-onT-̂ -̂ -uTin ĵDv r̂̂ j — cococncnciacP— ̂ — oj

35

•— « 1 1
co ininLnmminijTtrjinirj ce^ s: x: s: szsiro n r-i coco co co co co co co co co co

1
0. wcxjp~-u-3— .cn-a-cnLn— <cn rocs mm 0— < I ►— < —̂ «ro Lit vxi coca sus— .ru-a- r— cn csut -o-lo r-*4 cococoaacococncncncncPCS^raD^cnvri^n^-tf-ojr* '1 — ! cuOJî c\JiXlOJOJ<sJaJC>jro-a--« — 1— injMoi,o»r-a-«f--r | cscococ3cacocsc3iScacscPcscac&coisc3cscac&c3
2: L4D*— «*«0— <»Xi— 1̂3 — <njO— "v13-~**j0 — ̂fcXiŵvTi v̂ ĵ-i—. 2 j -—l — ■OJC\jroro^ î/̂ i1Too3f~-P--cOcocncncSiSi—'--<C>J

^ ro inr- — ■ aj
1— 1

< CN co iQLnyTtnuTinuTLnLOtn W Essrs^^^ss^rorcrocj^cj^cocjicocaoicnc^icocrj
§ !

Cl roa30J^cna3r_Oca<J'iS—«u3coiS • Ojro CS3 1 — ' iCJLOusn̂ coiS'CS— HOjro<rsO— < — iron- nw cocococOcococna^cr^cT^cScS-^coc^coiO^r^cvcur^c ̂
CS CS CS iS CP <SJ "S <S CS C35 S3 <S> CSS C3 CO Si C9 "S C9<S>C9C3

2: lOSLTcPUOSinCSUTCSincPUTcSUTcSllTlSUTCPLlTCBinCB 1— ■ 1 •-H-«CUCUl,*3f'0-i»--a-LlTljT>JDvJSr~»| — COCOcncniSCB— »»«OJ CQ 1 _— 1 111 1

CQ I rococo
Cl l-OUTrO

I I Cl — ' I— I -JT
tscscs

2: LO — vJO 1— 1 1 < - — 1 CQ I

I O I
1

CQ I rococo
cl mmro

1

r-j I — vjooj LiTUTUO tS&COCP
2T liltS Li"3
CQ I •

CQ CN .. 1 T3 1=1 I
I I

- 1

S in CQ I r rococo cn
— • Cl minroro OJ 1 ai I — < Cl ro — a. u i o m r»4 f̂ -e-O — CO O liTLOUTin U tSxS-SO
ai 2: ta-co-tca- J3 1—. I — <-r« CQ I

CO — « CO ex s ro Cl c=> »— • to I— 1 I
CO cecoja
Lu cn ^ rocococo

oj 5 cl minroro
□ Z a I o=>— ■•— 1 1 S*Ll_GQ— « Q. >— 1— • a >— CD CS n 1 — 4— 1— j r~- Co <-o 3b \n\n\n\o r"*î t aj cEtcdcS'CD

co*— 1 1 — 2: ro co ro co
CQ I

36

:;e::e:e::s:

Cl. jsxruiiTisaj— •— er>coco-a-iacacs>coro— cocoro»xi-<»-— r--— ►— i piojrouTijDP— cococnes — ojroinearoinvjor-- ®— oj-«-inr-- r-4 »c»cscscscs>ssc5«s> — < ojcuojcurorororo-<r-<r-3---3--»--a-
i3c53cpC9C9C><Ŝ KSC9C5iiSG3<9 cS'S'CSCSCSiCSOCOCSSOCSi

2: 1--0J1 — ojr~-OJi — cu — ajr--ojr--.ojr--ojr---ojr--OJi — ojr-ojr— 1—4 I —1 — oJOJf'Oro-sr-crmuTvjo-or-r-- cococr<a-><sco— — « cucu OQ I _ _ _ _ _ _

a i oj
1

cq in mui mmuarxrxr iinin\r>\n^uitnintn\£inin
cl mmmmmirxnmir unminininmininmi

Cl rxjer'roroi — CPcoccxc cr-cn— e5>cr>m— mror 1—1 is — ro-st-inr̂ -r̂ -cocr i-̂ r~-ro-a-inr,-eB— ojr Iscssco

cs<scs>csjcs>cs�

iOJOlnra-oro-a--4-ir. Up vJO U3 vD kQkCkC>J>ĵ _
[^ s O s f l ^ ^ s j O ^ h d O * �

35 CP CS> C3 CS CScDepcS O CS" C3 ® O O O CStO <S> CP

C 5 < �

3; t f> — J . f-i I . r-1— «. ft— 1 rS — <. f~i — ̂ i ft ~r—i -Cl tifj— <i_n— « ̂ rt — hwCi - — î rj 1— , 1 — — < cucuioro<r<rmm^»^r-r'-caa3a^cnc»c9— — ojcu cq 1 _ _ _ _ _ _

r—
— I I
cq mmmmmtrarxranmminmmmmmmi'^m
q_ m^mmmirxrtrxnmmmmmmmmmmmmm

1
o c^co0UC3rocrvî rxn*xi— cn-̂ cocoes cnr- — =rmroojOJc$cr< _ ts — ro*<a-u"3vX«*— cOcnc&-«--< — ro-qT-roroinp*- co— curouOkQ i«j isJcssisocacBcwscS— — — ajc>jcumror<iroro-<»--<r-sr-<r-«r

E9 CD C£» CD S C5<&CS?<9 O CS" O O O S> O C9 CD C5 O CP CS CO C5»
z m e> m e> mstrxsxn cs m cs m cs m co mcsm csmcom cpm , — 1 1 __Qjojf«yo<f-^tiTuT>o>jOf^r^cococncneacs— — ojoj

LO CO -a ea 1— ■ <*-i I5J I— • I
s-

cl. u^u■3u l̂nu^^Tu■^■x^u'3u^u^u l̂nlnlnu l̂̂ ll̂ ^nu l̂nll̂ lnu ̂Ol -L> I Oj I . _ Q. OJvQCT'CnOJI'— -s>>«J"rOLneSCOOJ — er»Omil*3- OJGSOOC&P—CO cl 1 — 1 is — curom*or-' oocncs- — ro-̂ ĵoojroinr— co— — ro«̂ *xi n 1—4 enocs>'39CBc5cs«sca— — — ojojojrororororo-a--«r-a--3"-ir
CJ c5 CS* CS CSCS<SXS>c5 CS> <S? CS CS» C5) C3 CO CS>CS)CS'CS3 CS'CSC&CiDS'
qj -7- Ĵ- cr-. -J- cr* -<J- ct̂ -j o'-<f~ cn cn -ct~ cn -<t" cn cn -J" cn -̂ j- cn Cn xi 1— 1 — — cuojrorv3-«j--4-inin"-°'jar- -n-cococr'cncocs— — OJ CQ I _ _ _ _ _ u>

 ̂ S :—
x 's u-j CO -—
_ £= j— —

i. nj Cl
_ cq 1 irJLnmuTir̂ -xj-̂ TinuTUTb-jinijTUTiuriinuTU-jininy^GSO 0 2

5 o in m in m lit uTumin uTUTmuTinu-jinu-JinuTUTUTuTtiTinij-i 1- ai cs
SI CO 3: ^ "
ic— — ^
■ co— cl coroajr—— sjDf-TOJOjrocr'p-- cr>c»— -str-Tesser-u-jr— ̂ r*oc9 J=

o — Co — ĉ rou-j«j3r-cocr>cB"S— rop--3socoromr~r-cp— oj-5^o , ='•*-'
— h_ r-~i KjcbcScbcocBc&scS — — — ojoj(>jojrorororr>-<r-er-x<»--fl- u-
5; a, csIcocscScSSScscsScacssca ̂ s- gco
_■ £ 3; ro co r̂o co ro cor'-oio'-o corocorocoro corocor-o co ro co ro co r-o LlX cq—

1 — 1 1 __cucxjroro-vt"^uT in *jOv̂ r*̂ rococo cncncBco— — cu cq 1 _ _ _ _ _

37

a *—

CQ
Cl

Cl t—t r—*

►—I CQ

CM

03
CL

Cl *— t

z

1:1

rot" ro-d csa sQv! cses
«jo — — o

inir S 3

cue ro<
cscs
me — o

IC9<S •sieB
<jO — 1

niTm
in in

ks—
«SC5
«nrs

L

CPC3CSC

tnin mi
iiiinuii

— cr>-a-e — — ro- — — cue
SSC9(

iioinm

Q> 5(
-ivO — vO -<— OJCU —(•——̂•-4

nmmm E S S E
n in in in

UCUcPcr> ijroiiiixi

s i n o n -.— OJOJ

cvji — cui — cur-

I o t ** l

q. u-ammmmmmmmmmmmmmmininroro

o I — a-r— roco-a-csinusa-ro — in^csmSCS ti Pcocn— « — cs— cs— u-jcoo-cg-; 5 r " 2 S S _ ^ r-i l<a--a--3-ininususr— r-r— r— r^*'»™™™or;"?rX ID US US US US US vJ3 US US US UO vO US US US US US USUS US Sep cs eoeoco co co co cs c& co co coco co cocoes cs
-y in-- - — i - — i - — i v_Q - — i *Jlt — ' US — — ' *-Q— - — 1 r_Z i _i — i cu euro ro -a- -a- mm us us I — I — coeoenencs
co I — *

i ro usr—
t=> I OJ CUOJ
>-l I I

o. m m m m m m m m m in in in in in in in in in ro ro
i

cl mroojoji--— cn-*-ojr'-cr>co-£OJu3^cp— !£ r-iooo>— •— ■ cocoes— u o i - e r g - r o ^ r - ® r-j w-a--s>-inmususr-r--i — r— i — cocococacocr<cOLri
US US -Cl US US US vO US US US US US US USUS iS IrS SSlS 5S coco CO COCSCO CO CS CS CO CO coco coco CO coco coco

2 mCOmCDmCOmcomCSmcOmCSmCSmCSinC© i — i— . nj ojro ro <r <r mm us us I — 1 — cococr-cnCD
CQ I *~ "

I -3- in
-a o i OJ oj aj 1 1
-£ I

— * CX mmmmmmmmmmmmintninininininrO Oi ** I — cl roojeo— usmr-ojesinusr-.— . — — a. — r— cocn— CU coco— i inr— coco— ro inr- cress
h r-4 ta--a-<rinininujr-r— r—i — r— COâ aJCacamcr•-̂ -
0 IjSUSUSUSUSUSUSUSUSUSUSUŜ USUSUSUSUŜ US o SScococococscscseocoescBcococDcscoeDco
oj Z2i ^cn-^cn-3-cn-3-cn-3-cn-q-cn-^cn-^cn^cn^cn .a — I — — ojOjroro-3--«-minususi — r-cococr>cr<

co I

'S i oj ro a I OJ ui — ! C I
CC "° CQ ^UTmU-^mmuTUnmmmmLnmmminm

^ . . „ i 5 cl in in in in in in in in in in in in in in in m mininro ro
ss s

a=£aQ -̂ Cl cucocncomcousojcgcu»uscocscs — i r) ^ o — r^Sco— — ojes— coinr— eoer>— QySter-tss ,-i i— it- i-j la- -a- <r in in in us us I — r— (— r— r— coco coaster* rocn ^ 5 Sus^us^usus^usus-^us^ususususus^usus
S& cu cScocs5cocococococococococ5<»eo«
m„ cE 2: Mcorocoro<oromroa3rocgroa3ro<oroeoro« u3 ^ S p '^ '^^^^^f^^^^- j^^^r^p^cococr-cnco

co I

38

I I

eoc

Xt I

I =1 I -I I I

3. mi
i i a. mr —> r-< -J w-
<S<

2 UK
CQ I

sin ■ cs in us cn ro • — co— ineoi usr— i — r— r— I US US US US US 1 CO COCOCS CO1
•-O - — 1 v_Q - — i îO iro<-<rijTU"5'

i I

iininininin
luiinuiuTin

• co-jf ojr-cr> >eo cs— inr— >usr— r— r— r— > us us us «-Q us ^cocscscoco
> incomes in jro<r<ruTU"5

uTrocs co— JT .COCOCC i us us u: i cocoes
i us— u: I us I— -I—

mil
mu-

OJuc — (V coa usu: COCS
coir r-r-

r— us CO
C9

ICO
ifO

iin I us ICO
ICO •CO

r- oj r— o J i — oj r— oj r— o I r— o j i — o j r— OJ r- —, i — i — .ojoj roro -a- -a- in in us usr— r— cocc co I

i oj r- a i — • — < ►—•I i — r— i

a. in in in in in in in in in in in in in in mtn in nr-vj
i

i-i rocauTCDcnrocmuTixi-a'CDincmininusoj rS"S>— ■ OJiniSSuSCDuSOJOJ— ' -a-i»SO lintg pu inininininususi — r— aois— * ojcscs— 4cginroca
Cncncncn cncn o** cncn cncn cncn cncn cncn cncn cm
US— « US — US — US — US — US — US — US— kO-i>J3-- — . i — i— oj cunro^--a-iil in us usr— r— coca cncn c3 CQ I — '

I us en CD O, I — — OJ i— i i r— f- r— i
cq in in in in in in in in in in ESSSSZSSZSZS^rlMrlivjMWWCnU)
a. in in in in in in in in m in in in ro in mm in ro ro ro

i i cl run — a-en-a-r- — a-roro— co— * -a-oj ■ > ■ « i— cssis— < — oji — uscssojojcdcd cdoj— c& r-j in in in in in in usr— r— cocss- — cDcS— ca-a-ojr— Cn cn cn cn cn cp-cp a""1 cn cn CO co co o-* Cfcn co CD cr̂ cr* cn cn cn cn cncncn cn cn cncn cm cm cm cncncn cncncn
si mesmismissmeDmeDmismismramissiniss _ i — < — iojojroro-a--a-minususr— I-— cocoencnis CQ I — *

s— as — < cs i — * oj — . r— r— r— i
cq Lit in in in in mm in in in
cl mm in in ininin in ininin romroinrominrons

i
Cl V— ius— icorousinojcuro.js cn — ojro i — i COCO — — OJr- — =TCO — COrS* cn oj OJCO pu inininLnininusr— r— coeseo— i*ocscs-a-~3-cnus cn cncn cn cncncn cn cn cn co co coco cncn cq cncocn cm cn cn CP* cn o*cn cn cm cm cm u '»cmcntj *cn cn cncncn
2T ĉrcn -cp cn -<r* cn-<p cn -4- cn-̂ J" cn-«p cn-̂ Pcn-y- cn<pcn i— i i — <— «ojojroro-a--a-mmususr— r— caascmem co l

tsi ro in ea i— ■ — — — i— r- • r- I
co i m m in in in in in m in u jss^^fe^5r^fe^rororororor--jnTO-jcpto
cl in in in in in mm in in in in in m roinin ro in roro

l i cl cmincoi — oj-a-in — 'cooj-a-ojco usi — oj i — i coo— *— «cur— — «cocDcocor— r— — ro in r— i r— inininininusr— r— cococd— "Ojessco— -irocoin cncncn cn cncncn cncn cn coco coco cncncn cmcocn 1 1 » cm cn u » cm cm cm cm cm cncn cm cm cncmcn cm cm cncn
3: rocorocorocoroeorocorocorocorocorocoroco i— i i — — •ojojroro-a--a-inuTususm-r~-ctscocncn co i

39

i i a. r i— c pu u c e
2: l
CO I

1 CS I I— I I 1
CQ IJ p

2:
CQ

rocninOJ-a- i ess uses us OJ iususr*-r— co i cncn cncncn • cncn cm cn cn
i— us— us— I roro -a- -a- in

i in in in in in
untnminin

•I — a- roro— - II — USCSSOJOJ i in usr— r-co ■ cm cm cm cm cm 'cncn cn cn cm
icsineoineo I roro -a- -3- in

IU1U

>incmii- i— -a-cs > — 'OJCS i cocao • encner
>— us— i us usr-

us o
r— r-

iroron
Jinrou-

)— < -a ics> is >— ICS }coa3a 'cmcnc
3 ea in a 3 us usr-

li- nen cc

iroos icncm • cncn
ius — i •cm CD

itotn
i roro

■ojp- I cncn ■cncn
)mcD • cmcD

EP 0 481 569 A2

TABLE 3

GROUP SEPARATOR «
•'«'' Group 0 «

MXD CHICAGO IL 636
3C LTRS MXD STATES
EVANSTON IL 632
3:3 - 0:9 Sack: 1

nmnni im:
** GROUP SEPARATOR » '
« Group 1 ' «
««««««*«*«*«

i • ■• <■ PROVIDENCE RI 828
3C LTRS MXD 5-DG PKG
EVANSTON IL 602
1:3 - 1:34 Sack: 2

10
PROVIDENCE RI 928
3C LTRS MXD 5-DG PKG
EVANSTON IL 602
1:3 - 1:34 Sack: 2

PROVIDENCE RI 029
3C LTRS MXD 5-DG PKG
EVANSTON IL602
1:35 - 1:51 Sack: 3

PROVIDENCE RI 029
3C LTRS MXD 5-DG PKG
EVANSTON IL 602
1:35 - 1:51 Sack: 3

BOSTON MA 021
3C LTRS
EVANSTON IL 602
1:52 - 1:54 Sack: 4

MANCHESTER NH 330
3C LTRS
EVANSTON IL 602
1:55 - 1:58 Sack: 5

PORTSMOUTH NH 038
3C LTRS
EVANSTON IL-602
1:59 - 1:59 Sack: 6

PORTLAND ME 048
3C LTRS
EVANSTON IL 682
1:69 - 1:61 Sack: 7

BANGOR ME 044
3C LTRS
EVANSTON IL 602
1:62 - 1:67 Sack: 8

DIS SPRINGFIELD MA 819
3C LTRS MA

25 EVANSTON IL 692
1:68 - 1:87 Sack: 9

DIS SPRINGFIELD MA 818
3C LTRS MA
EVANSTON IL682
1:68 - 1:87 Sack: 9

SCF PROVIDENCE RI 028
3C LTRS RI
EVANSTON IL602
1:88 - 1:89 Sack: 18

DIS MANCHESTER NH 930
3C LTRS NH
EVANSTON IL 682
1:98- 1:184 Sack: 11

DIS PORTLAND i€ 848
3C LTRS ME
EVANSTON IL 682
1:185 - 1:123 Sack: 12

DIS PORTLAND ME 848
3C LTRS ME
EVANSTON IL 602
1:135 - 1:123 Sack: 12

HHtHHHHHHHH
« GROUP SEPARATOR »
» Group 2 «

BUTE RIVER JCT VT 057
3C LTRS
EVANSTON IL 682
2:3 - 2:6 Sack: 13

35
DIS WHITE RIVER JCT 959
3C LTRS VT
EVANSTON IL 632
2:7 - 2:19 Sack: 14

HHHHWHMHW
« GROUP SEPARATOR «
a Group 3 **
««««* ««««****

STORRS MANSFIELD CT e6268
3C LTRS
EVANSTON IL 692
3:3 - 3:3 Sack: 15

STAMFORD CT 96992
3C LTRS
EVANSTON IL 682
3:4 - 3:4 Sack: 15

40

HARTFORD CT 063
3C LTRS MXD 5-DG PKG
EVANSTON IL 692
3:5 - 3:47 Sack: 17

HARTFORD CT 868
3C LTRS MXD 5-DG PKG
EVANSTON IL 692
3:5 - 3:47 Sack: 17

HARTFORD CT 861
3C LTRS MXD 5-DG PKG
EVANSTON IL 602
3:48 - 3:61 Sack: 18'

HARTFORD CT 062
3C LTRS MXD 5-DS PKG
EVANSTON IL 682
3:62 - 3:78 Sack: 19

NEW HAVEN CT 063
3C LTRS MXD 5-DG PKG
EVANSTON IL 632
3:79 - 3:160 Sack: 29

NEW HAVEN CT 963
3C LTRS MXD 5-DG PKG
EVANSTON ' IL 682
3:79 - 3:198 Sack: 28

NEW HAVEN CT 864
3C LTRS MXD 5-DG PKG
EVANSTON IL 682
3:181 - 4:17 Sack: 21

NEU HAVEN CT 864
3C LTRS MXD 5-DG PKG
EVANSTON IL 682
3:181 4:17 Sack: 21

55

40

IP 0 481 569 A2

TABLE 4

Cl i e n t / M a i l s t r e a m Count Summary based on f i r s t pass r e s u l t s
C l i e n t (0 0 2) : I n s u r a n c e

,U (000) ALltO
(001) L i f e
(003) H e a l t h

C l i e n t S u b - T o t a l .
15

C l i e n t (0 0 3) : U t i l i t y Co.

(000) S e r v i c e b i l l s

?o C l i e n t S u b - T o t a l

C l i e n t (00&) : P u b l i s h e r

(000) M a g a z i n e #3
15

C l i e n t S u b - T o t a l

30

35

40

45

50

55

FED R E J t U I S
156267 3 6 0 8

1478 121
12654 114

170399 3 8 4 3

FED REJEL I S
66385 • 9 5 4

66385 9 5 4

FED REJgL, I b
32834 . £ 2 2 5

.'8,i4

41

EP 0 481 569 A2

TABLE 5

MASTER POSTAGE SUMMARY METERED AND PERMIT COMBINED
B a s e d upon F i r s t Pass C o u n t e r s

5 DIGIT LEVEL PIECE COUNT PER PIECE RATE

ZIP+4 B a r c o d e d 5 0. 122
ZIP+4 . 0 . 0 . 122
5 DIGIT 179034 0. 122

5 D i g i t T o t a l 1 7 9 0 2 9

BASIC RATE LEVEL PIECE COUNT PER PIECE RATE

ZIP+4 B a r c o d e d
Z I P + 4
5 D I G I T

•Pass i N o n - S c a n

B a s i c T o t a l 9 0 5 7 9

5 D i g i t and B a s i c £ 6 9 6 1 8

Q u a l i f y i n g P e r c e n t a g e (R e j e c t s E x c l u d e d) : 63
P e r c e n t a g e ZIP+4 B a r c o d e d (R e j e c t s E x c l u d e d) : 0
P e r c e n t a g e ZIP+4 (R e j e c t s E x c l u d e d) : 0

O
0

8 2 5 5 7
7 0 2 2

0. 167
0. 167
0. 167
0. 167

42

EP 0 481 569 A2

TABLE 6
POSTAGE SUMMARY FOR CLIENT)2) : Insurance
Based upon First Pass Counters

5

PER PIECE METERED RATE by Mailstream

(000) Auto 0.127
(001) Life 0.000

10 (002)Health 0.000

5 DIGIT LEVEL Mai 1 stream PIECE COUNT PER PIECE RATE

ZIP+4 Barcoded (000)Auto 5 0.132
15 (001)Life 0 0.132

(003) Health 0 0.132
total 5

ZIP+4 (000)fiuto 0 0.132
!001)Life 0 0.132
(003)Health 0 0. 132

20 total 0
5 DIGIT (000) Auto 12S212 0.132

(001)Life 1074 0.132
(083) Health 10983 0.132

total 140274

25 5 Digit Total 140279

BASIC RATE LEVEL Mailstream PIECE COUNT PER PIECE Rf

ZIP+4 Barcoded (000)Auto 0 0. 1&7
30 (801)Life 0 0.167

(003) Health 0 0. 1&7
total 0

ZIP+4 (000) Auto 0 0- 167
(001) Life 0 0.167
(003) Health 0 0.167

35 total 0
5 DIGIT (000) Auto 24442 0.167

(001) Life 283 0.167
(003) Health 1552 0.167

total 26277
Pass 1 Non-Scan (000)Auto 3608 0.167

40 (001)Life 121 0.167
(003)Health 114 0.167

total 3843

COST

0.660
0. 000
0. 000
0.660
0. 000
0. 000
0. 000
0. 000

16923.984
141.768

1450. 416
18516. 163

13516.823

COST

0. 000
0.000
0. 000
0. 000
0. 000
0. 000
0. 000
0. 000

4081.314
47.261

259. 184
4388. 259
602. 536
20.207
19.038

641.781

45

50

55

43

EP 0 481 569 A2

CABLE 6A

Postage Due (Permit) 14132

(Psrsit Postage Adjusted to exclude rejects)
Postage Due (Permit Rejects Excluded) 13S97

Postage Due (Meter)
Metered Postage Paid 156267
Additional Metered Postage Due

(Metered Postage Adjusted to exclude re jects)
Postage Due (Meter)
Metered Postage Paid 152659
Additional Metered Postage Due

Qualifying Percentage (Rejects Excluded): 84
Percentage ZIP+4 Barcoded (Rejects Excluded) : GS
Percentage ZIP+4 (Rejects Excluded) : 0

44

EP 0 481 569 A2

t co-4-nj com ̂ cr>oĵ — m— sfM— uj— v̂mm— <uca— Ni/jcucp'th— uitfjWM— M— fti— ̂
+> in ̂ i-l rrM
O —
r-

>— co-̂ -oj com— (poj-rt — m— <rro— ut— ̂ mm— cuoj— N ĉurr— — u i i ^
-rt □: — — — <pm
Ll— —

c

<- + QSS SSS SSS S
Q. I— I
tvl

+ 1j SSS SSS SSS S ' S S S S S S S
Q.0S i— i
M

sssojsojsojsojssojsc'jc'jssojcuojc'jsc'jojojrsojsojoj ssqmsmsmsmssmsmmssmmmmsmmmsmqmm

S

r5 in m in uo in tn in in in win in mm in in w
[— rO r-i i — \ r-\ i— (i — ii — I i— I i— t r— I r— Ir— t i— I i— (i— I r-l i-l

Q r-lfj rSfl —M — >-<rtMi-<M.-'Mr«Mr«— Mr*MM>-Ŵ MMM— MMMr-lM.~"MM
^ E -# — # — # .rt-rt-rt#-H#.H#.rt#-H.rt*.W#*.H-rt#**#.rt###-rt*-^## ■■
S i « n rt j] u h JDJ3J3 n a n nn n n n n — _i
<| Z oj arc n n; ajra ti n n hi aiatai aiaiaiaiaiaiaiaiaiai nifX
E-i in 1- <n c-p ai c-p ai c-p juaaicojcoicoicoiacojccaifflccecaicccaicojc c-Pt—

q; -p g— o u— o u— o Cl 0 Ci-"* 0— Cl— (J— Cl Cl— Cl— Cl Cl— — — ci— — ci— Cl— — oo
CLLl U> — N-p — N+> — N+> — — N— N— N— N— — N— N N— N N N N— N N N— N— N N-Pf-
►-<(— >rs >ns >aj >>>ro>iti>ai>n!>>ni>ioai>>rsiSiBni>niaiiti>fli>ai<o

CO — 5. cn j-oi s.oi J-5-S- ni!- rat ait raj. i. ait raait 5- encr.oiais. aiasait at oioi in
OUJ rfl '-i oj rd rj*> ui rd — Oi A3 tu m Oj rfi oj nj oj ifl ai id ai oi id ai ifi <0 01 fl) id <d (0 05 at Hi (d Hi oj <6 oi Hi <d
rai s Mens <j-ojh ujcdh smtncnsrjjEmstjjHmwEcnHsrjjm

2 M M M S

0J 01 OiCJ S0J S0J SCO
ai aj SM SM Sfl
+>— Q— S— s—
in fX > • 0~v QS SS SS
axs a

S in m in
M — «-H i-<
S r-ifj i-l fO —M

E — # — # -M#
I (Ij j r j i-HjQr-fjQrH
7 a i OJOj u ro oj ro

i. aj C-p ai C-p Oi C-p Ql -p D-h o Cl-rt o O-'-' o
III UI -H N-p -rf N+> •<■< N+>
(—■-< ><fi >ni >H

J-CT Q S S
OH oi
<4- a oi oj oi
I— jx rao aj o (da j c o o o o o o o o o oo o o o ia
Ctu -SOS- aUJ. t̂Ul. OOUU LG 5-U S-CJU J.U i. tUU 1. 1- J. S-U 5. S. S.U S-U 1. J. d
q rrj □ ai CJ ai cj ai n5 a i a i a i a i ' aiaiai aiairuaiajojoioiajaicu
o.tSi <s>-jz <i> :̂ <t>jz a. >~>~>̂ c >j: >̂ c >vC >^> ̂ >-r jc »jzjcj:jr >\Cjtx >j: >^jz
LU -p Cl-p m Cl-p m Cl-p m +>-p-p m-p in̂> ui+> ui+>4-> ui+> m m-p.p in in in m-p ui in in-p in̂ m in
q;+> C 4J.IH-rf.rt.rt.rf.Wrt-r<.rt.W->-C'rt.1-lT<TH-rt-rt-H-rt-rt-H-i-l.rt-»<-Wi-l-f<-rt̂ -l'H-r<

•rt 01 +>■-'■-< +»i-li-l -Pi-li-l •rt̂ î*^ î* î*r4i*i*i*i*i*i*^r*i***r4t*r*,-<w**4i-lt-lt-*r*i-lr+
|_ Oi .r< -rt-wJ3 -r<-r<j3 -H-rtj3 DliH-r<-rt j3-̂ jQ-ih J3-rt j3-h j3 jQ-r<-rtjO j3 j3 jO"̂ JQ-r< JJ J3
w-rj — Dip 3 Dip 3 Dip 3 -r<4J4J+> 3+> 3+> 3+> 3+s-P J-P 3 3+>-P 3 3 3 3.p 3 3 3+> 3+> 3 3
qq u - 2 a —2a -2a Q 2 2 2 a 2 a 2 0 2 a 2 2 a 2 a a 2 2 a a a a 2 a a a 2 0 2 a a
2 c a Q
n ai — — cna* — ojrufo<rco— n^-^miiiNcoconw- îi dns— o.if,o<jj<jjaMij<j--tvDvDN

oi oiMr-i aj<r̂ - oiuTin aifOMMr,,i<<-̂ ^^^<r̂ <ruiuiuiujinkDvD<jjvjjr̂ Nr̂
CD 1- a >8Q >QQ >QQ LSiSSSQSS'SiSSiSSSSSSQSSiSS'SQ'SSSiSSSSS
rxx: i-i ■rtini — roro —mm jtmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
04i — m LlQQ LlSiS U.SS |-S'SiSiSSiSSiSiSc5c5'Sc5,SQSSSiS'SS'SQiSiS|SSSSSS

ims

A sorter apparatus comprising:
hopper means into which a plurality of mailpieces-to-be-sorted are introduced;
reader means for reading postage address destination information provided on said mailpieces-to-

be-sorted;
a plurality of bins into which said mailpieces are sorted;
conveying means for conveying said mailpieces from said hopper means, past said reader means,

and toward said plurality of bins;
gating means for directing a mailpiece into a selected one of said plurality of bins;
control means for controlling said gating means, said control means being connected to said reader

means for obtaining therefrom signals indicative of said destination information for said mailpieces, said
control means including logic means for determining how said mailpieces should be classified
according to predetermined criteria into packages of mailpieces and how said packages of mailpieces

45

EP 0 481 569 A2

should be classified according to predetermined criteria into sacks, with said control means connected
to control the activation of said gating means whereby mailpieces classifiableable in a sack but stored
by reason of said criteria in a plurality of bins are gated into a plurality of physically adjacent bins
without destroying the package classification of said mailpieces.

5
2. The apparatus of claim 1, further comprising:

means responsive to said control means for generating labels for attachment to said sacks, said
labels bearing information including the bins from which mailpieces should be extracted for inclusion in
a sack.

10
3. The apparatus of claim 2, wherein said labels also bear a sack number.

4. The apparatus of claim 1 , wherein upon an initial reading pass of each of said mailpieces-to-be-sorted
through the sorter, said control means associates said mailpieces into groups by gating the mailpieces

is of each group into a set of bins corresponding to their group, said sets of bins having a plurality of bins
being comprised of physically adjacent bins of the sorter, and wherein said control means provides an
indication of which bins contain each group of mailpieces.

5. The apparatus of claim 4, wherein said control means associates said mailpieces into groups for the
20 purpose of subsequently feeding each group separately into said hopper means for a subsequent pass

through said sorter.

6. The apparatus of claim 5, wherein said control means associates said mailpieces into groups and by
gating the mailpieces of each group into an associated set of bins, each of said groups being assigned

25 a group number and each bin having a bin number, and whereby, as the group numbers monotonically
increase during said assignment, the bin numbers included in the associate set also monotonically
increase.

7. A method of sorting mailpieces comprising:
30 introducing a plurality of mailpieces-to-be-sorted into a hopper means;

conveying said mailpieces from said hopper means, past said reader means, and toward a plurality
of bins;

reading postage address destination information provided on said mailpieces-to-be-sorted using
said reader means;

35 classifying said mailpieces, according to predetermined criteria, into packages of mailpieces and in
turn classifying packages of mailpieces, according to predetermined criteria, into sacks;

using gate means to direct mailpieces into selected ones of said plurality of bins;
whereby said classification whereby mailpieces classifiable in a sack but directed by reason of said

criteria in a plurality of bins are gated into a plurality of physically adjacent bins without destroying the
40 package classification of said mailpieces.

8. The method of claim 7, further comprising:
generating labels for attachment to said sacks, said labels bearing information including the bins

from which mailpieces should be extracted for inclusion in a sack.
45

9. The method of claim 8, wherein said labels also bear a sack number.

10. The method of claim 7, wherein upon conveying said mailpieces on an initial reading pass through the
sorter, said said mailpieces are associated into a plurality of groups by gating the mailpieces of each

50 group into a set of bins corresponding to their group, said sets of bins having a plurality of bins being
comprised of physically adjacent bins of the sorter, and wherein an indication is provided regarding the
bins which contain each group of mailpieces.

11. The method of claim 10, wherein said mailpieces are associated into groups for the purpose of
55 subsequently feeding each group separately into said hopper means for a subsequent pass through

said sorter.

12. The method of claim 11, wherein said mailpieces are associated into groups by gating each of the

46

EP 0 481 569 A2

mailpieces of each group into an associated set of bins, each of said groups being assigned a group
number and each bin having a bin number, and whereby, as the group numbers monotonically increase
during said assignment, the bin numbers included in the associated set also monotonically increase.

47

EP 0 481 569 A2

r i c . 1

48

EP 0 481 569 A2

n o . 2

5 4

120
6 5

LEFT GATE
SOLENOID

RIGHT GATE
SDLENDID

120

BIN PAIR
CDNTRDLLER

120 126
LEFT GATE
SDLENDID

T

64

•122,

RIGHT GATE
SDLENDID

120.

BIN PAIR
CDNTRDLLER

120 127
LEFT GATE
SDLENDID

I

■122,

RIGHT GATE
SDLENDID

I
v

120

BIN PAIR
CDNTRDLLER

120 128
LEFT GATE
SDLENDID

6 4 .

I

•122,

RIGHT GATE
SDLENDID

I 120

BIN PAIR
CDNTRDLLER

38 .
LABEL PRINTER

H BAR CDDE READER

3 6
INK JET PRINTER

CPU

DISK
DRIVE

REPDRT
PRINTER

* . | MONITOR | 1 OCR

- 66 \ m \ r ^ f ^ Y 34

I / D
INTERFACE

62

58
1 .

I

■122,

124

KEYBDARD

1
5 0

DPERATDR CDNSDLE

49

:P 0 481 569 A2

r I C . 3

50

EP 0 481 569 A2

0 O J
i — i 2-

0 5 ;

1 — 1

I — I J

I — I '
Lu^"

13 i

P i

LD QQ 1 — 1 *■+•

51

EP 0 481 569 A2

FIRST_SURT_PASS

2 0 0

CREATE FILE
COUNT.DAT

2 0 2

CREATE FILE
AGGR.DAT

1 dU4

CREATE FILE
CLIENT1.DAT

ASSIGN-PACKAGES

2 5 0

DETERMINE
POTENTIAL

THREE DIGIT
PACKAGES

I 2 5 2

DETERMINE
POTENTIAL

STATE
PACKAGES

2 5 4

CREATE RECORD
IN FILE SACK1.TMP

FOR EACH
ZIP CODE

ASSIGN_SACKS

2 6 0

DETERMINE WHICH
'S" TYPE PACKAGES
ARE LARGE ENOUGH

TO FORM A SACK

2 6 2

COMPILE COUNTERS:
(D MIXED_FIVE_

SACK.COUNT(ERS)
(2) THREE-DIGIT.

SACK_COUNT(ERS)
(3) STATE_SACK_

COUNT(ERS)
(4) MIXED_STATE_

COUNT(ERS]

2 6 4

CHECK COUNTERS
TD DETERMINE IF
EACH POTENTIAL
SACK HAS MAIL

=IECES. REASSIGN
IF INSUFFICIENT

2 6 6

CREATE RECORD
:N FILE SACK2.TMP

FOR EACH
ZIP CODE

>2

U 401 &b9 Ait

■ 1 U .

i i l l
1RST_PASS_
>ACKS

: / u

'IND SIMPLE CASE
IF FULLY SDRTED
ilN BY COMPARING
JUMBER OF MAIL-
>IECES IN BIN
fITH SUM OF
1AILPIECES IN
^LL PACKAGES
:n BIN

1 /2

CREATE FILES:
(1) STATE_PACK_

FILE
(2] THREE_PACK_

FILE
WHILE READING
SACK2.TMP

2 7 4

DETERMINE IF
POTENTIALLY
"ULLY SORTED
STATE PACKAGES
ARE SPREAD
THROUGH
PLURALITY OF
BINS

2 / b

DETERMINE IF
POTENTIALLY
FULLY SORTED
THREE DIGIT
PACKAGES ARE
SPREAD THROUGH
PLURALITY OF
BINS

1AKL_^UKI _
iECORDS

fnlLL KLftUINU
'ILE SACK2.TMP.
"OR "S" TYPE
'ECORDS CREATE
\ RECORD
ilTHER IN FILE
;0RTREC1.TMP OR
"ULLS0RT1.TMP

JH1LL KtPiLUNU
rILE SACK2.TMP.
r0R -3' TYPE
RECORDS STORE
3IN NUMBER IN
^RRAY
FHREE_DIG_BIN

WHILE KLftiJllNU
rILE SACK2.TMP.
FOR '3" TYPE
RECORDS STORE
SACK TYPE IN
ARRAY THREE.
DIGIT_SACK_TYPE

i COD
/

WHILE KLALIlINu
FILE SACK2.TMP.
FOR 'S" TYPE
RECORDS STORE
BIN NUMBER
IN ARRAY
STATE_BIN

oo I

in i l l
'EADING FILE
;ACK2.TMP.
"OR "S' TYPE
RECORDS STORE
;ack TYPE
N ARRAY
; t a t e _ s a c k _
: y p e

L
- ; u !

WRITE 3 DIGIT
PACKAGE
RECORDS IN 1
EITHER FILE
FULLS0RT1.TMP |
OR
S0RTREC1.TMP |

292]

ir / !

wru i r_ o i n i l
DACKAGE
RECORDS IN
EITHER FILE
FULLS0RT1.TMP
OR
S0RTREC1.TMP

00

EP 0 481 569 A2

F I G . 4 C

SACK.SORT

3 0 0

/

CREATE F I L E
SFJRTREC2.TMP

I
3 0 2

SORT RECORDS
IN F I L E
SDRTREC2.TMP
BY SACK TYPE

3 0 4
1 /

SL1RT RECORDS
IN F I L E
SDRTREC2.TMP
VITHIN SACK
TYPE BY
PACKAGE TYPE

1 3 0 4 /

SORT RECORDS
IN F I L E
SDRTREC2.TMP
VITHIN PACKAGE
TYPE BY ZIP ID

54

EP 0 481 569 A2

MAKE.COMBOS
F I G 4 D C 1)

310

READ NEXT
RECORD IN FILE

STATE_PACK_FILE

316
X ENTIRE X

x t a t e . p a c k X
f i l e r e a d f o r
v THIS S T A T E ? /

YES

NO 3 3 0

312

YESX

X ARRAY \
X U L L . S O R T . B I n X
INDICATE BIN FOR

THIS RECORD
\ FULLY /

X . SORTED? /

NO 314

SET FLAG IN
ARRAY BIN_USAGE

FDR BIN IN RECORD

3 4 0

READ NEXT RECORD
IN THREE-DIGIT.

PACK.FILE

READ FIRST
RECDRD IN

THREE-DIGIT.
PACK.FILE

3 4 2

STORE ZIP AT
LOCATIDN SCF

3 3 2

YES^
X ARRAY X ^ ' FULI SDRT. ^

BIN INDICATE BIN
FULLY SORTED?

GD TD
ROUTINE

MAKE.SACK.
COMBOS

NO 3 3 4 3 3 6

STORE ZIP IN SET FLAG
LOCATION * IN ARRAY

THREE_DIG.ZIP BINJJSAGE

E

55

EP 0 481 569 A2

F I G 4 DC 2)

318
c L ^

CALL FUNCTION
CHECK_COMBOS

TD SET UP
DATA IN ARRAY

BIN_C0MB0S

3 4 4

CALL FUNCTION
CHECK_C0MB0S

TD SET UP
DATA IN ARRAY

BIN.CDMBDS

I 3 5 0

THREE_DIG_ZIP
=SCF

I 3 5 2

SET FLAG IN
ARRAY

BIN_USAGE

56

EP 0 481 569 A2

1AKE_SACK_C0MB0S

F I G . 4 E

3 7 8 3 9 8

READ INITIAL
RECORD FROM
S0RTREC2.TMP

3 7 0

3 7 2

STORE ZIP ID
IN LOCATION

_AST_SACK.ZIP_ID

3 7 4

STORE SACK
TYPE IN

LOCATION
LAST_SACK_TYPE

3 7 6

SET FLAG FOR
BIN IN ARRAY

BIN_USAGE

3 9 4

CALL FUNCTION
CHECK.COMBOS

TO UPDATE
BIN_COMBOS

READ NEXT
RECORD IN

S0RTREC2.TMP

GO TO
FUNCTION

BUILD_TREES

3 9 7

CALL FUNCTION
CHECK_CDMBO

"OR LAST RECORD

^ 3 8 4

STORE ZIP ID
FROM RECORD AT

LOCATION
SACK_ZIP_ID

3 8 8

3 9 6

CLEAR ARRAY
BIN_USAGE

SET FLAG FOR
BIN IN ARRAY

BIN.USAGE

1
3 9 0

LAST_ZIP_ID=
SACK_ZIP_ID

3 9 2

LAST_SACK_TYPE
= SACK. TYPE

57

EP 0 481 569 A2

F I G . 4 F

BUILD_TREES
. 4 0 0

DETERMINE THE
NUMBER OF
QUALIFYING

PACKAGES IN EACH
S T A T E / 3 - D I G I T

FORCED BIN
COMBINATION

AND STORE IN
ARRAY

QUAL_PER_COMBO

1 4 0 2

INITIALIZE
CUTOFF.CNT

4 0 4

INITIALIZE
TREE_CNT=1

4 0 6
ir ^

INITIALIZE
QUAL_CNT=0

4 0 8
i ^

INITIALIZE
TEMP_CNT=0

410

DETERMINE
INITIAL BIN

i UNDER
CONSIDERATION

4 2 2

418

MAJ_TREEhl=
TREE.CNT

414

QUAL_CNT=
QUAL_PER_COMBO

[BIN_COMBOlil]

I 416

FOR EACH BIN
INCLUDED IN THIS

FORCED COMBINATION.
SET CORRESPONDING

ELEMENT IN
ARRAY

MAJ_TREE=
TREE.CNT

417

BIN_COMBO_
USAGEIBIN.COMBOlill

=1

58

EP 0 481 569 A2

F I G . 4 G

BUILD_TREES (CLINT)
4 2 2

C—\ 4 2 0
I

C L1MPUTE BIN
NUMBER OF
NEXT BIN

422

rES

4 2 4

TEMP_CNT=
QUAI PER_CDMBD

IBIN.CDMBOlil]

426

TEMP_CNT=
PACKS_PER_BIN[i]

I 428

QUAL_CNT=
QUAI CNT+
TEMP_CNT

INCREMENT
TREE.CNT

QUAI CNT=
TEMP.CNT

4 3 8

FDR EACH BIN
INCLUDED IN THIS

FDRCED CDMBINATIDN.
SET CDRRESPDNDING

ELEMENT IN
ARRAY

MAJ_TREE=
TREE.CNT

4 4 0

BIN_CDMBD_
USAGE [BIN.CDMBDIil]

=1

4 4 6

yrc PREPARE
>±z * FILE

SRTREE.DAT

59

EP 0 481 569 A2

F I G . A H

TREESORT
4 5 0

DETERMINE
NUMBER IHF
ENTRIES PER
EACH TREE

I 4 5 2

SET MEMORY
POINTER AND
FLAG FOR
EACH TREE
WHICH WILL
FIT INTO
MEMORY

4 5 4
L z

AS EACH
RECORD IN
FILE IS READ.
COPY RECORD
INTO MEMDRY
PER MEMORY
POINTER FOR
TREE TO
WHICH RECORD
BELONGS

60

EP 0 481 569 A2

FIRST_PASS_SACKS
n o . 4 i

4 7 2
4 7 0

READ INITIAL ^
RECORD IN FILE <+ INITIALIZE

FULLS0R2.TMP

-1 X 4

OBTAIN NEXT
RECORD

4 8 4
^ X

SET FLAG
IN ARRAY

BINJJSAGE

4 7 8
SUM PARTIAL

PACKAGE COUNTS

L L 4 8 6

ADD BIN PIECE
COUNTS TO

SACK_BIN_CNT

CLEAR FLAG
ALL_FR0M_PASS1

4 8 8

SET FLAG
ALI FROM_

PASS1
DEPENDING

ON SACK
TYPE AND
VALUE OF
CDUNTER

SACK.CNT

X \ 4 9 0

X S A C K _ C N T = \
/ SACK_BIN_CNT \ Y E S
'AND FLAG ALL_FROM_>-»"
\ PASS 1 SET? /

X / 4 9 4

4 9 3

INCREMENT
FIRST_PASS_SACKS

4 9 2

REINITIALIZE

I

MARK THE
COMPLETELY

SDRTED BINS WITH
A UNIQUE
PACKAGE

IDENTIFIER
(FIRST_PASS_SACKS)

YES

4 9 6

PROCESS
LAST

PACKAGE

4 9 7

GO TO
FUNCTION

MAKE.
BAGS

61

EP 0 481 569 A2

F I G . 4 J 1
MAKL_BAGS

5 0 0

1N1IIALIZE
LAST_BAG_ASSIGNED=0

1 5 0 2

ASSIGN I- IKS I BAG
THE MIXED

STATES BAG 5 0 4

1NII1ALIZE
LAST_ID=-1

LAST_TYPE=-1
FIRST_PASS.BAGS.CNT=Q

t 5 0 6

516

□BTAIN
SACK_ZIP_ID

YES

FIRST_PASS.BAG.CNT
+=SACK.PACKAGE.CNT

KLAL) KLLUKD
FROM FILE

FULLSDR2.TMP

/ LAST \ Y F S
RECORD FROM/--—-
\ SAME /

\ S A C K ? /

5 2 2

SACK.NO
BAG.NO

5 2 4

WRITE TO FILE
FULLSLIRT

5 4 9

WRITE TO
FILE

BAGTAG_
HANDLE

550

GO TO
STEP
5 5 4

rES 512

514

rfRITE TU FILE
FULLSORT

5 4 8

_AST_TYPE=
SACK.STYPE

12

EP 0 481 569 A2

F I G 4 J 2

5 2 8

[YES i < 1
m WRITE TD FILE

BAGTAG_HANDLE
r

CDMPUTE VALUE OF
PREV_ASSIGN_PTR

DEPENDING ON
SACK.STYPE

5 3 0

*PREV_ASSIGN_
PTR=BAG_N0

5 4 4
S

CREATE RECORD
FDR ARRAY

FRST_PASS_BAGS

* -

„ LAST_ID=
SACK_ZIP_ID

5 4 6

63

EP 0 481 569 A2

r i O . 4 K

MAKE_BAGS (CONTINUED)

INITIALIZE CUS.GRDUP = 0
LAST_ID = -1. LAST.TYPE = -1

BAG_DATA. CNT = 0 ,

I 5 5 6

READ SRTREE.DAT
RECORD

ANY S R T R E E \ N D
RECDRDS > —

^ R E M A I N I N G ? /

INCREMENT
CUS_GRDUP

5 6 2

5 6 4

ASSIGN PACKAGES
PER BIN BIN_CNT[].

I
5 6 5

SET SDRTREC3.TMP FILE
SEEK POSITION FDR NEXT

PACKAGE RECDRD

ND

JL 5 6 6
/ a n y V "

X MDRE \
BINS A S S I G N E D ^

x TD THIS /
\ G R O U P ? /

YES

5 5 4

. 5 7 2

MAKE. CLIENT. CNTS

5 6 7

5 6 8

READ SORTREC3.TMP
RECDRD

5 7 0

PRDCESS RECDRD AS
AS FIRST PASS

PACKAGE RECDRD

64

EP 0 481 569 A2

F I G 4 L

MAKE_CLIENT_COUNTS

, , 6 0 0
INITIALIZE

6 0 2 6 0 4 6 0 6

READ NEXT
RECDRD IN FILE

COUNT.DAT

FIND RECDRD IN
FILE SACK2.TMP

HAVING SAME
ZIP CODE AS

RECORD IN FILE
CDUNT.DAT

610

CLIENTlil. QUAL_T0TC0UNT5
CNT.REC0RD.CNT5

CLIENTlil. QUAL_T0T.ZIP4 +
CNT_REC0RD.ZIP4

CLIENTlil. QUAI TOT. BARCODE
CNT.RECORD.BARCDDE

CLIENTli].NQUAL_T0T.C0UNT5 +
CNT.REC0RD.CNT5

CLIENTlil.NQUAL_T0T.ZIP4 + =
CNT.RECORD ZIP4

CLIENTlil.NQUAl TOT.BARCDDE +
CNT.RECORD.BARCDDE

614 616

/ES ̂ COMPUTE * TOTALS

65

EP 0 481 569 A2

CORRELATE_BAGS

l
,

I

F I G 4 M 1

6 4 8

READ RECORD FROM
FILE SACK2.TMP

WRITE
RECORD
TO FILE

SACK3.TMP

I

6 4 2

GET PTYPE

SACK.NO
=1

NO 6 5 0

OBTAIN
PACKAGE_ZIP_ID

6 5 2

INITIALIZE
MATCH_FLAG=FALSE
CURRENT_INDEX=0

6 5 4

READ RECORD FROM
FILE SORTREC DAT

6 5 6

OBTAIN
CURRENT.PTR

6 4 0

ASSIGN
BAG NO

6 6 2

WRITE RECORD
TO FILE

SACK3.TMP

I 6 6 4

SET MATCH.
FLAG TRUE

1

INCREMENT
CURRENT.

INDEX

6 6 6

6 6 8

YES^ MATCH.FLAG
v TRUE? /

fNO
6 7 0

Nn / LAST \ Y E S
■ ^ < R E C O R D ? > ^ -

66

EP 0 481 569 A2

F I G 4 M B

ASSIGN
BAG NO

6 8 2
I r >

WRITE RECORD
TO FILE

SACK3.TMP

6 8 4
* ^

SET MATCH.
FLAG TRUE

6 8 6

6 9 2

ERROR

67

EP 0 481 569 A2

SAVE.ANAL.CNT , - 7 0 0

n o . 4 N

READ INITIAL
SACK3.TMP RECDRD

7 0 2

READ
CDUNT.DAT

RECDRD

YES
S E T .
POST
CNTS

. 7 0 6

/ SACK3.TMP\.
' RECDRD IN \
SAME ZIP CDDE AS

\ CDUNT.DAT /
\ RECDRD? /

710

YES

READ
SACK3.TMP

RECDRD

WRITE
ANAL.CNT

RECDRD WITH
INFD FRDM

BDTH
CDUNT.DAT

AND
SACK3TMP

7 0 8

SET.PDST.CNTS

I r - 7 3 0
READ RECDRD

FRDM FILE
ANAL_CNT.DAT

7 3 8

INCREASE
'QUALIFYING
COUNTERS'

7 4 0

INCREASE
"NDN-QUALIFYING

COUNTERS'
I

INCLUDE REJECT
COUNTS

I

7 4 2

WRITE FILE
PSS1AGGR.DAT

I

7 4 4

7 4 6

WRITE FILE
PSS2AGGR.DAT

68

	bibliography
	description
	claims
	drawings

