

① Veröffentlichungsnummer: 0 482 360 A2

EUROPÄISCHE PATENTANMELDUNG (12)

(21) Anmeldenummer: 91116078.6

(51) Int. Cl.5: **B30B** 1/18

2 Anmeldetag: 21.09.91

Priorität: 25.10.90 DE 9014783 U

43 Veröffentlichungstag der Anmeldung: 29.04.92 Patentblatt 92/18

 Benannte Vertragsstaaten: **DE FR IT SE**

(71) Anmelder: ROBERT BOSCH GMBH Postfach 30 02 20 W-7000 Stuttgart 30(DE)

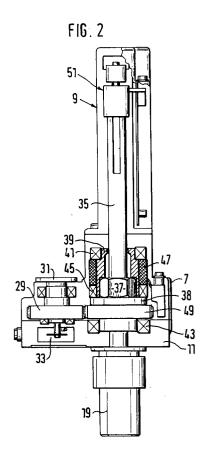
Erfinder: Henzler, Guenther, Dipl.-Ing.

Weilstetterweg 3

W-7000 Stuttgart 80(DE)

Erfinder: Hettich, Alfred, Dipl.-Ing.

Hutwiesenweg 8


W-7022 Leinfelden-Echterdingen(DE) Erfinder: Bader, Richard, Dipl.-Ing.

Gartenstrasse 52

W-7000 Stuttgart 80(DE)

Motorgetriebene Presse mit Kraft- und Wegsensoren.

57) Eine Presse mit motorischem Antrieb mit Kraftund Wegsensoren (33, 47) zur Überwachung der Press-Arbeitsabläufe, insbesondere Montagepresse (1) mit Elektromotor (3), die ein insbesondere mehrteiliges Pressengehäuse (7, 9, 11, 13, 15, 17) besitzt, das eine einen Pressenstempel (19) tragende Gewindespindel (35) und eine diese umgreifende Mutter (37) sowie eine Spindellagerung (41, 43, 45) trägt, ist dadurch besonders kompakt und störsicher, daß in die Konstruktion der Montagepresse (1) die Kraft- und Wegsensoren (33, 47) integriert sind.

10

15

20

25

30

40

50

55

Stand der Technik

Die Erfindung geht aus von einer Presse nach der Gattung des Anspruchs 1.

Bisher bekannt sind hydraulisch, elektrisch oder dgl. angetriebene Pressen mit für die jeweiligen Preßzwecke nachträglich und ohne Änderung der Pressenkonstruktion angepaßten Sensoranordnungen. Mit den Sensoren ist die Preßkraft und deren Verlauf über den Preßweg kontrollier- und steuerbar. Aufgrund der Sonderanfertigungen der Sensoranordnungen können die entsprechend ausgerüsteten Pressen nur für einen engen Aufgabenbereich eingesetzt werden. Bei einem Wechsel von einer auf eine andere Preßarbeit, wie z.B. vom Stanzen auf Prägen oder Nieten oder Bördeln oder dgl., mußten unter Umständen die Pressen umgerüstet bzw. die Sensoren angepaßt werden.

Bei den bekannten Pressen ist eine Spindel axial feststehend, drehbar in einer drehfest, axial verschieblich gelagerten Mutter geführt. Die Mutter stützt sich dabei axial an der Spindel ab. Sie kann an ihrem freien Ende ein Preßwerkzeug tragen und ist mit hohem lagertechnischen Aufwand im Pressengehäuse geführt. Außerdem haben die herkömmlichen Spindel/Mutter-Anordnungen, kurz auch Spindeltrieb genannt, ein großes Volumen. Dementsprechend groß und schwer sind die zugehörigen Pressen.

Vorteile der Erfindung

Die erfindungsgemäße Presse mit den kennzeichnenden Merkmalen des Anspruchs 1 hat demgegenüber den Vorteil, daß sie besonders kompakt, meßgenau, störunempfindlich und bedienungsfreundlich für viele unterschiedliche Zwecke geeignet ist, wie zum Bördeln, Prägen, Verstemmen oder dgl., ohne daß ein verfahrensspezifisches Umrüsten der Meßeinrichtung notwendig ist. Außerdem wird gegenüber vergleichbaren Pressenkonstruktionen für die Lagerung des Spindeltriebes ein Radiallager eingespart. Damit können mögliche Fehler wie etwa zu große, zu kleine oder nach unterschiedlichen Seiten hin konische Bohrungen oder Bolzen, schräges Ansetzen oder Fressen zuverlässig erkannt werden. Mangelhafte Preßverbindungen können rechtzeitig aussortiert werden.

Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.

Zeichnung

Ein Ausführungsbeispiel der Erfindung ist in der nachfolgenden Beschreibung anhand der zugehörigen Zeichnung näher erläutert. Es zeigen Figur 1 schematisch und teilweise geschnitten dargestellt den Gesamtaufbau der Presse, Figur 2 die Gewindespindelbaugruppe mit Getriebe und die Figur 3 eine ausschnittsweise Darstellung des oberen Gewindespindelbereiches.

Beschreibung des Ausführungsbeispiels

Die in der Figur 1 gezeigte Presse zeigt auf der in Betrachtungsrichtung linken Seite einen Elektroantrieb 3, an den ein Getriebe 5 geflanscht ist. Das Getriebe 5 ist an ein Spindeltriebgehäuse 7 montiert, das ein sich parallel zum Getriebe 5 erstreckendes Spindelgehäuse 9 trägt. Auf seiner dem Spindelgehäuse 9 abgewandten Seite ist das Spindeltriebgehäuse 7 mit einem Pressengestell 11 verbunden, das über Tragsäulen 13, 15 mit einer ein Fundament bildenden Grundplatte 17 verbunden ist. Aus dem Spindeltriebgehäuse 7, bzw. dem Pressengestell 11 ragt in Richtung Grundplatte 17 ein Pressenstempel 19, der an seinem freien Ende eine Werkzeugaufnahme 21 hält, in der ein dornartiges Werkstück 23 sitzt. Auf der Grundplatte 17 sitzt eine amboßartige Werkzeugaufnahme 25. Diese hält ein weiteres, nabenartiges Werkstück 27 fest, in das das Werkstück 23 zu pressen ist.

Die in Figur 2 schematisch dargestellte Baugruppe der Presse 1 entsprechend der Figur 1 zeigt im Spindeltriebgehäuse 7 ein Vorgelege 29, dessen Eingangswelle 31 über das hier nicht dargestellte Getriebe 5 (entsprechend der Figur 1) angetrieben wird. Ein unmittelbar mit dem Vorgelege 29 gekoppelter Rotationsgeber dient als Wegsensor 33 zum Messen des Vorschubes der Gewindespindel 35 und ist innerhalb des Spindeltriebgehäuses 7 geschützt angeordnet.

Parallel zur Eingangswelle 31 ist im Spindeltriebgehäuse 7 eine Gewindespindel 35 in Gestalt einer Planetenrollen-Gewindespindel gelagert. Führend umgriffen ist diese Gewindespindel 35 von einer Mutter 37. Die Mutter 37 wird von einer Lagerhülse 39 drehfest umgriffen. Zwischen der Mutter 37 und der Lagerhülse 39 ist ein bestimmtes Akialspiel eingestellt. Das Akialspiel muß hierbei dem Arbeitsweg des Kraftsensors 47 entsprechen, den dieser benötigt, um die wirkenden Kräfte anzuzeigen.

Die Lagerhülse 39 ist gemeinsam mit der Gewindespindel 35 und der Mutter 37 über ein oberes und ein unteres Radialkugellager 41, 43 im Spindeltriebgehäuse 7 gelagert. Zwischen einem Bund 38 der Mutter 37 stützt sich über den gehäusefesten Ring eines Axialkugellagers 45 ein Kraftmeßring 47 am feststehenden Außenring des oberen Radialkugellagers 41 ab. An den Bund 38 mit diesem axial gekoppelt schließt sich ein Antriebszahnrad 49 an, das zum Antrieb der Mutter 37 im Eingriff mit einem Zahnrad des Vorgeleges 29 steht. Auf ihrer, dem Pressenstempel 19 abgewandten Seite der Gewindespindel 35 ist im obe-

ren Teil des Spindelgehäuses 9 eine nicht im einzelnen dargestellte Verdrehsicherung 51 angeordnet, die zugleich eine Axialführung für die Gewindespindel 35 bildet.

3

Nachfolgend wird die Funktion der Presse entsprechend der Figuren 1 und 2 erläutert: Zum Zusammenfügen der Werkstücke 23, 27 wird der Elektroantrieb 3 durch Betätigen eines nicht dargestellten Schalters gestartet. Über das Getriebe 5, das Vorgelege 29 und das Antriebszahnrad 49 wird die Mutter 37 mit der Lagerhülse 39 in Drehung versetzt. Je nach Drehrichtung des Elektroantriebs 3 wird die Gewindespindel 35 axial in Richtung der Grundplatte 17 bzw. von dieser weg bewegt. Beim Vorschub der Gewindespindel 35 zur Grundplatte 17 beginnt der Preßvorgang, sobald das Werkstück 23 das Werkstück 27 berührt. Der sich dabei aufbauende Preßdruck wird über den Pressenstempel 19 und die Gewindespindel 35 auf die Mutter 37, den Bund 38 und weiter auf das Axiallager 45 übertragen. Vom Axiallager 45 wird die Axialkraft über den Kraftmeßring 47 auf den Außenring des Radialkugellagers 41 übertragen. Über diesen wird die Preßkraft vom Spindeltriebgehäuse 7, dem Pressengestell 11, den Säulen 13, 15 und der Grundplatte 17 aufgenommen. Die Größe der Preßkraft wird durch den Kraftmeßring 47 ermittelt und über nicht dargestellte Auswertegeräte angezeigt. In Verbindung mit der gleichzeitigen Aufzeichnung des zurückgelegten Preßweges des Werkstücks 23 durch den Rotationsgeber 33 ist der Preßkraftverlauf über den Preßweg darstellbar. Durch Erfassen der Abweichungen zwischen dem gemessenen und dem in Versuchen ermittelten, idealen Preßkraftverlauf kann der tatsächliche Preßkraftverlauf genau beurteilt werden. Daraus ergibt sich eine besonders zuverlässige Qualitätskontrolle für Preßverbindun-

Für die Anwendung vielfältiger, verfahrensspezifischer Werkzeuge unterschiedlicher Form und Größe ist der Montageraum der Presse im Bereich der Werkzeugaufnahme ausreichend bemessen und frei von störenden, empfindlichen Meßanordnungen und Kabeln zugänglich. Durch die integrierte Anordnung des Kraftsensors 47 unmittelbar im Abstützbereich zwischen der Mutter 37 bzw. der Gewindespindel 35 und dem Spindeltriebgehäuse 7 ist ein besonders feinfühliges, störungsfreies Messen der Preßkraft möglich.

Entsprechend der in Figur 3 dargestellten Einzelheit der Verdrehsicherung für die Gewindespindel 35, ist mit der Gewindespindel 35 an derem oberen Ende ein Schlitten 55 fest verbunden. Dieser hat die Form eines zweiarmigen Hebels, wobei jeder Arm eine gleitlagerartige Bohrung 56, 58 trägt, von der je eine Säule 57, 59 parallel zur Gewindespindel 35 umgriffen ist. Die Säulen 57, 59 sind an ihrem oberen Ende in einem gehäusefest

angeordneten Joch 53 und an ihren nicht mit dargestellten unteren Enden im Spindeltriebgehäuse 7 verankert. Die beschriebene Verdrehsicherung mit Parallelführung der Gewindespindel 35 ermöglicht den Verzicht auf Führungsmittel im Bereich deren freien Endes nahe dem Pressenstempel 19.

Beim Drehen der Mutter 37 wird das auf die Gewindespindel 35 übertragene minimale Reibungs- und Drehmoment über den Schlitten 55 und die Säulen 57, 59 auf das Joch 53 bzw. das Spindelgehäuse 9 übertragen. Durch das Gleiten des Schlittens 55 an den Säulen 57, 59 ist die Gewindespindel 35 besonders präzise geführt. Daraus resultiert deren sehr ruhiger, schwingungsarmer Vorschub.

Bei einem nichtdargestellten Ausführungsbeispiel der Erfindung ist der Kraftsensor als Kraftmeßring mit der Lagerhülse mitdrehend angeordnet und mittels elektrischer Schleifkontakte mit einer Auswerteeinheit verbunden.

Bei einem weiteren, nichtdargestellten Ausführungsbeispiel der Erfindung ist der Kraftsensor in Gestalt eines oder mehrerer mit Dehnmeßstreifen bestückter Kragarme bzw. Biegebalken angeordnet. Diese sind an einem Ende gehäusefest eingespannt, mit dem anderen Ende stützen sie sich quer zu ihrer Längsachse an der Mutter oder der Gewindespindel derart ab, daß sie, proportional zur Preßkraft, dem Akialspiel der Mutter folgend, gebogen werden. Eine derartige Sensoranordnung hat eine besonders hohe Meßempfindlichkeit.

Bei einem zusätzlichen, nicht dargestellten Ausführungsbeispiel der Erfindung ist die Gewindespindel mit einer zentralen Längsbohrung versehen, in der der Kraftsensor und die zugehörigen Elektroanschlüsse festgehalten werden. Durch Abstützen an einer benachbarten Stirnfläche, beispielsweise des Stempels, oder, bei geteilter Ausführung der Gewindespindel, eines Teilstückes der Gewindespindel, ist der Kraftsensor in den Kraftflußeingeschlossen. Auch hier muß ein Axialspiel vorhanden sein, das dem Mindestverformungsweg des Sensors entspricht, den dieser zur Anzeige der vorhandenen Druckkräfte benötigt.

Eine drehbare Anordnung des Kraftsensors, beispielsweise mit der Mutter gekoppelt ist möglich, wenn dieser beispielsweise über Schleifkontakte elektrisch nach außen verbunden ist.

In einem weiteren anderen, nichtdargestellten Ausführungsbeispiel der Erfindung kann als Kraftsensor auch ein Torsionssensor oder dgl. verwendet werden.

Für die nichtdargestellten Ausführungsbeispiele der erfindungsgemäßen Presse können statt des Gewindespindeltriebes auch andere, für die Umwandlung einer Dreh- in eine Längsbewegung übliche Mittel, wie beispielsweise Schnecken- oder Reibradgetriebe verwendet werden. Als Wegsensor

55

5

15

20

25

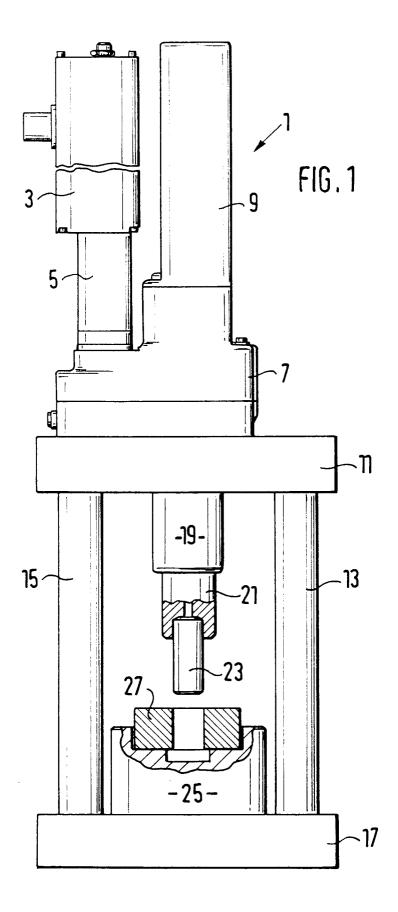
35

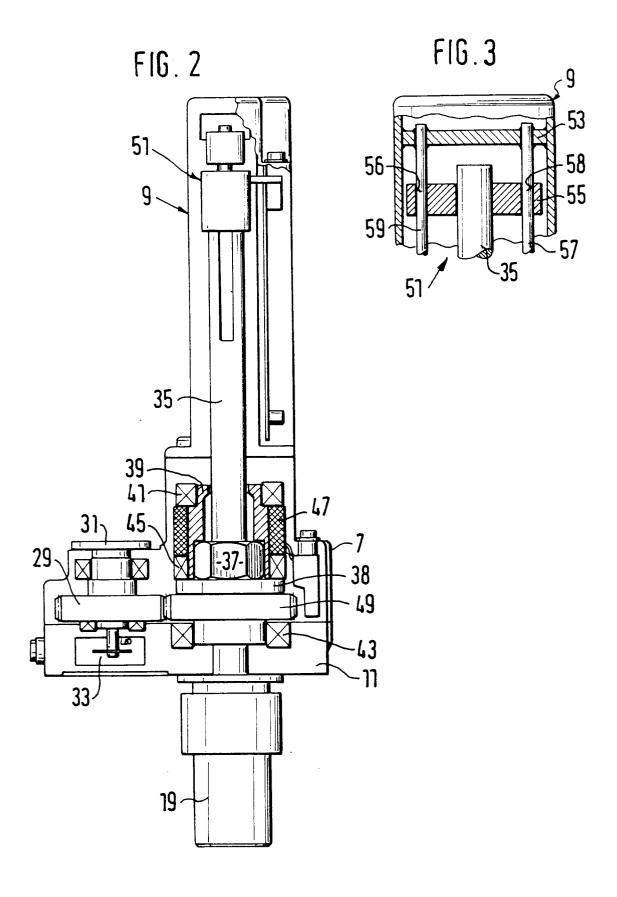
40

45

50

55


kann dabei auch ein linearer Geber zur direkten, mit der Gewindespindel gekoppelten Wegmessung eingesetzt werden.


Patentansprüche

- 1. Motorgetriebene Presse mit insbesondere einen Arbeitsweg benötigenden Weg- und Kraftsensoren (33, 47) zur Überwachung des Pressvorganges, insbesondere Montagepresse (1) mit Elektroantrieb (3), die ein mehrteiliges Pressengehäuse (7, 9, 11, 13, 15, 17) besitzt, das einen Spindeltrieb aufnimmt, der eine Gewindespindel (35) mit Pressenstempel (19) und eine diese umgreifende Mutter (37) sowie eine Spindellagerung (41, 43, 45) umfaßt, dadurch gekennzeichnet, daß die Montagepresse (1) im Inneren die Weg- und Kraftsensoren (33, 47) in den Preßkraftfluß einbindend und in einem dafür vorgesehenen Raum integrierend aufnimmt.
- Presse nach Anspruch 1, dadurch gekennzeichnet, daß der Kraftsensor (47) zwischen dem Spindeltrieb und dem Spindeltriebgehäuse (7) angeordnet ist.
- 3. Presse nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Gewindespindel (35) drehfest, axial verschiebbar und daß die Mutter (37) drehbar, axial unverschiebbar mit einem dem Arbeitsweg des Kraftsensors (47) entsprechenden Akialspiel zum Spindeltriebgehäuse (7) angeordnet ist.
- 4. Presse nach Anspruch 3, dadurch gekennzeichnet, daß eine Lagerhülse (39) die Mutter (37) drehfest umgreift, sich mit einem Ende uber Radiallager (41) am Spindeltriebgehäuse (7) und mit dem anderen Ende sich über ein Axiallager (45) an der Mutter (37) abstützt und daß die Mutter (37) in der Lagerhülse (39) mit einem dem Arbeitsweg des Kraftsensors (47) entsprechenden Axialspiel festgehalten wird.
- 5. Presse nach Anspruch 4, dadurch gekennzeichnet, daß der Kraftsensor (47) in Gestalt eines gehäusefest angeordneten Kraftmeßringes die Lagerhülse (39) konzentrisch umgreift, sich mit einem Ende am Außenring des Radiallagers (41) und mit dem anderen Ende am gehäusefesten Ring des Axiallagers (45) axial abstützt.
- 6. Presse nach Anspruch 5, dadurch gekennzeichnet, daß die Gewindespindel (35) eine an sich bekannte Planetenrollen-Gewindespindel ist und daß der Wegsensor (33), insbesondere

- ein Rotationsgeber, mit dem Antrieb innerhalb des Pressengehäuses (7, 9, 11, 13, 15, 17) nahe der Gewindespindel (35) gekoppelt ist.
- 7. Presse nach Anspruch 6, dadurch gekennzeichnet, daß die Gewindespindel (35) im Bereich ihres freien Endes auf der Seite des Pressenstempels (19) lagerlos ist.
- 70 8. Presse nach einem der Ansprüche 1 bis 4 und 6 bis 7, dadurch gekennzeichnet, daß der Kraftsensor (47) mit der Mutter (37) drehend angeordnet und mit elektrischen Schleifkontakten insbesondere Schleifringen versehen ist.
 - 9. Presse nach Anspruch 8, dadurch gekennzeichnet, daß der Kraftsensor (47) ein mit Dehnmeßstreifen bestückter Kragarm in Gestalt mindestens eines gehäusefest eingespannten Biegebalkens ist, der sich mit seinem freien Ende quer zu seiner Längsachse auf der Mutter (37) abstützt und durch diese entsprechend dem vorhandenen Preßdruck elastisch verformbar ist.
 - 10. Presse nach Anspruch 9, dadurch gekennzeichnet, daß der Kraftsensor (47) zwischen zwei Stirnflächen im Inneren einer geteilten Gewindespindel (35) angeordnet ist, wobei die Stirnflächen ein dem Arbeitsweg des Kraftsensors (47) entsprechendes Axialspiel haben.
 - 11. Presse nach Anspruch 10, dadurch gekennzeichnet, daß die Gewindespindel (35) an ihrem oberen Ende drehfest einen Schlitten (55) trägt, der verschiebbar an parallel zur Gewindespindel (35) angeordneten Säulen (55, 59) geführt ist und der die Gewindespindel (35) gegen Verdrehung sichert und axial führt.

4

