(19) |
 |
|
(11) |
EP 0 486 556 B1 |
(12) |
EUROPEAN PATENT SPECIFICATION |
(45) |
Mention of the grant of the patent: |
|
08.05.1996 Bulletin 1996/19 |
(22) |
Date of filing: 05.07.1990 |
|
(51) |
International Patent Classification (IPC)6: F04B 23/04 |
(86) |
International application number: |
|
PCT/US9003/786 |
(87) |
International publication number: |
|
WO 9102/158 (21.02.1991 Gazette 1991/05) |
|
(54) |
PULSELESS PISTON PUMP
IMPULSFREIE KOLBENPUMPE
POMPE A PISTON SANS IMPULSIONS
|
(84) |
Designated Contracting States: |
|
DE FR GB IT |
(30) |
Priority: |
08.08.1989 US 391097
|
(43) |
Date of publication of application: |
|
27.05.1992 Bulletin 1992/22 |
(73) |
Proprietor: GRACO INC. |
|
Minneapolis
Minnesota 55440 (US) |
|
(72) |
Inventors: |
|
- LEHRKE, Kenneth, E.
Maple Grove, MN 55369 (US)
- McFADDEN, Bruce, A.
Orono, MN 55391 (US)
|
(74) |
Representative: Sturt, Clifford Mark et al |
|
J. MILLER & CO.
34 Bedford Row,
Holborn London WC1R 4JH London WC1R 4JH (GB) |
(56) |
References cited: :
DE-A- 2 021 651 DE-A- 3 113 737 US-A- 2 572 952 US-A- 3 680 985 US-A- 4 453 898
|
DE-A- 2 608 664 DE-C- 437 298 US-A- 2 711 137 US-A- 3 945 768
|
|
|
|
|
|
|
|
|
Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
BACKGROUND OF THE INVENTION
[0001] A myriad of different types of pumps are known for use in pumping various materials.
When it is desired to pump difficult materials, i.e., those that are highly viscous
and/or abrasive, the number of choices of pumps suitable for such applications drops
substantially, particularly when it is desired to pump such materials at relatively
elevated pressures and/or at predetermined flow rates. While reciprocating piston
pumps have been widely used in such applications, such pumps suffer from having pulses
in the pressure output of the pumps during piston reversal. Such pumps also suffer
to a certain extent from leakage and seepage of pumped material past the seals which
is particularly critical when the material is air-sensitive such as isocyanates. This
leakage is in both directions and can cause environmental contamination, pumped fluid
contamination and regenerative abrasive wear damage to the pump. The reduction and/or
elimination of pulses in the output is particularly important for circulating systems,
fine spray applications and proportional metering to produce constant output.
[0002] Centrifugal pumps are capable of pumping abrasive materials without pressure pulses
but suffer from the problems of not being positive displacement type (flow rate is
not directly related to speed), inefficiency, shaft seal leakage and impose a high
degree of shear on materials which may be shear-sensitive.
[0003] Gear pumps are commonly used for metering and proportioning apparatus due their ease
in synchronising with other pumps. Such products, however, are ill-suited for pumping
of abrasive materials which cause unacceptable wear.
[0004] US-A-4,453,898 discloses a dual-piston reciprocating pump having a rotating cam driving
pistons spring-urged against it and reciprocable within a chamber having inlet and
outlet check valves, and being sealed thereinto. The profile of the cam is chosen
so as to synchronise the pistons for pumping and filling to minimise pressure pulsations
and produce a substantially constant flow of fluid. The cam profile, which is engaged
by rollers attached to the pistons on opposite faces, provides a parabolic rise, during
rotation, from 0° to 30° to create an hydraulic pulse and a dwell from 345° to 360°
to ensure complete cylinder refill. It has been found that this does not give pulseless
output, which it is the object of the present invention to provide.
[0005] US-A-3,680,985 discloses a pump having a single piston which is reciprocated into
and out of a cylinder to force fluid from the cylinder into a conduit. The piston
is in a chamber to which inlet and outlet check valves have access and is sealingly
connected to the reciprocating means by a diaphragm.
[0006] US-A-2,711,137 discloses a chemical feed pump with a piston reciprocated by a piston
rod, the piston and rod carried by a diaphragm sealing the pumping chamber from the
environment.
[0007] DE-A-3113737 discloses a multi-piston pump with a rotating cam whose profile is smoothly
curved and engaged by each of the pistons through rollers.
[0008] DE-A-2608664 discloses a two piston pump driven by a cam whose profile is such as
to give a dwell at the crossover points.
[0009] DE-A-437298 discloses a multi-piston pump driven by a cam whose profile is smoothly
curved in Archimedean spirals and a dwell.
[0010] It has been found by the applicants that whilst a cam profile might be designed for
theoretically pulseless output, this would not be achieved in practice.
[0011] It is therefore an object of this invention to provide a pump capable of handling
such materials while providing substantially pulseless operation. It is further an
object of this invention to provide such a pump which is easily manufactured and which
is capable of being operated at varying speeds, flow rates and pressures in an efficient
manner. It is yet a further object of this invention to provide such a pump which
has leak-proof operation to avoid contamination of the environment in which the pump
is located or contamination of the pumped fluid by the environment.
[0012] According to the invention, there is provided a fluid pump for providing substantially
pulseless output, comprising a plurality of piston-cylinder combinations , cam means
for driving each piston in its cylinder in a reciprocating motion alternating between
intake strokes and pumping strokes, so that at least one piston is in a pumping stroke
at all times and the sum of the velocities of the pistons in the pumping strokes is
substantially constant at any given speed of the cam means, a pressure seal between
each piston and its cylinder for sealing material to be pumped, and inlet check valves,
and a sealing diaphragm attached to a housing and to each piston intermediate the
high pressure seal and the cam means to form a chamber to contain any material that
might leak past the high pressure seal and as a barrier between the material to be
pumped and the environment, the cam means having a blip for increasing the velocity
sum slightly near the point of check valve seating to compensate for the non-linearity
of pump output during seating of the check valves.
[0013] In an embodiment of the invention described hereinafter, a multi-piston pump is driven
by a cam. The use of pistons in conjunction with diaphragms allows a much higher pressure
output capability that a simple diaphragm pump and a more positive displacement action
than diaphragm pumps. The cam is powered by a DC motor or other type of conventional
variable speed rotary driving mechanism (electric, hydraulic or the like). When used
with these drives, the pump can be stalled against pressure just like a typical air-operated
reciprocating piston pump. This mode allows adjustable constant flow. A constant speed
motor driving the pump would use a pressure switch to turn the motor on and off. Because
the motion input to the pump is rotary, it can be easily synchronized with another
pump(s) to provide a plural component material proportioning system or with a conveyor
to more fully automate production.
[0014] The cam profile is designed so that the reciprocating pistons (which alternate between
pumping and intake strokes) have a net velocity sum of their pumping strokes which
is generally constant. By doing so, one essentially can eliminate pressure losses
that create pulses which result from the piston reversal of a conventional piston
pump. In the preferred embodiment, two pistons are used although it can be appreciated
that more pistons may be used if desired.
[0015] As shown in this application, intake flow is controlled by check valves which typically
take a discreet amount of time to seat. Fluid can flow backwards during this time
causing small pump output pressure variations during the valve seating but such can
be compensated for by shaping the cam profile to provide a nearly totally pulseless
operation.
[0016] Each piston is sealed in its respective cylinder by a relatively conventional type
seal mechanism. Attached to the piston on the low pressure intake side of the seal
is a diaphragm which serves to isolate the fluid from the environment and assure a
leak proof device. As used in this application, the term "diaphragm" is understood
to include membranes, bellows or other such structures performing a similar function.
An intake passage provides flow directly over the piston between the main seal and
the diaphragm to prevent the build-up and hardening of material in the intake section
and on the piston. The intake flow then passes through the intake check and into the
pumping chamber and then exits through an outlet passage which also has a check valve.
This flow path minimises stagnant areas of non-flowing fluid where fluids may settle
out and/or harden. The passage is oriented to minimise air entrapment and continually
replenish the fluid in the intake area.
[0017] The cam can either be of a push-pull type, that is, where the roller rides in a track
or can be a conventional outer profile cam wherein the piston assembly roller is spring
loaded against the cam to maintain it in position.
[0018] The scope of the invention is defined by the appended claims; and how it can be carried
into effect is hereinafter particularly described with reference to the accompanying
drawings wherein:-
Figure 1 is an elevation of a pump according to the present invention, partly broken
away and partly in section;
Figure 2 is a plan from below in the direction of the arrows 2-2 of Figure 1, showing
part of the pump including the cam;
Figure 3 shows an alternative embodiment of cam; and
Figure 3A is a chart showing the velocities and outputs of a two piston pump.
[0019] A pump 10 (Figure 1) according to the present invention, comprises a main housing
12 in which runs a shaft 14 having a gear 16 mounted thereon. A motor (not shown)
which may be a DC brushless type motor, drives gear 16 and shaft 14 to turn cam 18
mounted on the end thereof. A cam follower assembly 20 rides on cam 18 and comprises
a follower housing 22 having a follower 24 mounted thereto via shaft 26. Follower
housing 22 has guide rollers 28 mounted on the outside thereof which run in slots
30 in housing 12. Follower assembly 20 is spring loaded against cam 18 by means of
a spring 32.
[0020] Follower assembly 20 is attached to a piston 34 and located in between follower 22
and piston 34 is a diaphragm 36. Those three parts are fastened together by a bolt
38 which passes consecutively therethrough. An initial inlet passage 40 leads into
a flushing chamber 42 located about piston 34 between diaphragm 36 and main pressure
seal 44 in cylinder 46. Flushing chamber 42 runs circumferentially around piston 34
thus inlet flow therethrough serves to flush material through which might potentially
harden off the surface of piston 34. Inlet flow thence passes through passage 48 in
to main inlet passage 50 which has located in series therein a check valve 52 of a
conventional nature.
[0021] Pumping chamber 54 is located in the end of cylinder 46 over piston 34 and also has
connected thereto outlet passage 56 having an outlet check 58 of conventional design
therein. When the device is positioned as oriented in Figure 1, that is with the inlet
and outlet ports 40 and 56 respectively facing upwardly, the product is designed so
as to prevent the accumulation of air or other gas within pockets of the pump, that
is, all such bubbles and gas may freely flow upwardly and out of the pump thereby
reducing problems of priming and assuring full volumetric flow without air entrapment.
It can be seen as piston 34 moves upwardly into pumping chamber 54, diaphragm 36 flexes
upwardly to the point of nearly touching the upper surface 42a of flushing chamber
42 thereby continually assuring a fresh flow of material through the pump and the
prevention of stagnant flow zones therein.
[0022] While the embodiment shown in the drawing figures utilizes a spring loaded follower
and cam, it can also be appreciated that the cam drive may be of a different type
wherein no such spring is necessary. Such a type of cam is often referred to as a
desmodromic type cam, and an example of such a cam is shown in Figure 3 wherein the
roller is guided in a track 60 and is driven in both its pumping and intake strokes.
It can also be appreciated that seal 44 may be of any conventional type which is capable
of performing a proper sealing function, however, it can be appreciated that because
diaphragm 36 is subjected to relatively low pressures, its service life will be dramatically
increased to maintain the pump in a substantially leak-free state. It can also be
seen that if seal 44 should leak, its leakage is from the high pressure side back
into the inlet rather than into the environment.
[0023] Up to this point, the description has been of a theoretically perfect pump. In reality,
check valve physics (closing time, etc.), fluid compressibility and viscosity preclude
perfect pulseless output. Satisfactory pulseless output may be obtained by modifying
the cam profile to compensate for the above factors. By increasing the velocity of
the opposite piston during check valve closing time by putting a "blip" in the cam
to change the velocity profile, the pumping action can be slightly increased near
the point of check valve seating to compensate for the decreased output during the
seating time. The required net velocity profile for pulseless output may be different
for any material which is pumped. Using a representative fluid such as oil for the
purposes of optimizing the velocity profile of the pump results in a solution which
is satisfactory for most other fluids.
[0024] Additionally, it can be appreciated that such a pump is easily adaptable to power
operated valving, that is, valving which could be operated electrically and/or through
a mechanical linkage not unlike an automotive engine such that the valve opening and
closing time can be selected as desired.
[0025] It is contemplated that various changes and modifications may be made to the pump
without departing from the scope of the invention as defined by the following claims.
1. A fluid pump for providing substantially pulseless output, comprising a plurality
of piston-cylinder combinations (34,46), cam means (18,24) for driving each piston
(34) in its cylinder (46) in a reciprocating motion alternating between intake strokes
and pumping strokes, so that at least one piston (34) is in a pumping stroke at all
times and the sum of the velocities of the pistons in the pumping strokes is substantially
constant at any given speed of the cam means, a pressure seal (44) between each piston
(34) and its cylinder (46) for sealing material to be pumped, and inlet check valves
(52), and a sealing diaphragm (36) attached to a housing (12) and to each piston (34)
intermediate the high pressure seal (44) and the cam means (18,24) to form a chamber
to contain any material that might leak past the high pressure seal (44) and as a
barrier between the material to be pumped and the environment, the cam means having
a blip for increasing the velocity sum slightly near the point of check valve seating
to compensate for the non-linearity of pump output during seating of the check valves
(52).
2. A pump as claimed in claim 1, including a flushing inlet passage (40) leading from
a source of material to be pumped around each piston (34) intermediate the diaphragm
(36) and the high pressure seal (44) to minimise stagnation and prevent build-up or
solidification of pumped material on said piston.
3. A pump as claimed in claim 2, wherein each cylinder (46), piston (34) and high pressure
seal (36) form a pumping chamber (54) and the pump includes a main inlet passage (50)
connecting the flushing inlet passage and the pumping chamber (54).
4. A pump as claimed in claim 3, wherein the main inlet passage (50) contains the inlet
check valve (52).
5. A pump as claimed in any preceding claim, in which each piston (34) remains in contact
with its seal (44) during reciprocation, characterised by a sealing diaphragm (36)
attached to a housing (12) and to each piston (34) intermediate the high pressure
seal (44) and the cam means (18,24) to form a chamber to contain any material that
might leak past the high pressure seal (44) and as a barrier between the material
to be pumped and the environment, a flushing passage (40) leading from a source of
material to be pumped around each piston (34) intermediate the diaphragm (36) and
the high pressure seal (44) to minimise stagnation and prevent build-up or solidification
of pumped material on the piston (34) and a main inlet passage (50) connecting the
flushing passage (40) and a pumping chamber (54) formed by each cylinder (46), piston
(34) and high pressure seal (44).
6. A pump as claimed in claim 4 or 5, wherein the inlet passage (50) is located to run
in a generally vertical direction and is configured to prevent the trapping of gases
in the pumping chamber (54) and in the passage (50), whereby any gases will rise through
the passage out of the pump.
7. A pump as claimed in claim 6, including an outlet passage (56) leading from the pumping
chamber (54), the inlet and outlet passages (50,56) being located to run in a generally
vertical direction and configured to prevent the trapping of gases in the pumping
chamber (54) and the passages (50,56) whereby any gases will rise through the passages
out of the pump.
8. A pump as claimed in any preceding claim, wherein the cam means (18) is driven by
a variable speed motor.
9. A pump as claimed in any preceding claim, including power operated valving.
1. Flüssigkeitspumpe zur weitgehend pulsationsfreien Förderung
mit einer Vielzahl von Kolben/Zylinder-Kombinationen (34, 46), mit Nockenvorrichtungen
(18, 24) für die abwechselnde Hin- und Herbewegung eines jeden Kolbens (34) im zugehörigen
Zylinder (46) während der Einlaß- und Pumphübe dergestalt, daß sich immer mindestens
ein Kolben (34) in einem Pumphub befindet, wobei die Summe der Kolbengeschwindigkeiten
während der Pumphübe bei jeder vorgegebenen Geschwindigkeit der Nockenvorrichtungen
weitgehend konstant ist, mit einer Druckdichtung (44) zwischen jedem Kolben (34) und
dem zugehörigen Zylinder (46), um einen Austritt des zu fördernden Mediums zu verhindern,
mit einlaßseitigen Rückschlagventilen (52) und mit einer Dichtungsmembrane (36), die
an einem Gehäuse (12) und an jedem Kolben (34) zwischen der Hochdruckdichtung (44)
und den Nockenvorrichtungen (18, 24) angebracht ist, um eine Kammer zur Aufnahme eventuell
entlang der Druckdichtung (44) austretender Leckagemengen und eine Sperre zwischen
dem Fördermedium und der Umgebung zu bilden, wobei die Nockenvorrichtungen einen Zacken
umfassen, um die Summe der Geschwindigkeiten in der Nähe des Rückschlagventilsitzes
etwas zu erhöhen und auf diese Weise die Nichtlinearität der Pumpenleistung auszugleichen,
wenn die Rückschlagventile (52) ihren Sitz einnehmen.
2. Pumpe nach Anspruch 1, gekennzeichnet durch einen einlaßseitigen Spülkanal (40), der
von einem zu fördernden Medium ausgehend um jeden Kolben (34) zwischen der Membrane
(36) und der Hochdruckdichtung (44) verläuft, um Stagnationszonen auf ein Minimum
zu beschränken und die Ablagerung oder Verfestigung von Fördermedium auf dem Kolben
zu verhindern.
3. Pumpe nach Anspruch 2, dadurch gekennzeichnet, daß jeder Zylinder (46), jeder Kolben
(34) und jede Hochdruckdichtung (36) eine Pumpkammer (54) bilden und daß die Pumpe
einen Haupteinlaßkanal (50) als Verbindung zwischen dem einlaßseitigen Spülkanal und
der Pumpkammer (54) umfaßt.
4. Pumpe nach Anspruch 3, dadurch gekennzeichnet, daß sich im Haupteinlaßkanal (50) das
einlaßseitige Rückschlagventil (52) befindet.
5. Pumpe nach irgendeinem der vorstehenden Patentansprüche, bei welcher jeder Kolben
(34) während seiner Hin- und Herbewegung mit der zugehörigen Dichtung (44) in Kontakt
bleibt, gekennzeichnet durch eine Dichtungsmembrane (36), die an einem Gehäuse (12)
und an jedem Kolben (34) zwischen der Hochdruckdichtung (44) und den Nockenvorrichtungen
(18, 24) angebracht ist, um eine Kammer zur Aufnahme einer eventuell entlang der Druckdichtung
(44) austretender Leckagemengen und eine Sperre zwischen dem Fördermedium und der
Umgebung zu bilden, durch einen einlaßseitigen Spülkanal (40), der von einem zu fördernden
Medium ausgehend um jeden Kolben (34) zwischen der Membrane (36) und der Hochdruckdichtung
(44) verläuft, um Stagnationszonen auf ein Minimum zu beschränken und die Ablagerung
oder Verfestigung von Fördermedium auf dem Kolben (34) zu verhindern, und durch einen
Haupteinlaßkanal (50) zur Verbindung des Spülkanals (40) und einer von jedem Zylinder
(46), jeden Kolben (34) und jeder Hochdruckdichtung (44) gebildeten Pumpkammer (54).
6. Pumpe nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß der Einlaßkanal (50) in
einer allgemein vertikalen Richtung verläuft und so ausgebildet ist, daß der Einschluß
von Gasen in der Pumpkammer (54) und im Kanal (50) dadurch verhindert wird, daß Gase
durch den Kanal aufsteigen und aus der Pumpe abgeführt werden.
7. Pumpe nach Anspruch 6, gekennzeichnet durch einen von der Pumpkammer 54) abgehenden
Auslaßkanal (56), wobei die Ein- und Auslaßkanäle (50, 56) in einer allgemein vertikalen
Richtung verlaufen und so ausgebildet sind, daß der Einschluß von Gasen in der Pumpkammer
(54) und den Kanälen (50, 56) dadurch verhindert wird, daß Gase durch den Kanal aufsteigen
und aus der Pumpe abgeführt werden.
8. Pumpe nach irgendeinem der vorstehenden Patentansprüche, dadurch gekennzeichnet, daß
die Nockenvorrichtung (18) durch einen drehzahlregelbaren Motor angetrieben wird.
9. Pumpe nach irgendeinem der vorstehenden Patent ansprüche, gekennzeichnet durch kraftbetätigte
Ventile.
1. Pompe à fluide pour fournir une sortie sensiblement sans impulsions, comprenant une
pluralité de combinaisons de pistons-cylindres (34, 46), des moyens de came (18, 24)
pour entraîner chaque piston (34) selon un mouvement alternatif à l'intérieur de son
cylindre (46) en alternant les courses d'admission et les courses de pompage, de manière
qu'un piston (34) au moins soit dans une course de pompage en permanence et que la
somme des vitesses des pistons dans la course de pompage soit sensiblement constante
pour une vitesse donnée quelconque des moyens de came, un joint de pression (44) entre
chaque piston (34) et son cylindre (46) pour que le matériau soit pompé de manière
étanche, et des clapets de retenue d'entrée (52) ainsi qu'un diaphragme d'étanchéité
(36) fixé sur un boîtier (12) et à chaque piston (34) en une position intermédiaire
entre le joint de pression (44) et les moyens de came (18, 24) de manière à former
une chambre qui contienne un matériau quelconque susceptible de fuir le long du joint
de pression (44), et pour servir de barrière entre le matériau à pomper et l'environnement,
les moyens de came comprenant un accessoire pour augmenter légèrement la somme des
vitesses près du point de fermeture des clapets de retenue afin de compenser la non-linéarité
de la sortie de la pompe pendant la fermeture des clapets de sécurité (52).
2. Pompe selon la revendication 1, comprenant un passage d'entrée de rinçage (40) venant
d'une source de matériau à pomper autour de chaque piston (34) en une position intermédiaire
entre le diaphragme (36) et le joint de pression (44) afin de réduire au minimum la
stagnation et d'empêcher l'accumulation ou la solidification du matériau pompé sur
ledit piston.
3. Pompe selon la revendication 2, dans lequel chaque cylindre (46), piston (34) et joint
de pression (36) forment une chambre de pompage (54) et la pompe comprend un passage
principal d'admission (50) reliant le passage d'entrée de rinçage et la chambre de
pompage (54).
4. Pompe selon la revendication 3, dans laquelle le passage principal d'admission (50)
est équipé d'un clapet de retenue d'admission (52).
5. Pompe selon l'une quelconque des revendications précédentes, dans laquelle chaque
piston (34) reste en contact avec son joint (44) pendant le mouvement alternatif,
caractérisée en ce qu'un diaphragme d'étanchéité (36) est fixé à un boîtier (12) et
à chaque piston (34) en une position intermédiaire entre le joint de pression (44)
et les moyens de came (18, 24), de manière former une chambre destinée à contenir
tout matériau susceptible de fuir au delà du joint de pression (44) et une barrière
entre le matériau à pomper et l'environnement, un passage de rinçage (40) conduisant
d'une source de matériau à pomper autour de chaque piston (34) en une position intermédiaire
entre le diaphragme (36) et le joint de pression (44) pour réduire au minimum la stagnation
et empêcher l'accumulation ou la solidification de matériau pompé sur le piston (34)
et un passage principal d'admission (50) reliant le passage de rinçage (40) et la
chambre de pompage (54) définie par chaque cylindre (46), piston (34) et joint de
pression (44).
6. Pompe selon l'une des revendications 4 ou 5, dans laquelle le passage d'admission
(50) est disposé pour être orienté dans une direction généralement verticale et est
configuré pour empêcher l'emprisonnement de gaz dans la chambre de pompage (54) et
dans le passage (50), de manière que les gaz éventuels s'élèvent à travers le passage
pour sortir de la pompe.
7. Pompe selon la revendication 6, comprenant un passage de sortie (56) partant de la
chambre de pompage (54), les passages d'admission et de sortie (50, 56) étant disposés
de manière à être orientés dans une direction généralement verticale et étant configurés
pour empêcher d'emprisonner des gaz dans la chambre de pompage (54) et dans les passages
(50, 56), de manière que les gaz éventuels s'élèvent dans les passages pour sortir
de la pompe.
8. Pompe selon l'une quelconque des revendications précédentes, dans laquelle les moyens
de came (18) sont entraînés par un moteur à vitesse variable.
9. Pompe selon l'une quelconque des revendications précédentes, comprenant des vannes
commandées par énergie.

