BACKGROUND OF THE INVENTION
Field of the Invention
[0001] The present invention relates to a sheet feeding apparatus for feeding a sheet (copy
sheet, transfer sheet, photosensitive sheet, electrostatic recording sheet, print
sheet, OHP sheet, envelope, post card, sheet original or the like) rested on a sheet
containing portion (sheet stacking platform, sheet stacking tray, sheet stacking deck,
removable sheet supply cassette, manual sheet supply platform or the like) or a sheet
manually supplied to the sheet containing portion one by one to a sheet treatment
portion such as an image forming station, exposure station, treating station or the
like in an image forming system such as a copying machine, facsimile and the like
or a recording system (printer) acting as an information output equipment of a word
processor, personal computer and the like.
Related Background Art
[0002] For conconvenience' sake, an example of a sheet feeding apparatus of a printer shown
in Fig. 4 will be explained.
[0003] A sheet support plate (sheet guiding means) 6 acting as a sheet containing portion
(sheet stacking means) is disposed so that a front end thereof is inclined downwardly.
An urging plate (intermediate plate) 8 is disposed above an upper surface of the sheet
support plate and is always floated from the upper surface of the plate 6 by a biasing
force of a spring member 8a. Sheet separating pawls (sheet separating means) 7 are
arranged at front corners of the sheet support plate for separating a single sheet
from the other sheets. The sheets 5 (copy sheets or recording media) are stacked on
the sheet support plate 6 so that leading ends of the sheets are regulated or locked
by the separating pawls 7.
[0004] A sheet supply roller 9 acting as a sheet supply means serves to afford a feeding
force to the sheets stacked on the plate 6 and comprises a shaft portion 9a and a
roller portion 9b integrally formed with the shaft portion. An uppermost sheet on
the sheet stack 5 stacked on the plate 6 is urged against the roller portion 6a of
the sheet supply roller 9 by the urging plate 8 biased upwardly by means of the spring
member 8a.
[0005] A sheet feed roller (sheet relay convey means) 16 is arranged ahead of the sheet
support plate 6 in a sheet feeding direction and comprises a shaft portion 16b and
a roller portion 16a integrally formed with the shaft portion.
[0006] A sheet guide plate 26 is disposed between the sheet support plate 6 and the sheet
feed roller 16 so that a leading end thereof is inclined downwardly, which sheet guide
plate serves to guide the sheet 5 below the sheet feed roller 16. The leading end
portion of the sheet guide plate 26 is arcuated to conform with a lower half surface
of the roller portion 16a of the sheet feed roller 16 and to extend to the left side
of the sheet feed roller.
[0007] First and second pinch rollers 17A and 17B are urged against the lower portion of
the sheet feed roller 16 by respective spring members (not shown) at two upstream
and downstream points along the sheet feeding direction, respectively. These pinch
rollers are contacted with the sheet feed roller 16 through openings 26a formed in
the arcuated leading end portion of the sheet guide plate 26, respectively, and are
driven by the rotational movement of the sheet feed roller 16.
[0008] A platen bar 15 is disposed tangentially to the sheet feed roller 16 in the vicinity
of the latter at the left side thereof. A reciprocable carriage 11 can be reciprocally
shifted in parallel with the platen bar 15 by means of a guide rail and a drive means
(both not shown). A recording head 12 and an ink ribbon cassette 13 are mounted on
the carriage 11, and the recording head 12 is opposed to the platen bar 15 with the
interposition of an ink ribbon 14.
[0009] When the sheet supply roller 9 is rotated in a clockwise direction, the uppermost
sheet on the sheet stack 5 stacked on the sheet support plate 6 is subjected to the
sheet feeding force, with the result that the front corner portions of the uppermost
sheet ride on the separating pawls 7 to be unlocked by the separating pawls, thus
separating the uppermost sheet alone from the other sheets. The separated uppermost
sheet is guided by the sheet guide plate 26 to reach a nip between the sheet feed
roller 16 and the first pinch roller 17A.
[0010] The uppermost sheet 5 is fed by the sheet feed roller 16 and the first pinch roller
17A between the arcuated end portion of the guide plate 26 and the lower surface of
the sheet feed roller 16, and then is fed by the sheet feed roller 16 and the second
pinch roller 17B between the arcuated end portion of the guide plate 26 and the lower
surface of the sheet feed roller 16, so that the leading end of the sheet enters into
a space between the platen bar 15 and the ink ribbon 14.
[0011] When a predetermined amount of the sheet is entered into the space between the platen
bar 15 and the ink ribbon 14, the rotational movement of the sheet feed roller 16
is changed to an intermittent rotational drive control wherein the sheet is fed by
one printing line space, and the control of the reciprocal shifting movement of the
carriage 11, head-down/head-up control of the recording head 12, the feed control
of the ink ribbon 14 and the like are executed in co-relation with each other by means
of a record control circuit (not shown), thus performing the recording operation with
respect to the sheet 5 per one line.
[0012] In consideration of the cost-down of the apparatus, the actuation of the sheet supply
roller 9 may be linked with the activation of the sheet feed roller 16 by means of
a feed motor (not shown). In this case, a clutch is disposed between the sheet supply
roller 9 and the feed motor to switch over the activation between the sheet supply
roller and the sheet feed roller. It is a most simplified method that the switching
of the clutch is effected by rotating the feed motor in a direction opposite to a
normal direction in which the feed motor is rotated when the sheet is supplied.
[0013] In such a method, when the feed motor is rotated in the normal direction by a sheet
supply start signal, a normal rotational force of the motor is transmitted to the
sheet supply roller 9 through the clutch, so that the sheet supply roller 9 is rotated
in a sheet feeding direction to separate and feed the uppermost sheet from the sheet
stack 5. The sheet feed roller 16 is also rotated in the sheet feeding direction.
[0014] The leading end of the sheet 5 is sent to the nip between the sheet feed roller 16
and the first pinch roller 17A by the rotation of the sheet supply roller 9. When
the sheet is sent by a predetermined length or distance after the leading of the sheet
has just passed through the nip, the feed motor is switched to be rotated reversely.
[0015] The clutch connnection between the feed motor and the sheet supply roller 9 is disengaged
by the reverse rotation of the feed motor, thus stopping the sheet supply roller 9.
The sheet feed roller 16 is rotated in a reverse direction Q opposite to the sheet
feeding direction P, so that the sheet fed by the predetermined distance through the
nip between the feed roller 16 and the first pinch roller 17A is fed back until the
leading end of the sheet passes through the nip between the feed roller 16 and the
first pinch roller 17A.
[0016] By feeding back the leading end of the sheet in this way, a bent loop (as shown by
the solid line) is formed in a sheet portion between the stationary sheet supply roller
9 and the nip (between the feed roller 16 and the first pinch roller 17A) in opposition
to the resiliency of the sheet.
[0017] By forming such bent loop in the sheet, the leading end of the sheet is urged against
the nip between the feed roller 16 and the first pinch roller 17A due to the reaction
force of the bent loop, with the result that any skew-feed of the sheet is corrected
to register the leading edge of the sheet with a longitudinal direction of the feed
roller 16.
[0018] Then, by rorating the feed motor in the normal direction again, the leading end of
the sheet which was registered with the longitudinal direction of the feed roller
16 is re-entered into the nip between the sheet roller 16 rotating in the normal direction
P and the first pinch roller 17A urged against the sheet feed roller, thus feeding
the sheet 5 to the recording head 12 without skewing the sheet.
[0019] However, in such a sheet feeding apparatus, if a kind of sheets is changed or the
resiliency of the sheet is increased due to the change in the temperature and/or humidity
in the apparatus, when the sheet feed roller 16 is rotated in the reverse direction,
the resiliency of the sheet portion between the reverse rotating feed roller 16 and
the stationary sheet supply roller 9 may overcome the sheet feeding-back force generated
by the reverse rotating feed roller 16.
[0020] In such a case, there arises a relative slipping movement between the leading end
portion of the sheet pinched between the feed roller 16 and the first pinch roller
17A and the reverse rotating feed roller 16, thus preventing the sheet from being
fed back. Consequently, the skew-feed of the sheet cannot be corrected (bacause the
loop cannot be formed in the sheet portion) and the sheet is distorted or damaged
by the relative slipping movement between the sheet and the reverse rotating feed
roller 16.
[0021] Further, if the resiliency of the sheet is too strong or the sheet is skew-fed into
the apparatus, there arose a problem that the bent loop formed in the sheet portion
during the reverse rotation of the feed roller becomes non-uniform and/or the sheet
is non-uniformly depressed between the feed roller 16 and the first pinch roller 17A,
thus remaining the skew-fed condition of the sheet.
SUMMARY OF THE INVENTION
[0022] An object of the present invention is to provide a sheet feeding apparatus which
can surely correct the skew-feed of a sheet regardless of the resiliency of the sheet
and without damaging the sheet and properly feed the sheet.
[0023] According to the present invention, there is provided a sheet feeding apparatus comprising,
a sheet supporting means for stacking and supporting sheets, a rotary sheet supply
means for feeding out the sheets stacked on the sheet supporting means, a rotary feed
means for feeding the sheet in normal and reverse directions by pinching the sheet
into a nip of the rotary feed means, and a rotation control means for prohibiting
a reverse rotation of the rotary sheet supply means if a reverse rotational load applied
from the fed sheet to the rotary sheet supply means is below a predetermined value
and for permitting the reverse rotation of the rotary sheet supply means while applying
a brake load to the rotary sheet supply means if the reverse rotational load is above
the predetermined value, when the sheet is fed in a reverse direction toward the rotary
sheet supply means by means of the rotary feed means. Wherein a skew-feed of the sheet
is corrected by the feeding of the sheet in the reverse direction by means of the
rotary feed means and the control of the rotation of the rotary sheet supply means
by means of the rotation control means.
[0024] Explaining the correction of the skew-feed of the sheet in the sheet feeding apparatus
having the above-mentioned construction, in the case where sheets such as plain papers
having less resiliency are used, since the load applied to the rotary sheet supply
means during the reverse feeding of the sheet by means of the rotary feed means is
relatively small, a loop is formed in the sheet between the nip of the rotary feed
means and the rotary sheet supply means which is stopped by the rotation control means,
thus correcting the skew-feed of the sheet. On the other hand, in the case where sheets
such as envelopes having greater resiliency are used, since the load applied to the
rotary sheet supply means during the reverse feeding of the sheet by means of the
rotary feed means is relatively great, the sheet being skew-fed is turned by a reverse
feeding force generated by the rotaty feed means and by the rotary sheet supply means
rotating reversely while being subjected to the brake load by means of the rotation
control means, thus correcting the skew-feed of the sheet by registering a leading
end of the sheet with the nip.
[0025] According to another aspect of the present invention, there is provided a sheet feeding
apparatus comprising a sheet supporting means for stacking and supporting sheets,
a rotary sheet supply means for feeding out the sheets stacked on the sheet supporting
means, a rotary feed means for feeding the sheet in normal and reverse directions
by pinching the sheet into a nip of the rotary feed means, and a biasing means for
rotatingly biasing the rotary sheet supply means toward a sheet feeding direction;
and wherein a skew-feed of the sheet is corrected by the feeding of the sheet in the
reverse direction by means of the rotary feed means and a biasing force of the biasing
means regarding the rotary sheet supply means.
[0026] Explaining the correction of the skew-feed of the sheet in the sheet feeding apparatus
having the above-mentioned construction concretely, in the case where sheets such
as plain papers having less resiliency are used, since the load applied to the rotary
sheet supply means during the reverse feeding of the sheet by means of the rotary
feed means is smaller than the biasing force of the biasing means, a loop is formed
in the sheet between the nip of the rotary feed means and the rotary sheet supply
means which is stopped, thus correcting the skew-feed of the sheet. On the other hand,
in the case where sheets such as envelopes having greater resiliency are used, since
the load applied to the rotary sheet supply means during the reverse feeding of the
sheet by means of the rotary feed means is greater than the biasing force of the biasing
means, the sheet being skew-fed is turned by a reverse feeding force generated by
the rotary feed means and by the rotary sheet supply means rotating reversely while
being subjected to the biasing force from the biasing means, thus correcting the skew-feed
of the sheet by registering a leading end of the sheet with the nip.
BRIEF DESCRIPTION OF THE DARWINGS
[0027]
Fig. 1 is a perspective view of a word processor to which a sheet feeding apparatus
according to the present invention is applied;
Fig. 2 is a partially broken perspective view of the sheet feeding apparatus;
Fig. 3 is a partially broken perspective view of a recording device of the word processor;
Fig. 4 is a sectional view showing a sheet feeding path from the sheet feeding apparatus
to the recording device;
Figs. 5 to 7 are plan views for explaining the correction of the skew-feed of the
sheet;
Fig. 8 is a partially broken perspective view of a drive transmitting means in a clutch
ON condition;
Fig. 9 is a partially broken perspective view of the drive transmitting means in a
clutch OFF condition;
Fig. 10A is a development view of peripheral surface of the clutch, and Figs. 10B
and 10C are sectional views taken along the lines B - B and C - C of Fig. 10A, respectively;
Figs. 11 and 12 are side views showing the operation of a torque limiter;
Fig. 13 is a graph showing a relation between a thickness of the sheet and a load
during the formation of a loop;
Fig. 14 is a block diagram of a control system;
Fig. 15 is a flow chart showing a sheet feeding sequence;
Fig. 16 is a partially broken perspective view of a drive transmitting means according
to another embodiment in a clutch ON condition;
Fig. 17 is a partially broken perspective view of the drive transmitting means in
a clutch OFF condition;
Figs. 18 and 19 are side views showing the operation of a biasing means;
Fig. 20 is a flow chart showing a sheet feeding sequence; and
Fig. 21 is a side view of a biasing means according to another embodiment.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0028] First of all, a first embodiment of the present invention will be explained with
reference to Figs. 1 to 15.
[0029] This embodiment is embodied as a word processor to which a sheet feeding apparatus
to the present invention is applied.
General Construction of Word Processor (Figs. 1 to 4)
[0030] Fig. 1 is a perspective view of the word processor.
[0031] The word processor comprises a key board portion 1 for inputting information, a display
portion 2 including a CRT for displaying the information, a recording device portion
(printer portion) 3 for recording the information on a sheet (recording sheet) acting
as a recording medium, and a sheet feeding apparatus portion (referred to as "sheet
supply device portion" or "sheet supply device" hereinafter) 4.
[0032] The recording device portion 3 is disposed above the display portion 2, and the sheet
supply device portion 4 is rested on the recording device portion 3. Figs. 2 and 3
are partially sectional perspective views showing internal constructions of the sheet
supply device portion 4 and the recording device portion 3, respectively.
[0033] Fig. 4 shows a sheet feeding path from the sheet supply device portion 4 to the recording
device portion 3, as already described.
Sheet Supply Device 4 (Figs. 2, 4 - 6)
[0034] The sheet supply device 4 serves to separate and feed, by means of a sheet supply
roller 9 and separating pawls 7, an uppermost sheet on a sheet stack 5 stacked on
a sheet support plate 6 which is inclined forwardly and downwardly.
[0035] The sheet supply roller 9 acting as a sheet supply means is rotatably supported by
side frames 19 of the sheet support plate 6 at both ends of a shaft portion 9b of
the roller. A drive transmitting means 10 (Figs. 2, 8 and 9) which will be described
later is disposed at one end of the shaft portion 9b of the sheet supply roller and
is connected to a feed motor (Fig. 3) which acts as a sheet feed drive means of the
recording device 3 and will be described later.
[0036] Fig. 5 shows a positional relation between the sheet supply roller 9 of the sheet
supply device 4 and a sheet feed roller 16 of the recording device 3. The sheet supply
roller 9 comprises a single roller portion 9a fixedly mounted on the shaft portion
9b at a longitudinal central portion thereof, and the sheet feed roller 16 comprises
a pair of roller portions 16a fixedly mounted on a shaft portion 16b on both sides
of a longitudinal central portion thereof, so that the roller portion 9a of the sheet
supply roller 9 is positioned between the two roller portions 16a of the sheet feed
roller 16.
Operation for Correcting Skew-feed of Sheet (Figs. 5, 6)
[0037] Fig. 5 shows a condition that the sheet 5 separated from the sheet supply device
4 is skew-fed and reaches a nip between the sheet feed roller 16 and a first pinch
rollers 17A.
[0038] In Fig. 5, since a right corner 5R of the leading end of the sheet 5 is advanced
forwardly than a left corner 5L of the leading end of the sheet, even when the right
corner 5R reaches and is pinched by the nip between the right roller portion 16a and
the first pinch rollers 17A, the left corner 5L does not yet reach the nip between
the left roller portion 16a and the first pinch rollers 17A.
[0039] From this condition, when the sheet feed roller 16 is rotated in a reverse direction
Q (opposite to a sheet feeding direction) to disengage a clutch as will be described
later, the left corner 5L of the sheet 5 is not fed back by the reverse rotation of
the sheet feed roller 16 because it is not pinched by the left roller portion 16a
and the first pinch rollers 17A; however, since, the right corner 5R of the sheet
5 is pinched by the right roller portion 16a and the first pinch rollers 17A, the
right corner 5R of the sheet is fed back by a sheet returning force A due to the reverse
rotation of the sheet feed roller 16, thus disengaging the right corner of the sheet
from the corresponding nip between right roller portion 16a and the first pinch rollers
17A.
[0040] In this case, when the sheet has less resiliency, a bent loop 5a is formed in the
sheet between the sheet supply roller 9 and the sheet feed roller 16 by the returning
movement A of the right corner 5R of the sheet. As a result, due to the reaction of
the bent loop, the leading edge of the sheet 5 is abutted against both nip between
the left roller portion 16a and the first pinch rollers 17A and nip between the right
roller portion 16a and the first pinch rollers 17A, as shown by the phantom line 5b.
[0041] That is to say, the leading end of the sheet 5 which was skew-fed is registered with
the longitudinal direction of the left and right roller portions 16a of the sheet
feed roller 16. Thus, when the sheet feed roller is then rotated in the normal direction
P, the sheet 5 is fed to the aforementioned recording head (recording portion) 12
without the skew-feed of the sheet.
[0042] On the other hand, when the sheet 5 has greater resiliency, the sheet 5 is rotated
in an anti-clockwise direction C in Fig. 6 around a contacting point between the sheet
and the sheet supply roller 9 by the returning movement A of the right corner 5R of
the sheet 5 due to the reverse rotation of the sheet feed roller 16, until the right
corner 5R of the sheet 5 is disengaged from the nip between the right roller portion
16a and the first pinch rollers 17A. As a result, the leading edge of the sheet 5
is abutted against both nip between the left roller portion 16a and the first pinch
rollers 17A and nip between the right roller portion 16a and the first pinch rollers
17A, as shown by the phantom line 5b in Fig. 6. That is to say, also in this case,
the leading end of the sheet 5 which was skew-fed is registered with the longitudinal
direction of the left and right roller portions 16a of the sheet feed roller 16. Thus,
when the sheet feed roller is then rotated in the normal direction P, the sheet 5
is fed to the recording head 12 without the skew-feed of the sheet.
[0043] In the case shown in Fig. 6, if the sheet 5 is not rotated in the anti-clockwise
direction C in Fig. 6 around the contacting point between the sheet and the sheet
supply roller 9, the right corner 5R of the sheet 5 will not be fed back from the
nip between the right roller portion 16a and the first pinch rollers 17A, with the
result that the skew-feed of the sheet cannot be corrected and the sheet may be damaged
due to the relative slipping movement between the sheet and the reverse rotating sheet
feed roller 16.
[0044] In order to rotate the sheet 5 in the direction C around the contacting point between
the sheet and the sheet supply roller 9, it is necessary to rotate the sheet supply
roller 9 in a direction opposite to the sheet feeding direction or to feed back the
sheet 5 with the returning movement A due to the reverse movement of the sheet feed
roller 16 by a force stronger than a contacting friction force between the sheet supply-roller
9 and the sheet 5.
[0045] In the case where the sheet 5 is fed back with the returning movement A by the force
stronger than the contacting friction force between the sheet supply roller 9 and
the sheet 5, the friction force is determined by urging force between the sheet supply
roller 9 and the sheet 5 and a coefficient of friction of the sheet supply roller
9, and, further, such urging force and coefficient of friction are determined by a
force required to separate the sheets 5 one by one. Generally, the urging force between
the sheet supply roller 9 and the sheet 5 is set to have a value of 200 - 500 grams,
and the coefficient of friction of the sheet supply roller 9 is set to have a value
of 1 - 1.5. If the urging force is weaker, it is impossible or unreliable to separate
the sheets one by one; whereas, in the urging force is stronger, two or more sheets
will be fed at a time (double-feed of the sheets).
[0046] In the sheet supply roller (sheet supply means) 9 having the urging force and coefficient
of friction as mentioned above, it is difficult to rotate the sheet in the direction
C in opposition to the above-mentioned friction force only with the returning force
A due to the reverse rotation of the sheet feed roller 16. Further, if the resiliency
of the sheet 5 is stronger, since the bent loop 5a as described regarding Fig. 5 cannot
be formed in the sheet portion between the sheet supply roller 9 and the sheet feed
roller 16, the relative slipping movement will occurs between the reverse rotating
sheet feed roller 16 and the sheet (pinched by the roller 16 and the first pinch rollers
17A).
[0047] Accordingly, since the urging force and the coefficient of friction cannot be set
to have small values as mentioned above, if the resiliency of the sheet 5 is stronger,
it is necessary to rotate the sheet supply roller 9 in the direction opposite to the
sheet feeding direction, in order to rotate the sheet 5 in the direction C as shown
in Fig. 6.
Clutch (Figs. 8 to 10)
[0048] Next, a clutch for performing the connection and disconnection between the feed motor
18 (Fig. 3) and the sheet supply roller 9 will be explained.
[0049] As shown in Figs. 8 and 9, the drive transmitting means 10 comprising a sheet supply
gear 10a, clutch 10b, clutch gear 10c and the like is arranged at one end of the shaft
portion 9b of the sheet supply roller 9. The sheet supply gear 10a is coaxially and
fixedly mounted on the shaft portion 9b, and the clutch 10b comprises a tubular member
coaxially and freely rotatably mounted on the shaft portion 9b, and the clutch gear
10c is also coaxially and freely rotatably mounted on the shaft portion 9b. The clutch
10b is positioned radially outwardly of the sheet supply gear 10a in coaxial with
the latter.
[0050] A clutch pawl 10d is rockably mounted on a surface of the clutch gear 10c which faces
toward the clutch 10b, so that, when the clutch gear 10c is rotated, a free end of
the clutch pawl 10d slides on a peripheral surface of the cylindrical clutch 10b.
The clutch pawl 10d is always biased toward the clutch 10b by means of a spring (not
shown) and can be shifted along its pivot to some extent.
[0051] Fig. 8 shows a clutch ON condition, wherein the free end of the clutch pawl 10d is
fallen into a notch opening 10e formed in the peripheral surface of the clutch 10b
to engage with the sheet supply gear 10a. In this condition, when the normal rotational
force of the feed motor 18 is transmitted to the clutch gear 10c through a relay gear
train G (only the last one of gear train is shown), the rotation of the clutch gear
10c is transmitted to the sheet supply gear 10a, with the result that the sheet supply
roller 9 is rotated in the sheet feeding direction shown by the arrow e.
[0052] Fig. 9 shows a clutch OFF condition, wherein the clutch pawl 10d is disengaged from
the sheet supply gear 10a due to the reverse rotation of the feed motor 18.
[0053] Fig. 10A is a development view of the peripheral surface of the clutch 10b, and Figs.
10B and 10C are sectional views of the clutch taken along the lines B - B and C -
C, respectively. In these Figures, stopper surfaces HP1, HP2 are formed on the peripheral
surface of the clutch 10b. Incondentally, a symbol S1 denotes the above-mentioned
notch opening 10e.
[0054] Between an area SHP1 adjacent to the stopper surface HP1 and an area SHP2 adjacent
to the stopper surface HP2, stepped borders La and Lb are formed. When the clutch
pawl 10d moves from the stopper HP1 to the stopper HP2, it passes through the border
Lb; whereas, when the clutch pawl 10d moves from the stopper HP2 to the stopper HP1,
it passes through the border La.
[0055] The direction in which the clutch pawl 10d moves from the stopper HP2 to the stopper
HP1 corresponds to the sheet feeding direction (normal direction), and the direction
in which the clutch pawl 10d moves from the stopper HP2 to the stopper HP1 corresponds
to the reverse direction. In Figs. 8 - 10, in order to surely insert the clutch pawl
10d into the notch opening S1 whereever the clutch pawl 10d is positioned, the initialisation
operation is performed so that the clutch pawl 10d is shifted up to the stopper surface
HP1. A distance between the stopper surface HP1 and the notch opening S1 is constant
(corresponding to four printing lines in the illustrated embodiment), and, accordingly,
so long as the clutch pawl 10d is positioned at the stopper HP1, it is easy to surely
shift the clutch pawl into the notch opening S1.
[0056] If the clutch pawl 10d is positioned in an area between the notch opening S1 and
the border Lb, when the clutch pawl 10d is shifted toward the stopper HP1, the clutch
pawl 10d is inserted into the notch opening S1 to establish the clutch ON condition.
To avoid this, the initialization operation is performed after the clutch pawl 10d
is initially shifted to the stopper HP2.
[0057] Since the clutch pawl 10d surely moves from the stopper HP2 to the stopper HP1, the
initialization operation can be effected by shifting the clutch pawl 10d to the stopper
HP2 and then by shifting the clutch pawl toward the stopper HP1.
[0058] In this way, by rotating the feed motor 18 in the normal and reverse directions,
it is possible to switch the connection and disconnection to the sheet supply roller
9.
Torque Limiter (Figs. 8, 9, 11, 12)
[0059] The reference numeral 9c denotes a tightening spring acting as a drive control means
(torque limiter) mounted on one end of the shaft portion 9b of the sheet supply roller
9. One end 9c₁ (Figs. 11 and 12) of the spring 9c is fixedly sandwiched between two
projections 19a formed on the frame 19. The spring 9c acting as the torque limiter
permits the normal rotation (to the direction e in Figs. 8 and 11) of the sheet supply
roller 9 without any load when a sheet feeding force to the normal direction e acts
on the sheet supply roller 9 and prohibits the reverse rotation (to a direction f
in Fig. 12) of the sheet supply roller 9 when a sheet feeding force to the reverse
direction f acts on the sheet supply roller 9 by decreasing an inner diameter of the
spring 9c. The force of the spring 9c by which the shaft portion 9b is tightened is
greater than the maximum sheet feeding force during the feeding and separating of
the single sheet 5 by means of the sheet supply roller 9 and is smaller than a sheet
feeding force generated by the sheet feed roller 16 and the pinch rollers 17A, 17B.
[0060] The reference numeral 9d denotes a clutch lever acting as a means for changing the
operating force of the torque limiter on the basis of the kind of sheets to be used
and/or temperature/humidity in the apparatus. The clutch lever 9d is rotatably supported
by the shaft portion 9b of the sheet supply roller, and a free end of the lever is
provided with a toothed portion 9d₁ arranged along a circle having a center positioned
at the shaft portion 9b, which toothed portion is meshed with a gear 9f rotatably
mounted on the frame 19. The gear 9f can be reversibly rotated by clutch motor (not
shown), so that the normal and reverse rotations of the gear 9f cause the normal and
reverse rocking movements of the clutch level 9d around the shaft portion 9b, respectively.
The clutch 9d is provided with a projection 9e associated with the other end 9c₂ of
the tightening spring 9c acting as the torque limiter.
[0061] When the sheet feeding force to the reverse direction f (Fig. 12) acts on the sheet
supply roller 9, the other end 9c₂ of the rotating spring 9c is abutted against the
projection 9e to regulate an amount of the rotational movement of the other end 9c₂,
thus preventing the inner diameter of the spring 9c from being further decreased.
That is to say, the projection 9e serves to limit the tightening force of the spring
9c acting on the shaft portion 9b. When the clutch lever 9d is rotated, since the
positional relation between the projection 9e and the other end 9c₂ of the spring
9c is changed, it is possible to control the inner diameter of the spring 9c, and,
thus, to control the tightening force of the spring 9c acting on the shaft portion
9b. Consequently, it is possible to change or vary a reverse rotational force of the
sheet supply roller 9 provided by the sheet feeding force.
[0062] When the sheet supply roller 9 is rotated by a predetermined time period after the
leading end of the sheet 5 fed by the sheet supply roller 9 has just reached the nip
between the sheet feed roller 16 and the first pinch rollers 17A urged against the
sheet feed roller, the sheet feed roller 16 is rotated reversely until the leading
end of the sheet is returned to the nip between the sheet feed roller 16 and the first
pinch rollers 17A. As a result, the reverse rotation of the sheet supply roller 9
is prevented by the action of the torque limiter 9c attached to the shaft portion
99b of the sheet supply roller 9, so that a bent loop is formed in the sheet 5 between
the sheet feed roller 16 and the sheet supply roller 9, as shown by the solid line
in Fig. 4.
[0063] By forming such bent loop, the leading end of the sheet 5 is urged against the nip
between the sheet feed roller 16 and the first pinch rollers 17A due to the resiliency
of the sheet itself. By this urging action, it is possible to register the leading
edge of the sheet with the longitudinal direction of the sheet feed roller 16, and,
thus, to feed the sheet without any skew-feed of the sheet.
[0064] Next, the operation of the torque limiter will be explained with reference to Fig.
13 showing a relation between a thickness t of the sheet 5 and a load (acting on the
sheet supply roller 9) upon the bent loop formation.
[0065] Now, the cases where normal sheets (or plain sheets) and postcards are used as the
sheets will be described. Generally, a thickness of the normal sheet is 40 - 100 µm
and a thickness of the postcard is 230 µm, and, since the thickness of the postcard
is greater than that of the normal sheet by about 2 - 5 times, the resiliency of the
postcard greatly differs from that of the normal sheet.
[0066] Further, the resiliency of the sheet varies with the humidity. Two solid lines shown
in Fig. 13 show the changes in load to the sheet supply roller 9 when the bent loops
are formed under the humidity of 10 % and 80 %, respectively. Generally, the higher
the humidity the greater the load, and the greater the thickness of the sheet the
greater the load. The minumum rotational load in the reverse direction acting on the
sheet supply roller 9 (this roller cannot be rotated below the minimum load) should
be greater than the sheet separating force. Thus, normally, the minimum load is set
to a load shown by a chain and dot line (I) in Fig. 13. In this case, as shown in
a range defined by the solid line (II), since the load regarding the normal sheet
is always smaller than the load shown by the chain and dot line (I), when the sheet
feed roller 16 is rotated reversely, the bent loop is formed in the sheet.
[0067] However, in case of the postcard, when the sheet feed roller 16 is rotated reversely,
the bent loop can be formed within a range defined by the solid line (IV), but, cannot
be formed (as shown by the phantom line in Fig. 4) within a range defined by the solid
line (III), with the result that the sheet supply roller 9 is rotated reversely or
there arises the relative slipping movement between the sheet and the sheet supply
roller 9, thus damaging the sheet. Thus, in case of the postcard, by reducing the
operating force of the torque limiter 9c up to a value shown by a chain and dot line
(V) so that the feeding force of the sheet reversely fed overcomes the operating force
of the torque limiter 9c, it is possible to always rotate the sheet supply roller
9 reversely, thus preventing the sheet from being damaged by the sheet supply roller.
[0068] Further, even in case of the postcard, it is possible to form the bent loop in the
sheet by increasing the operating force of the torque limiter 9c above the chain and
dot line (I). However, this method is unsuitable, because the postcard is folded or
the rigidity of the apparatus must be increased.
[0069] In this way, since the resiliency of the sheet itself is varied in accordance with
the kind of sheets and/or humidity/temperature in the apparatus, the feeding force
of the sheet reversely fed will be also varied as mentioned above. Thus, by changing
the position of the projection 9e in accordance with the kind of sheets and/or humidity/temperature
in the apparatus, it is possible to set the spring force of the tightening spring
9c as the torque limiter so that the sheet supply roller can be rotated reversely
by a force smaller than the aforementioned sheet feeding force.
[0070] Further, in this embodiment, while an example that the sheet supply roller 9 has
the single roller portion 9a was explained, for example, as shown in Fig. 7, the sheet
supply roller may comprise a pair of roller portions 9a. In this case, by arranging
these roller portions so that a center between the roller portions 9a is aligned with
a center between the roller portions 16a in the sheet feeding direction and by providing
the aforementioned torque limiter for each of the roller portions 9a, it is possible
to achieve the same advantage as that obtained by the single roller portion 9a.
Temperature/humidity Detection Means
[0071] Temperature/humidity detection means (not shown) for detecting the temperature and
humidity in the sheet supply device and the recording device used with the sheet supply
device are disposed in the system in place. The temperature detection means is constituted
by a thermistor and the like, and the humidity detection means is constituted by a
humidity-sensitive element of electrostatic capacity type and the like. By detecting
the temperature/humidity in the system by means of the temperature/humidity detection
means, it is possible to automatically vary a current amount to the recording head
12 and/or to automatically control the clutch motor for controlling the torque limiter
9c.
Recording Device 3
[0072] In Fig. 3, the carriage 11 is slidably attached to a guide shaft 20 both ends of
which are secured to a frame 21 of the recording device. Driven pulleys (not shown)
in synchronous with a carriage motor 22 are also rotatably attached to the frame 21,
and a timing belt 23 extending between the driven pulleys is connected to the carriage
11. With this arrangement, when the carriage motor 22 is rotated normally and reversely,
the carriage 11 is reciprocally shifted along the guide shaft 20.
[0073] Further, a take-up shaft 24 mounted on the carriage 11 in place can receive a take-up
core 13c of the ink ribbon cassette 13, so that, as the carriage 11 is shifted in
the direction b, the ink ribbon 14 is taken-up wound around the take-up core. The
ink ribbon cassette 13 has a container 13a within which the take-up core 13c and a
supply core 13c are rotatably received. The ink ribbon 14 is wound on the supply core
13b. The ink ribbon 14 extends from the supply core 13b and passes through a recess
13d of the container 13 to be exposed to the outside, and then extends to the take-up
core 13c.
[0074] The ink ribbon 14 is constituted by an elongated film and heat-transferable (thermoplastic,
thermosetting or thermosublimable) ink coated on the film. Further, the ink ribbon
cassette 13 can be mounted on the carriage 11 by fitting it on locking projections
11a formed on the carriage 11. Incidentally, when the cassette 13 is mounted on the
carriage 11, the take-up shaft 24 is inserted into the take-up core 13c so that the
take-up core 13c is rotated by the rotation of the take-up shaft 24.
[0075] In the illustrated embodiment, the recording means comprises a thermal recording
head 12 which is constituted by a plurality of heat generating elements (which can
be heated by applying electric currents to them) arranged in a line on a substrate.
As shown in Fig. 3, the recording head 12 is mounted on the carriage 11 so that, when
the ink ribbon cassette 13 is mounted on the carriage 11, the recording head 12 faces
the recess 13d of the cassette. Further, the recording head 12 can be shifted up and
down by a biasing means (not shown) such as a solenoid. When the recording head is
shifted down (head-down), it urges the ink-coated surface of the ink ribbon 14 against
the sheet 5 backed-up by the platen 15; whereas, when the recording head is shifted
up (head-up), the ink ribbon 14 is separated from the sheet 5.
[0076] Accordingly, during the head-down of the recording head 12, when the carriage 11
is shifted to the direction b and the (heat generating elements of the) recording
head 12 is selectively energized, the ink molten by the heat of the head is transferred
onto the sheet 5, thus recording an image on the sheet. Incidentally, a portion of
the ink ribbon 14 used in the recording operation is wound around the take-up core
13c by the rotation of the take-up shaft 24.
[0077] When one line recording is finished in this way, the recording head 12 is shifted
up, the carriage 11 is returned to its home position, and the sheet 5 is fed by one
line in the direction c.
[0078] As mentioned above, the sheet feed means 16 for feeding the sheet 5 comprises the
roller portions 16a and the pinch rollers 17, and the feed motor 18 is connected to
the sheet feed roller 16 via the drive transmitting gear train. Thus, when the feed
motor 18 is driven, the sheet feed roller 16 is rotated so that the sheet 5 supplied
from the sheet supply device 4 is guided along the peripheral surface of the feed
roller 16 and is fed in the direction c between the platen 15 and the ink ribbon 14.
Control Means (Fig. 14)
[0079] Next, a control means for controlling the sheet supply device 4 and the recording
device 3 used with the sheet supply device will be explained.
[0080] Fig. 14 is a block diagram of the control system. This block diagram only shows a
connecting relation between blocks, and the detailed control lines are omitted. Further,
elements included within a broken line box constitute a CPU unit.
[0081] A CPU 30 is a central operation processing unit and serves to read out programs and
various data from a ROM 31 and/or a floppy disc driver 32 (Fig. 1, described later)
and to perform the required calculations and judgements to control various elements.
The ROM 31 is a read only memory and serves to store various programs for activating
the CPU 30, and various data required for the recording, such as character codes,
dot patterns (character generator CG) and the like. A RAM 33 is a read/write memory
and includes a working area where the data commanded by the CPU 30 and the calculation
results are temporarily stored, a buffer area where various data from the key board
1, external interface portion 47 or floppy disc driver 32 are stored, and a text are
where the documents or sentences are stored.
[0082] Further, the CPU unit is connected to the printer unit 3 via a recording head driver
34, motor driver 35 and detection portion 36. The recording head driver 34 drives
the recording head 12 in the printer unit 3 under the control of the CPU 30, and the
motor driver 35 drives the feed motor 18 (Fig. 3), carriage motor 22 (Fig. 3) and
clutch motor of the sheet supply device 4 under the control of the CPU 30.
[0083] The detection portion 36 transmits detection information from a ribbon sensor provided
in the printer unit 3 for detecting the presence of the ink ribbon or from a temperature/humidity
detection sensor for detecting the temperature/humidity in the system to the CPU 30.
A power source 38 controls a drive voltage V
H for the recording head 12, a drive voltage V
M for the feed motor 18, carriage motor 22 and clutch motor, a drive voltage V
FDD for the floppy disc driver 32, and a drive voltage V
CC for other logic circuits. Further, a controller 39 performs various controls such
as the transfer of the recording data of the recording head 12, the changing of the
voltage/current of the drive source V
H and the like, under the control of the CPU 30.
[0084] The keyboard 1 for inputting various data required for the recording and eddition
is connected to the CPU unit via a keyboard connector (KBC) 40. Further, the display
portion 2 including the CRT for displaying various information and data inputted from
the keyboard 1 is also connected to the CPU unit via a CRT connector (CRTC) 41. Incidentally,
the display portion 2 may comprise a liquid crystal display or other display elements,
in place of the CRT.
[0085] Further, the floppy disc driver 32 is connected to the CPU unit via a floppy disc
driver connector (FDDC) 42. Incidentally, in place of the floppy disc, a hard disc
or an external RAM can be used. The CPU unit can be connected to an RS232C 44, sentronics
45 and MODEM 46 via interface connectors (IFC) 43 to perform the control of the recording
device 3 under the control of an external control equipment and the communication
to external equipments.
Control Sequence (Fig. 15)
[0086] Next, a control sequence for performing the recording operation by means of the sheet
supply device 4 and the recording device 3 having the above-mentioned constructions
will be explained with reference to a flow chart shown in Fig. 15.
[0087] When the recording command is emitted, the recording device 3 firstly detects the
temperature/humidity in the apparatus by the temperature/humidity detection means,
and then judges the sheet information inputted from the keyboard 1 or detected by
the means for the kind of sheet, and determines the rotational position of the clutch
lever 9d for obtaining the optimum spring force of the torque limiter 9c (steps S1,
S2, S3). Then, by driving the clutch motor, the clutch lever 9d is positioned to the
determined position (step S4).
[0088] Thereafter, by rotating the feed motor reversely for 10 lines and then normally for
10 lines, the clutch pawl 10d is shifted to the stopper surface HP1 (Fig. 10) (step
S5). Then, the feed motor 18 is rotated reversely for 4 lines to shift the clutch
pawl 10d from the stopper HP1 to the notch opening S1 (10e), thus establishing the
clutch ON condition (Fig. 8) (step S6).
[0089] Thereafter, by rotating the feed motor normally, the sheet supply roller 9 is rotated
to feed the sheet to the recording device 3 (step S7). When the leading end of the
sheet exceeds the nip between the sheet feed roller 16 and the first pinch roller
17A, the feed motor is stopped (step S8).
[0090] Then, the feed motor 18 is driven reversely to rotate the sheet feed roller 16 reversely
(step S9). When the leading end of the sheet 5 is returned to the nip between the
sheet feed roller 16 and the first pinch roller 17A, the feed motor is stopped (step
S10). Further, the feed motor 18 is driven normally to feed the sheet until the sheet
faces the recording portion of the recording head 12, and then the feed motor is stopped
(steps S11, S12, S13).
[0091] In this way, the sheet can be fed to a desired position for the recording operation.
[0092] Next, a second embodiment of the invention will be explained with reference to Figs.
16 to 20.
[0093] In this second embodiment, in place of the torque limiter mechanism 9a, 9c, 9d, 9e,
9f (Figs. 8, 9, 11 and 12) acting as the drive control means disposed between the
sheet supply roller (sheet supply means) 9 and the drive transmitting means 10 (sheet
supply gear 10a, clutch 10b, clutch gear 10c and the like) in the above-mentioned
first embodiment, a power accumulating mechanism 9g - 9j acting as a biasing means
operated only when the sheet supply roller 9 is subjected to the feeding force in
the direction f opposite to the sheet feeding direction e is arranged between the
sheet supply roller (sheet supply means) 9 and the drive transmitting means 10.
[0094] The construction of the word processor, construction of the sheet supply device,
correction of the skew-feed of the sheet and other constructions regarding the clutch,
recording device, control means and the like are the same as those in the first embodiment.
Biasing Means (Power Accumulating Mechanism 9g - 9j)
[0095] A spring holder 9h is attached to one end of the shaft portion 9b of the sheet supply
roller via a one-way baring 9i, so that, when the sheet supply roller 9 is rotated
in the driection f opposite to the sheet feeding direction e, the spring holder 9h
can be rotated in the direction f through the one-way bearing 9i. Further, a spring
9g is provided, which spring has one end secured to a pin 9j formed integrally with
the spring holder 9h and the other end secured to a projection 19b formed on the frame
19.
[0096] Fig. 18 shows a condition that the sheet supply roller 9 is rotated in the sheet
feeding direction e (normal direction). In this condition, the sheet supply roller
9 is not subjected to the force of the power accumulating mechanism 9g - 9j in its
rotational direction.
[0097] Fig. 19 shows a condition that the sheet supply roller 9 is rotated in the direction
f (reverse direction) opposite to the sheet feeding direction. In this condition,
the spring holder 9h is rotated in the direction f via the one-way bearing 9i in opposition
to the spring 9g to charge the spring 9g, thus biasing the sheet supply roller 9 in
the normal direction e.
[0098] Thus, when the shifting force (due to the reverse rotation Q of the sheet feed roller
16) tending to feed the sheet in the reverse direction is stronger than the force
of the spring, it is possible to rotate the sheet supply roller 9 reversely. Further,
even when the resiliency of the sheet, i.e., the sheet returning force in the reverse
direction f opposite to the sheet feeding direction e is weaker, if the spring force
is made weaker, it is possible to rotate the sheet supply roller 9 in the reverse
direction f. That is to say, by setting the spring force stronger than the sheet returning
force, the reverse rotation of the sheet supply roller 9 can be prevented, and, by
setting the spring force weaker than the sheet returning force, the reverse rotation
of the sheet supply roller 9 can be permitted.
[0099] From the condition shown in Fig. 5, when the sheet feed roller 16 is rotated in the
direction f opposite to the sheet feeding direction e to perform the disengagement
of the clutch, the left corner 5L of the leading end of the sheet 5 is not fed back
by the returning movement due to the reverse rotation of the sheet feed roller 16
because it is not pinched by the nip between the left roller portions 16a and the
first pinch roller 17A. However, the right corner 5R of the sheet 5 is pinched by
the nip betwen the right roller portions 16a and the first pinch roller 17A, and right
corner 5R of the sheet is fed back by thre returning movement A due to the reverse
rotation of the sheet feed roller 16, thus disengaging the right corner of the sheet
from the nip between the right roller portions 16a and the first pinch roller 17A.
[0100] During this feed back movement of the sheet 5, the sheet supply roller 9 is rotated
reversely by the sheet 5, thus charging the spring 9g. In this condition, when the
reverse rotation of the sheet feed roller 16 is stopped, the leading end of the sheet
5 is abutted against both left and right nips between the roller portions 16a and
the first pinch rollers 17A by the spring force, thus registering the leading end
of the sheet with the longitudinal direction of the sheet feed roller 16.
[0101] Accordingly, when the sheet feed roller 16 is then rotated in the normal direction
P, the sheet 5 is fed to the recording portion 12 without the skew-feed of the sheet.
In this way, by rotating the sheet supply roller 9 reversely, it is possible to correct
the skew-feed of the sheet.
Control Sequence
[0102] Next, a cotnrol sequence for performing the recording operation by means of the sheet
supply device and the recording device having the above-mentioned constructions will
be explained with reference to a flow chart shown in Fig. 20.
[0103] When the recording command is emitted (step S1), the recording device firstly rotate
the feed motor 18 reversely for 10 lines and then normally for 10 lines, thus shifting
the clutch pawl 10d to the stopper surface HP1 (Fig. 10) (step S2). Then, the feed
motor 18 is rotated reversely for 4 lines to shift the clutch pawl 10d from the stopper
HP1 to the notch opening S1 (Fig. 10), thus establishing the clutch ON condition (step
S3).
[0104] Thereafter, by rotating the feed motor normally, the sheet supply roller 9 is rotated
to feed the sheet to the recording device (step S4). When the leading end of the sheet
exceeds the nip between the sheet feed roller 16 and the first pinch roller 17A, the
feed motor is stopped (step S5).
[0105] Then, the feed motor 18 is driven reversely to rotate the sheet feed roller 16 reversely
(step S6). When the leading end of the sheet 5 is returned to the nip between the
sheet feed roller 16 and the first pinch roller 17A, the feed motor 18 is stopped
(step S7). Further, the feed motor 18 is driven normally to feed the sheet until the
sheet faces the recording portion of the recording head 12, and then the feed motor
18 is stopped (steps S8, S9, S10).
[0106] In this way, the sheet 5 can be fed to a desired position for the recording operation
by means of the recording head 12.
[0107] Finally, alterations or modifications will be explained.
(1) In the above first and second embodiment, while the heat-transfer recording device
of serial type was explained, a heat-transfer recording device of line type may be
adopted to the present invention. Further, the present invention is not limited to
the heat-transfer recording system, but can utilize various recording systems such
as an ink jet recording system, wire dot recording system, laser beam recording system
and the like.
(2) Further, while an example that the sheet is guided along the peripheral surface
of the sheet feed roller to feed the sheet wass explained, the present invention is
not limited to this example, but, the sheet may be fed horizontally through the nip
between the sheet feed roller and the pinch roller or may be fed by a conveyor belt
and the like.
(3) Further, while the separating pawls were explained as the sheet separating means,
the present invention is not limited to the separating pawls, but may utilize an inclined
surface sheet separating system for separating the sheet by the use of an inclined
surface to other appropriate separating system.
(4) Furthermore, while an example that the bent loop is formed by rotating the feed
roller reversely after the sheet is pinched by the nip between the feed roller and
the pinch roller was explained, the present invention is not limited to this example.
For example, the bent loop may be formed by rotating the feed roller reversely during
the rotation of the sheet supply roller or the sheet may be fed back by rotating the
sheet supply roller and then by rotating the sheet feed roller.
(5) In this first embodiment, an example that the clutch lever is driven by the motor
was explained, the present invention is not limited to this example. For example,
the clutch lever may be driven in synchronous with the operation of the sheet supply
drive means or by an appropriate means such as a solenoid.
(6) In the second embodiment, while an example that the spring 9g attached to the
sheet supply roller has a constant charged force if the sheet is fed back by a constant
amount was explained, for example, as shown in Fig. 21, a spring lever 9k to which
one end of the spring 9g may be rotatably mounted on the frame 19 so that the charged
force of the spring 9g can be varied by rotating the spring lever 9k in a direction
g (reducing the charged force) or in a direction h (increasing the charged force),
with the result that it is possible to bias the sheet 5 toward the sheet feed roller
16 always by a constant force regardless of the change in the feed back amount of
the sheet due to the variation in the resiliency of the sheet or to vary the biasing
force in accordance with the resiliency of the sheet.
The charged force of the spring 9g may be changed by the input from the keyboard
1, or on the basis of the sheet kind information from the sensor, or manually.
(7) In the above embodiments, while the skew-feed of the sheet was corrected between
the sheet supply roller 9 for feeding out the sheet rested on the sheet support plate
6 and the sheet feed roller 16, a second feed roller may be disposed between the sheet
supply roller 9 and the sheet feed roller 16 and the present invention may be applied
to this second feed roller so that the skew-feed of the sheet can be corrected between
these feed rollers.
[0108] A sheet feeding apparatus comprising a sheet support means for stacking and supporting
sheets, a rotary sheet supply means for feeding out the sheets stacked on the sheet
support means, a rotary feed means for feeding the sheet in normal and reverse directions
with respect to a sheet feeding direction by pinching the sheet into a nip of the
rotary feed means, and a rotation control means for prohibiting a reverse rotation
of the rotary sheet supply means. A skew-feed of the sheet is corrected by the feeding
of the sheet in the reverse direction by means of the rotary feed means and the control
of the rotation of the rotary sheet supply means by means of the rotation control
means.
1. A sheet feeding apparatus, comprising:
a sheet support means for stacking and supporting sheets;
a rotary sheet supply means for feeding out the sheets stacked on said sheet support
means;
a rotary feed means for feeding the sheet in normal and reverse directions with
respect to a sheet feeding direction by pinching the sheet into a nip of said rotary
feed means; and
a rotation control means for prohibiting a reverse rotation of said rotary sheet
supply means if a reverse rotational load applied from the fed sheet to said rotary
sheet supply means is below a predetermined value and for permitting the reverse rotation
of said rotary sheet supply means while applying a brake load to said rotary sheet
supply means if the reverse rotational load is above said predetermined value, when
the sheet is fed in the reverse direction toward said rotary sheet supply means by
means of said rotary feed means;
wherein a skew-feed of the sheet is corrected by the feeding of the sheet in the
reverse direction by means of said rotary feed means and the control of the rotation
of said rotary sheet supply means by means of said rotation control means.
2. A sheet feeding apparatus according to claim 1, wherein the skew-feed of the sheet
is corrected by forming a loop in the sheet between the nip of said rotary feed means
and said rotary sheet supply means if the reverse rotational load applied to said
rotary sheet supply means is below said predetermined value and by registering a leading
end of the sheet with said nip by rotating the skew-fed sheet by the feeding of the
sheet in the reverse direction by means of said rotary feed means and the load from
said rotary sheet supply means being rotated reversely, when the sheet is fed in the
reverse direction by means of said rotary feed means.
3. A sheet feeding apparatus according to claim 2, wherein said rotation control means
comprises a torque limiter.
4. A sheet feeding apparatus according to claim 3, wherein said torque limiter includes
a tightening spring provided on a drive shaft of said rotary sheet supply means and
adapted to tighten said drive shaft, and said spring does not apply the brake load
to said drive shaft when the later is rotated in the sheet feeding direction, and
apply the brake load to said drive shaft by tightening said drive shaft when said
drive shaft is rotated in the direction opposite to the sheet feeding direction.
5. A sheet feeding apparatus according to claim 4, further including an adjusting means
for adjusting the brake load by varying a tightening force of said tightening spring.
6. A sheet feeding apparatus according to claim 5, wherein the tightening force of said
tightening spring is adjusted by said adjusting means in accordance with the circumstances
that the sheet is to be used.
7. A sheet feeding apparatus according to claim 6, wherein said adjusting means includes
a humidity measuring means, and means for automatically adjusting the brake load due
to said tightening spring so that the brake load is increased as the humidity measured
by said humidity measuring means is decreased.
8. A sheet feeding apparatus, comprising:
a sheet support means for stacking and supporting sheets;
a rotary sheet supply means for feeding out the sheets stacked on said sheet support
means;
a rotary feed means for feeding the sheet in normal and reverse direction with
respect to a sheet feeding direction by pinching the sheet into a nip of said rotary
feed means; and
a biasing means for biasing said rotary sheet supply means toward its normal direction,
in opposition to a load directing the reverse direction applied to said rotary sheet
supply means from the sheet being fed in the reverse direction toward said rotary
sheet supply means by said rotary feed means;
wherein a skew-feed of the sheet is corrected by the feeding of the sheet in the
reverse direction by means of said rotary feed means and a biasing force applied to
said rotary sheet supply means by means of said biasing means.
9. A sheet feeding apparatus according to claim 8, wherein the skew-feed of the sheet
is corrected by forming a loop in the sheet between the nip of said rotary feed means
and said rotary sheet supply means if the load applied to said rotary sheet supply
means is below the biasing force of said biasing means and by registering a leading
end of the sheet with said nip by rotating the skew-fed sheet by a feeding force in
the reverse direction by means of said rotary feed means and the biasing force from
said rotary sheet supply means being rotated reversely if the load applied to said
rotary sheet supply means is above the biasing force of said biasing means, when the
sheet is fed in the reverse direction toward said rotary sheet supply means by means
of said rotary feed means.
10. A sheet feeding apparatus according to claim 9, wherein said biasing means includes
a force accumulating means for accumulating a force so that the biasing force is increased
when said accumulating means is rotated reversely by the sheet fed in the reverse
direction by said rotary feed means.
11. A sheet feeding apparatus according to claim 10, wherein said force accumulating means
comprises a one-way bearing for transmitting the reverse rotation of said rotary sheet
supply means, a spring holder to which the reverse rotation is transmitted of said
rotary sheet supply means when it is connected to said one-way bearing, and an elastic
member for biasing said spring holder toward a direction that said rotary sheet supply
means is rotated normally.
12. A sheet feeding apparatus according to claim 11, further including an adjusting means
for adjusting the biasing force by varying initial flexure of said elastic member.
13. A sheet feeding apparatus according to claim 12, wherein said adjusting means varies
the initial flexure in accordance with the circumstances that the sheet is to be used.
14. A sheet feeding apparatus according to claim 13, wherein said adjusting means comprises
a humidity measuring means, and means for automatically adjusting the biasing force
so that the biasing force is increased by increasing the initial flexure as the humidity
measured by said humidity measuring means is decreased.
15. A sheet feeding apparatus, comprising:
a first rotary feed means for feeding a sheet;
a second rotary feed means for feeding the sheet fed from said first rotary feed
means in normal and reverse directions with respect to a sheet feeding direction by
pinching the sheet into a nip of said second rotary feed means; and
a rotation control means for prohibiting a reverse rotation of said first rotary
feed means if a reverse rotational load applied from the fed sheet to said first rotary
feed means is below a predetermined value and for permitting the reverse rotation
of said first rotary feed means while applying a brake load to said first rotary feed
means if the reverse rotational load is above said predetermined value, when the sheet
is fed in the reverse direction toward said first rotary feed means by means of said
second rotary feed means;
wherein a skew-feed of the sheet is corrected by the feeding of the sheet in the
reverse direction by means of said second rotary feed means and the control of the
rotation of said first rotary feed means by means of said rotation control means.
16. A sheet feeding apparatus according to claim 15, wherein the skew-feed of the sheet
is corrected by forming a loop in the sheet between the nip of said second rotary
feed means and said first rotary feed means if the load applied to said first rotary
feed means is below a predetermined value and by registering a leading end of the
sheet with said nip by rotating the skew-fed sheet by the feeding of the sheet in
the reverse direction by means of said second rotary feed means and the load from
said first rotary feed means being rotated reversely, if the load applied to said
first rotary feed means is above the predetermined value, when the sheet is fed in
the reverse direction by means of said second rotary feed means.
17. A sheet feeding apparatus, comprising:
a first rotary feed means for feeding a sheet;
a second rotary feed means for feeding the sheet fed from said first rotary feed
means in normal and reverse directions with respect to a sheet feeding direction by
pinching the sheet into a nip of said second rotary feed means; and
a biasing means for biasing said first rotary feed means toward its normal direction,
in opposition to a load directing the reverse direction applied to said first rotary
feed means from the sheet being fed in the reverse direction toward said first rotary
feed means by said second rotary feed means;
wherein a skew-feed of the sheet is corrected by the feeding of the sheet in the
reverse direction by means of said second rotary feed means and a biasing force applied
to said first rotary feed means by means of said biasing means.
18. A sheet feeding apparatus according to claim 17, wherein the skew-feed of the sheet
is corrected by forming a loop in the sheet between the nip of said second rotary
feed means and said first rotary feed means if the load applied to said first rotary
feed means is below the biasing force of said biasing means and by registering a leading
end of the sheet with said nip by rotating the skew-fed sheet by a feeding force in
the reverse direction by means of said second rotary feed means and the biasing force
from said first rotary feed means being rotated reversely if the load applied to said
first rotary feed means is above the biasing force of said biasing means, when the
sheet is fed in the reverse direction toward said first rotary feed means by means
of said second rotary feed means.
19. An image forming system, comprising:
a sheet support means for stacking and supporting sheets;
a rotary sheet supply means for feeding out the sheets stacked on said sheet support
means;
a rotary feed means for feeding the sheet in normal and reverse directions with
respect to a sheet feeding direction by pinching the sheet into a nip of said rotary
feed means;
a rotation control means for prohibiting a reverse rotation of said rotary sheet
supply means if a reverse rotational load applied from the fed sheet to said rotary
sheet supply means is below a predetermined value and for permitting the reverse rotation
of said rotary sheet supply means while applying a brake load to said rotary sheet
supply means if the reverse rotational load is above said predetermined value, when
the sheet is fed in the reverse direction toward said rotary sheet supply means by
means of said rotary feed means; and
an image forming means for forming an image on the sheet a skew-feed of which is
corrected by the feeding of the sheet in the reverse direction by means of said rotary
feed means and the control of the rotation of said rotary sheet supply means by means
of said rotation control means.
20. An image forming system according to claim 19, wherein the skew-feed of the sheet
is corrected by forming a loop in the sheet between the nip of said rotary feed means
and said rotary sheet supply means if the reverse rotational load applied to said
rotary sheet supply means is below said predetermined value and by registering a leading
end of the sheet with said nip by rotating the skew-fed sheet by the feeding of the
sheet in the reverse direction by means of said rotary feed means and the load from
said rotary sheet supply means being rotated reversely if the reverse rotational load
applied to said rotary sheet supply means is above said predetermined value, when
the sheet is fed in the reverse direction by means of said rotary feed means.
21. An image forming system, comprising:
a sheet support means for stacking and supporting sheets;
a rotary sheet supply means for feeding out the sheets stacked on said sheet support
means;
a rotary feed means for feeding the sheet in normal and reverse directions with
respect to a sheet feeding direction by pinching the sheet into a nip of said rotary
feed means;
a biasing means means for biasing said rotary sheet supply means toward its normal
direction, in opposition to a load directing the reverse direction applied to said
rotary sheet supply means from the sheet being fed in the reverse direction toward
said rotary sheet supply means by said rotary feed means; and
an image forming means for forming an image on the sheet a skew-feed of which is
corrected by the feeding of the sheet in the reverse direction by means of said rotary
feed means and a biasing force applied to said rotary sheet supply means by means
of said biasing means.
22. An image forming system according to claim 21, wherein the skew-feed of the sheet
is corrected by forming a loop in the sheet between the nip of said rotary feed means
and said rotary sheet supply means if the load applied to said rotary sheet supply
means is below the biasing force of said biasing means and by registering a leading
end of the sheet with said nip by rotating the skew-fed sheet by a feeding force in
the reverse direction by means of said rotary feed means and the biasing force from
said rotary sheet supply means being rotated reversely if the load applied to said
rotary sheet supply means is below the biasing force of said biasing means, when the
sheet is fed in the reverse direction toward said rotary sheet supply means by means
of said rotary feed means.
23. An image forming system, comprising:
a first rotary feed means for feeding a sheet;
a second rotary feed means for feeding the sheet fed from said first rotary feed
means in normal and reverse directions with respect to a sheet feeding direction by
pinching the sheet into a nip of said second rotary feed means;
a rotation control means for prohibiting a reverse rotation of said first rotary
feed means if a reverse rotational load applied from the fed sheet to said first rotary
feed means is below a predetermined value and for permitting the reverse rotation
of said first rotary feed means while applying a brake load to said first rotary feed
means if the reverse rotational load is above said predetermined value, when the sheet
is fed in the reverse direction toward said first rotary feed means by means of said
second rotary feed means; and
an image forming means for forming an image on the sheet a skew-feed of which is
corrected by the feeding of the sheet in the reverse direction by means of said second
rotary feed means and the control of the rotation of said first rotary feed means
by means of said rotation control means.
24. An image forming system according to claim 23, wherein the skew-feed of the sheet
is corrected by forming a loop in the sheet between the nip of said second rotary
feed means and said first rotary feed means if the load applied to said first rotary
feed means is below a predetermined value and by registering a leading end of the
sheet with said nip by rotating the skew-fed sheet by the feeding of the sheet in
the reverse direction by means of said second rotary feed means and the load from
said first rotary feed means being rotated reversely if the load applied to said first
rotary feed means is above the predetermined value, when the sheet is fed in the reverse
direction by means of said second rotary feed means.
25. An image forming system, comprising:
a first rotary feed means for feeding a sheet;
a second rotary feed means for feeding the sheet fed from said first rotary feed
means in normal and reverse directions with respect to a sheet feeding direction by
pinching the sheet into a nip of said second rotary feed means;
a biasing means for biasing said first rotary feed means toward its normal direction,
in opposition to a load directing the reverse direction applied to said first rotary
feed means from the sheet being fed in the reverse direction toward said first rotary
feed means by said second rotary feed means; and
an image forming means for forming an image on the sheet a skew-feed of which is
corrected by the feeding of the sheet in the reverse direction by means of said second
rotary feed means and a biasing force applied to said first rotary feed means by means
of said biasing means.
26. An image forming system according to claim 25, wherein the skew-feed of the sheet
is corrected by forming a loop in the sheet between the nip of said second rotary
feed means and said first rotary feed means if the load applied to said first rotary
feed means is below the biasing force of said biasing means and by registering a leading
end of the sheet with said nip by rotating the skew-fed sheet by a feeding force in
the reverse direction by means of said second rotary feed means and the biasing force
from said first rotary feed means being rotated reversely if the load applied to said
first rotary feed means is above the biasing force of said biasing means, when the
sheet is fed in the reverse direction toward said first rotary feed means by means
of said second rotary feed means.