

① Veröffentlichungsnummer: 0 492 322 A2

EUROPÄISCHE PATENTANMELDUNG (12)

(21) Anmeldenummer: 91121449.2

(51) Int. Cl.5: F24F 13/20

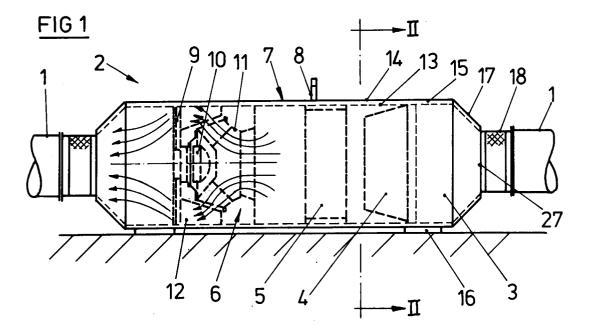
2 Anmeldetag: 13.12.91

3 Priorität: 21.12.90 DE 4041427

43 Veröffentlichungstag der Anmeldung: 01.07.92 Patentblatt 92/27

 Benannte Vertragsstaaten: AT CH DE ES FR GB LI NL SE 71) Anmelder: AL-KO THERM GmbH Maschinenfabrik

W-8876 Jettingen-Scheppach(DE)


(72) Erfinder: Kammerer, Franz Steigstrasse 26 W-8909 Münsterhausen(DE)

(4) Vertreter: Munk, Ludwig, Dipl.-Ing. Patentanwalt Prinzregentenstrasse 1 W-8900 Augsburg(DE)

54 Raumlufttechnische Anlage.

57 Bei einer raumlufttechnischen Anlage mit wenigstens einem vorzugsweise in eine Rohrleitung (1) eingebauten, raumlufttechnischen Gerät (2), das ein vorzugsweise mit Anschlußstutzen versehenes Gehäuse (7) enthält, in welchem wenigstens ein raumlufttechnisches Einbauteil (3, 4, 5, 6) aufgenommen ist, lassen sich dadurch ein guter Wirkungsgrad, eine

lange Lebensdauer und ein hoher Betriebskomfort erreichen, daß das Gehäuse (7) zumindest in seinem den Einbauteilen (3, 4, 5, 6) einen Rundquerschnitt und wenigstens ein Einbauteil (3 bzw. 4 bzw. 5 bzw. 6) eine hieran angepaßte Rundkonfiguration aufweisen.

10

15

20

25

40

45

Die Erfindung betrifft eine raumlufttechnische Anlage mit wenigstens einem vorzugsweise in eine Rohrleitung eingebauten, raumlufttechnischen Gerät, das ein vorzugsweise mit Anschlußstutzen versehenes Gehäuse enthält, in dem wenigstens ein raumlufttechnisches Einbauteil aufgenommen ist.

Bei den bekannten Anordnungen dieser Art sind die Gehäuse der raumlufttechnischen Geräte als einen rechteckigen Querschnitt aufweisende Kastengehäuse ausgebildet. Hierbei besteht die Gefahr, daß sich im Bereich der Gehäuseecken ungünstige Strömungsverhältnisse ergeben. Vielfach kommt es im Bereich der Gehäuseecken zu sogenannten Totwassergebieten bzw. zu einer Umkehr der Strömungsrichtung. Dies kann zu Pulsationen und hiervon angeregten Schwingungen der ebenen Gehäusewandungen führen.

Dieser Nachteil wird dadurch noch verstärkt. daß die ebenen Wände der bisherigen Gehäuse sehr leicht zu Schwingungen angeregt werden können. Hinzu kommt, daß sich infolge der rechteckigen Querschnittsform auch eine vergleichsweise große Oberfläche ergibt, so daß auch die Schallabstrahlung vergleichsweise groß ist. Dasselbe gilt für die Wärmeabstrahlung. Ein weiterer Nachteil der bekannten Anordnungen ist darin zu sehen, daß die Einbauteile praktisch nur im mittleren Bereich beaufschlagt werden, wo es demzufolge zu einer Überbeaufschlagung kommen kann, wogegen die Eckbereiche schlecht oder überhaupt nicht beaufschlagt werden. Die nachteilige Folge können thermische Überlastungen im Eckbereich sein, sofern nicht mit größeren Sicherheiten gearbeitet wird.

Die geschilderten Nachteile drücken auf den erzielbaren Wirkungsgrad, die Lebensdauer und den Betriebskomfort.

Hiervon ausgehend ist es daher die Aufgabe der vorliegenden Erfindung, die Nachteile der bekannten Anordnungen zu vermeiden und bei Anordnungen eingangs erwähnter Art einen hohen Wirkungsgrad, eine lange Lebensdauer und einen großen Betriebskomfort zu gewährleisten.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß das Gehäuse zumindest in seinem den Einbauteilen zugeordneten Abschnitt einen Rundquerschnitt und wenigstens ein Einbauteil eine hieran angepaßte Rundkonfiguration aufweisen.

Mit diesen Maßnahmen sind die eingangs geschilderten Nachteile in vorteilhafter Weise vollständig vermeidbar. Der erfindungsgemäße Rundquerschnitt des Gehäuses führt in vorteilhafter Weise zu einer Minimierung der Oberfläche, wodurch auch die Schall- und Wärmeabstrahlung minimiert werden. Zudem ergibt sich infolge des Rundquerschnitts auch eine vergleichsweise hohe Stabilität. In vorteilhafter Weise läßt sich hierbei auch sehr einfach eine selbsttragende, zweischalige Gehäusebauweise verwirklichen, was die Aufstellung ver-

einfacht und Wärmebrücken zwischen Innen- und Außenschale vermeidet. Durch den erfindungsgemäßen Rundquerschnitt ist zudem sichergestellt, daß strömungstechnisch ungünstige Eckbereiche entfallen, so daß Pulsationen etc. unterbleiben und die Einbauteile auf ihrer ganzen Fläche weitgehend gleichmäßig beaufschlagt weden können. Da lokale Überbelastungen nicht zu befürchten sind, ist ein hohes Belastungsniveau ohne größere Sicherheiten möglich.

Zweckmäßige Fortbildungen und vorteilhafte Ausgestaltungen der übergeordneten Maßnahmen sind in den Unteransprüchen angegeben. So können das Gehäuse einen kreisförmigen Querschnitt und das bzw. die Einbauteile eine kreisförmige Rundkonfiguration aufweisen. Diese Maßnahmen ergeben eine optimale Konfiguration, die sowohl von der Herstellung her als auch bezüglich der Optimierung der oben geschilderten Vorteile besonders zu bevorzugen ist.

Eine weitere vorteilhafte Maßnahme kann darin bestehen, daß zumindest die stationären, keine beweglichen Teile aufweisenden Einbauteile, vorzugsweise in Form von Filter und/oder Kühler und/oder Erhitzer, eine an den Rundquerschnitt des Gehäuses angepaßte Rundkonfiguration aufweisen.

Diese Maßnahme ergibt hinsichtlich aller Einbauteile, die lediglich durchströmt werden, optimale Strömungs- und Beaufschlagungsverhältnisse.

In weiterer Fortbildung der übergeordneten Maßnahmen kann zur Bildung eines Ventilatoreinbauteils ein Axial- oder vorzugsweise Halbaxiallüfter vorgesehen sein, dessen zumindest eines Laufrad vorzugsweise koaxial zur Gehäuseachse angeordnet ist. Diese Maßnahme ergibt auch hinsichtlich des Ventilatoreinbauteils eine an den runden Gehäusequerschnitt angepaßte Rundkonfiguration. Die Verwendung eines Halbaxiallüfters ermöglicht in diesem Zusammenhang auch die Erzielung vergleichsweise hoher Drücke. Lediglich wenn noch höhere Drücke benötigt werden, kann es zweckmäßig sein, den Ventilator als Radiallüfter auszubilden.

Zur Erzielung einer besonders einfachen und kostengünstigen Herstellung können der Gehäusemantel vorzugsweise in Form von Innen- und Außenmantel, zumindest teilweise als Wickelfalzteile ausgebildet sein. Die hier vorgeschlagene Wikkelfalzmethode stellt eine rationelle Fertigungsmethode dar, die infolge des erfindungsgemäßen Rundquerschnitts in vorteilhafter Weise auch im vorliegenden Zusammenhang Verwendung finden kann.

Weitere vorteilhafte Ausgestaltungen und zweckmäßige Weiterbildungen der übergeordneten Maßnahmen ergeben sich aus den restlichen Unteransprüchen in Verbindung mit der nachstehenden Beschreibung einiger Ausführungsbeispiele an-

55

hand der Zeichnung.

In der nachstehend beschriebenen Zeichnung zeigen:

Figur 1 einen Längsschnitt durch ein bevorzugtes Ausführungsbeispiel,

Figur 2 einen Radialschnitt entlang der Linie II/II in Figur 1 und

Figur 3 einen Längsschnitt durch ein weiteres Ausführungsbeispiel.

Der grundsätzliche Aufbau und die Wirkungsweise von raumlufttechnischen Anlagen sind an sich bekannt und bedürfen daher im vorliegenden Zusammenhang keiner näheren Erläuterung mehr. Der der Figur 1 zugrundeliegende Teil einer raumlufttechnischen Anlage umfaßt ein in eine Rohrleitung 1 eingebautes, raumlufttechnisches Gerät 2, das verschiedene Einbauteile 3, 4, 5, 6 enthält, die vom Gerätegehäuse 7 umfaßt werden.

Beim eingangsseitigen Einbauteil 3 kann es sich um ein Filter handeln, mit Hilfe dessen die in das Gehäuse 7 einströmende Luft gefiltert wird. Ein weiteres Einbauteil 4 kann als Kühler ausgebildet sein. Beim weiteren Einbauteil 5 handelt es sich um einen mit Anschlußstutzen 8 versehenen Erhitzer. Die Anschlußstutzen des Kühlers 4 sind nicht dargestellt. Das ausgangsseitige Einbauteil 6 ist als Ventilator ausgebildet, durch welches der erforderliche Druck und die erforderliche Strömungsgeschwindigkeit erzeugt werden. Infolge der ausgangsseitigen Anordnung des Ventilators werden die vorgeordneten, stationären Einbauteile im Saugzug beaufschlagt.

Das Gehäuse 7 besitzt zumindest auf seiner den Einbauteilen zugeordneten Länge, hier auf seiner ganzen Länge, einen runden Querschnitt. Im dargestellten Ausführungsbeispiel handelt es sich hierbei, wie am besten aus Figur 2 erkennbar ist, um einen kreisförmigen Querschnitt. Die Konfiguration der Einbauteile ist der genannten runden Querschnittsform des Gehäuses 7 angepaßt. Dies gilt in erster Linie für die stationären, keine beweglichen Teile aufweisenden Einbauteile 3, 4, 5, hier in Form von Filter, Kühler und Erhitzer. Diese Einbauteile besitzen, wie am besten aus Figur 2 ersichtlich ist, eine runde, hier kreisrunde Außenkonfiguration und sind mit ihrem Außenumfang am Innenumfang des Gehäuses 7 befestigt.

Das Ventilator-Einbauteil 6 ist bei dem der Figur 1 zugrundeliegenden Beispiel zur Erzielung einer ebenfalls runden Konfiguration als Axiallüfter, hier als Halbaxiallüfter, ausgebildet. Dieser erfordert zwar, wie durch Richtungspfeile angedeute ist, eine gewisse Strömungsauslenkung, gewährleistet aber einen gegenüber einem reinen Axiallüfter höheren Druck. Das Einbauteil 6 besitzt hier einen an einem am Gehäuse 7 befestigten, sternförmigen Bock 9 koaxial zur Gehäuseachse aufgenommenen Motor 10, der ein Diagonallaufrad 11 trägt. Gehäu-

seseitig können dem Laufrad 11 zugeordnete, axiale Leitschaufeln 12 vorgesehen sein. Mit Hilfe des hier vorgesehenen Axial- bzw. Halbaxiallüfters läßt sich, wie die Strömungspfeile verdeutlichen sollen, eine zur Gehäuseachse koaxiale, über den kreisförmigen Gehäusequerschnitt gut verteilte Strömung erreichen, wobei davon auszugehen ist, daß bei Verwendung eines reinen Axiallüfters die Querschnittsverteilung noch günstiger, dafür der erzeugbare Druck jedoch niedriger wären.

Das Gehäuse 7 ist zweischalig ausgebildet und besitzt dementsprechend einen runden Innenmantel 13 und einen hiervon distanzierten, runden Au-Benmantel 14. Der Innenmantel 13 und Außenmantel 14 können infolge ihrer runden Konfiguration als Wickelfalzteile hergestellt werden. Der zwischen Innenmantel 13 und Außenmantel 14 vorgesehene Zwischenraum wird durch eine aus Isolationsmaterial, wie Steinwolle etc., bestehende Isolierschicht 15 überbrückt. Der Innenmantel 13 stützt sich dementsprechend ausschließlich über die Isolierschicht 15 am Außenmantel 14 ab. Weitere Abstützungen, z.B. in Form von eingesetzten Stützleisten etc., die zu Wärme- und Schallbrücken zwischen Innen- und Außenmantel führen könnten, sind nicht erforderlich. Die Einbauteile haben dementsprechend keine Verbindung zu dem vom sie aufnehmenden Innenmantel 13 isolierten Außenmantel 14, der hier auf Stützkonsolen 16 aufgenommen ist. Diese können infolge der selbsttragenden Bauweise des Gehäuses 7 einfach gestaltet sein.

Der Innenmantel 13 und Außenmantel 14 sind im Bereich der Gehäusestirnseiten durch Flansche 27 miteinander verbunden. Diese können zumindest eine möglichst weit innen liegende, umlaufende Dichtung enthalten und mit Löchern für Schrauben zum Anflanschen eines Gegenflansches versehen sein. Zwischen diesen Löchern können Erleichterungsausnehmungen vorgesehen sein. Die Flansche 27 können sich an den Enden des den Einbauteilen zugeordneten, auf seiner ganzen Länge einen gleichen Durchmesser aufweisenden, durch Wickelfalzteile gebildeten Mittelstücks des Gehäuses 7 befinden. Eine Ausführung dieser Art kommt vor allem da in Frage, wo der Durchmesser der Rohrleitung 1, die ebenfalls einen Rundquerschnitt, vorzugsweise Kreisguerschnitt aufweisen kann, dem Durchmesser des Gehäuses 7 in etwa entspricht.

Im dargestellten Beispiel ist der Durchmesser der im Querschnitt ebenfalls kreisförmigen Rohrleitung 1 kleiner als der Durchmesser des Gehäuses 7. Im Bereich der Gehäusestirnseiten sind dementsprechend die Flansche 27 tragende Verengungskonen 17 vorgesehen. Diese können als an die Wickelfalzteile angesetzte Formteile ausgebildet sein. In jedem Falle befinden sich zwischen der Rohrleitung 1 und dem Gehäuse 7 flexible Verbin-

50

55

5

10

15

25

30

35

40

45

50

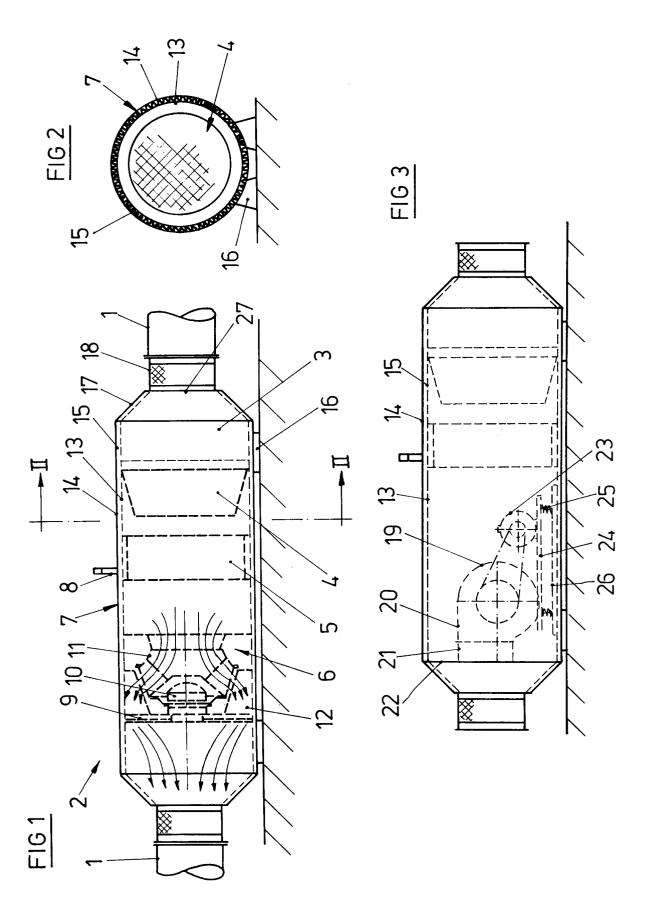
55

dungsstutzen 18, die einen Längenausgleich ermöglichen.

Das der Figur 3 zugrundeliegende Beispiel entspricht im wesentlichen dem oben beschriebenen Beispiel. Für gleiche Teile finden daher gleiche Bezugszeichen Verwendung. Lediglich für das Ventilator-Einbauteil ist eine andere Bauweise vorgesehen. Dieses besitzt im dargestellten Beispiel einen Radialventilator 19, der mit seinem Ausblasstutzen 20 an eine mit einem entsprechenden Anschlußstutzen 21 versehene Einbauwand 22 angeflanscht ist. Die Verwendung eines derartigen Radialventilators kann erforderlich sein, wenn sehr hohe, mit einem Axialventilator nicht mehr erreichbare Drücke benötigt werden. Der Radialventilator 19 ist zusammen mit einem ihm zugeordneten Antriebsmotor 23 auf einer Palette 24 aufgenommen, die über Federn 25 und Konsolen 26 am Innenmantel 13 des Gehäuses 7 abgestützt ist, der seinerseits lediglich über die Isolierschicht 15 am Außenmantel 14 abgestützt ist. Der hier vorgesehene Radialventilator 19 besitzt zwar seitliche Ansaugdüsen. Infolge der Saugzugbeaufschlagung der vorgeordneten Einbauteile ergibt sich jedoch auch hier eine gute Strömungsverteilung auf den gesamten Querschnitt.

Vorstehend sind zwar einige Ausführungsbeispiel der Erfindung näher erläutert, ohne daß jedoch hiermit eine Beschränkung verbunden sein soll. Vielmehr stehen dem Fachmann eine Reihe von Möglichkeiten zur Verfügung, um den allgemeinen Gedanken der erfindungsgemäßen Lösung an die Verhältnisse des Einzelfalls anzupassen.

So wäre es selbstverständlich auch möglich, den Ventilator zur Bewerkstelligung einer druckseitigen Beaufschlagung nachgeordneter Einbauteile eingangsseitig anzuordnen, was z.B. bei Anlagen für sogenannte Reinräume erwünscht sein kann.


Patentansprüche

- 1. Raumlufttechnische Anlage mit wenigstens einem vorzugsweise in eine Rohrleitung (1) eingebauten, raumlufttechnischen Gerät (2), das ein vorzugsweise mit Anschlußstutzen versehenes Gehäuse (7) enthält, in welchem wenigstens ein raumlufttechnisches Einbauteil (3, 4, 5, 6) aufgenommen ist, dadurch gekennzeichnet, daß das Gehäuse (7) zumindest in seinem den Einbauteilen (3, 4, 5, 6) einen Rundquerschnitt und wenigstens ein Einbauteil (3 bzw. 4 bzw. 5 bzw. 6) eine hieran angepaßte Rundkonfiguration aufweisen.
- Raumlufttechnische Anlage nach Anspruch 1, dadurch gekennzeichnet, daß das Gehäuse (7) einen kreisförmigen Querschnitt und das bzw. die Einbauteile (3 bzw. 4 bzw. 5 bzw. 6)

eine Kreiskonfiguration aufweisen.

- 3. Raumlufttechnische Anlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zumindest die stationären, keine beweglichen Teile aufweisenden Einbauteile (3, 4, 5) eine an den Rundquerschnitt des Gehäuses (7) angepaßte Rundkonfiguration aufweisen.
- 4. Raumlufttechnische Anlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zur Bildung eines Ventilator-Einbauteils (6) ein Axiallüfter, vorzugsweise ein Halbaxiallüfter, vorgesehen ist, dessen zumindest vorgesehenes, eines Laufrad (11) vorzugsweise koaxial zur Achse des Gehäuses (7) angeordnet ist.
- 20 5. Raumlufttechnische Anlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Ventilator-Einbauteil (6) ausgangsseitig im Gehäuse (7) angeordnet ist.
 - 6. Raumlufttechnische Anlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Gehäuse (7) zweischalig mit einem runden Innenmantel (13) und einem hiervon distanzierten Außenmantel (14) ausgebildet ist.
 - 7. Raumlufttechnische Anlage nach Anspruch 6, dadurch gekennzeichnet, daß im Zwischenraum zwischen Innenmantel (13) und Außenmantel (14) eine Isolierschicht (15) vorgesehen ist und daß der Innenmantel (13) lediglich über die Isolierschicht (15) am Außenmantel (14) abgestützt ist.
 - 8. Raumlufttechnische Anlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Gehäuse (7), vorzugsweise sein Innenmantel (13) und Außenmantel (14), zumindest teilweise als Wickelfalzteil ausgebildet ist bzw. sind.
 - Raumlufttechnische Anlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß im Bereich der Mantelstirnseiten Verengungskonen (17) vorgesehen sind.
 - 10. Raumlufttechnische Anlage nach einem der vorhergehenden Ansprüche 6 bis 9, dadurch gekennzeichnet, daß der Innenmantel (13) und Außenmantel (14) stirnseitig durch Flansche (27) miteinander verbunden sind.

4

