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FIELD OF THE INVENTION

The present invention relates to tunnel-structure so that propagation of pressure disturbances generated
by travelling of high-speed trains can be suppressed and especially emergence of acoustic shock waves
can be avoided.

PRIOR ART

It is likely that high-speed frains in future must travel inside of a tunnel, namely a tubular passage in
general, because of the environmental noise problem and the weather problem. Pressure disturbances
generated by travelling of trains are propagated along a tunnel in the form of sound. Then as the tunnel
plays a role of a waveguide for sound, they are transmitted far down without any geometrical spreading.
While their intensity depends crucially on the ratio of a train's cross-sectional area to a tunnel's one, the
faster the train travels, the more intense sound is generated. Thus there will arise new noise problem in the
tunnel associated with propagation of the so-called nonlinear acoustic waves.

Even at present, when the high-speed train (Shinkansen) rushes into the tunnel, indeed, there happens
the burst tone at the other end of the tunnel. As the train's speed becomes high, this problem would
become severer unless suitable measures were taken. Thus it may be projected that the magnetically
levitated trains will tfravel inside of tunnels as much as possible. In fact, the test line now under way is to be
constructed almost in the tunnels over the line of 40km long. When the magnitude of pressure disturbances
becomes high in such a long tunnel unprecedentedly, profiles of pressure disturbances tend to be
steepened due to the nonlinearity to lead eventually to emergence of shock waves unexpectedly far down
the tunnel, even if the frain's speed is well below the sound speed. Emergence of the shock waves will give
rise not only to severer noise problem but also to deterioration in performance and durability of the frains as
well as the tunnels.

For reduction of this problem, it is essential to lower the ratio of the train's cross-sectional area to the
tunnel's one. This ratio is set to be 21% for the Shinkansen, while for the magnetically levitated frains, it is
lowered to be 12%. The smaller value of this ratio means the larger tunnel's cross-sectional area and also
the higher cost in construction. The present invention makes it possible to suppress propagation of pressure
disturbances generated by travelling of high-speed trains even in a tunnel of smaller cross-sectional area
and especially to avoid emergence acoustic shock waves.

SUMMARY OF THE INVENTION

The tunnel structure claimed by this inven-tion consists, as shown in Fig.1, of the main tunnel 1 for the
frains and of many cavities arranged in the outside of the tunnel and in array axially with each cavity 2
connected to the tunnel through a passage 3. Here the cavity is not necessarily a sphere and both axes of
the tunnel and the passage are not necessarily normal each other. Also the passages may be positioned
arbitrarily around the periphery of the tunnel. Technically, the above structure is realizable as shown in Fig.2
by arranging a side tunnel 4 in parallel with the main one and partitioning it by a bulkhead 5 into
compartments as a cavity, which are connected to the tunnel through passages. But the axial spacing
between the neighbouring resonators should be taken much smaller than a characteristic wavelength of the
pressure disturbances. This requirement is satisfied in the far field because the characteristic wavelength
there is determined by the frain's axial length so that the pressure disturbances are propagated as an infra-
sound. As an extension, two tunnels can share the one side tunnel 4 as shown in Fig.3, connected by the
passages with suitable dampers or bulk heads 6. In addition, if different kinds of the array are connected,
the effect of suppression of propagation of pressure disturbances is enhanced significantly. As shown in
Fig.4, for example, the cavities 7 and 8 of different volume are connected through the passages 9 and 10 of
different size with each axial distance. This double array can be realized as shown in Fig.5 without
arranging two side tunnes by partitioning the one side tunnel 11 into compartments 12 of two different
volume with the passages 13 of two different cross-sectional area.

One unit of the cavity and the connecting passage constitutes the resonator. If its natural frequency is
chosen to be near to the characteristic frequency of the pressure disturbances, it is expected that their
energy is absorbed in the resonators. By arranging many resonators in array, this effect will be enhanced.
But what is to be emphasized is that the array of resonators does not only decay the propagation of
pressure disturbances by absorbing their energy but also make their propagation velocity dependent of the
frequency. In other words, the array introduces the dispersion into acoustic waves. It is this dispersion
rather than the dissipation due fo the absorption of energy that can suppress emergence of shock waves by
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'dispersing' high frequency components generated by the nonlinearity in the course of propagation.

For this end, there arises an important problem as to how to design the array suitably. For identical
cavity and passage connected with axially equal spacing, it is shown that the effect of the array of
resonators is controlled by two parameters called the 'coupling parameter' x and the 'tuning parameter' @
defined, respectively, by

k=—Y _ and Q=(20)
26 Ad w

where V, A and d denote, respectively, the cavity's volume, the tunnel's cross-sectional area and the axial
spacing, € {= [(y +1)/2y]Ap/p0<<1} being the measure of the maximum pressure disturbances Ap relative
to the atmospheric pressure po and v the ratio of the specific heats for the air. A characteristic frequency of
the pressure disturbances is designated by », while wo denotes the natural frequency of the resonator given
by (Bao?/LV)'? where B and L denote, respectively, the passage's cross-sectional area and its length, ao
being the sound speed.

The parameter x determines the size of the cavity's volume V relative to the tunnel's volume per
spacing Ad, while the latter @ determines the size of the passage's cross-sectional area B and its length L.
It is shown that the array of the resonators is very effective if x is chosen large enough to be 10, while @ is
set greater than unity. For the double array, two 'coupling parameters’ x;(i=1,2) and "tuning parameters’ Q; -
(i=1,2) control the effect of the array:

oo Vi
2eAd ;

and &= (a;)Oi ),

where the suffix 7 designates the respective quantities pertinent to the array 1 and 2. It is found that the
choice of the coupling parameters even smaller than 10 is enough if 21 is set equal to unity, while @, is set
far greater than unity, for example @1 =1 and Q2 =5 for x1 =x2 =1.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1.A tunnel to which a cavity is connected in array through a passages.

Figure 2. A tunnel with a side tunnel partitioned into compartments as a cavity by the bulkhead.

Figure 3. Two tunnels sharing one side tunnel with the connecting passages having suitable dampers or
bulkheads.

Figure 4. A tunnel to which the two different kind of cavities and passages are connected.

Figure 5. A tunnel with a side tunnel partitioned into two differernt sizes of compartments and
connected by two different sizes of passages.

Figure 6. Geometrical configuration of the problem.

Figure 7. Dispersion relation where (a) shows the absolute value of the imaginary part of S, S;, versus
wo/w while (b) shows its real part S, versus wo/w.

Figure 8. Evolution of pressure disturbances in the tunnel without the array of resonators where the
normalised pressure f in the tunnel is shown and the vertical arrow measures unity of f.

Figure 9. Evolution of pressure disturbances in the tunnel with the array of resonators having x=1 and
2 =1 where (a) and (b) show the normalised pressure f and ¢ in the tunnel and in the cavity, respectively
and the vertical arrow measures unity of the respective quantity.

Figure 10. Evolution of pressure disturbances in the tunnel with the array of resonators having x =10
and =1 where (a) and (b) show the normalised pressure f and ¢ in the tunnel and in the cavity,
respectively and the vertical arrow measures unity of the respective quantity.

Figure 11. Evolution of pressure disturbances in the tunnel with the array of resonators having x =1 and
2 =10 where (a) and (b) show the normalised pressure f and ¢ in the tunnel and in the cavity, respectively
and the vertical arrow measures unity of the respective quantity.

DESCRIPTION OF THE PREFERRED EMBODIMENT
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FORMULATION OF THE PROBLEM

In considering the sound field generated by travelling of a train, it is important to distinguish between a
near field and a far field from the train. In the near field, many sources of sound are identified, especially, to
be attributed to a frain's geometry as well as a tunnel's one. In this field, very complicated sound field of
three-dimensional nature is built up, involving a wide range of frequencies. With the distance away from the
frain, however, high-frequency components in the complicated behaviour will fade out due to the significant
dissipation so that almost one-dimensional propagation will survive along the tunnel in the far field.

To determine its typical frequency, no other physical quantities are available than the tunnel's diameter
D, the train's speed U and its axial length/. These quantities suggest the frequency to be determined by ao//
or U/D. Suppose, for example, that the train of length 200 m be travelling with a speed 150 m/s (540 km/h)
in a tunnel of diameter 10m. The former estimation gives the frequency of a few Hertz, while the latter also
gives a similar frequency, even if the Doppler effect is taken into account. In the far field, thus, the infra-
sound will be propagated.

As for their magnitude, the maximum magnitude of the pressure disturbances could be generated when
the trains suddenly sets into motion with a constant speed U. The linear acoustic theory predicts that its
magnitude is given roughly by SM/(1-M) relative to the atmospheric pressure where 8 denotes the ratio of
the train's cross-sectional area to the tunnel's one and M (= Uap<1) denotes the train's Mach number. This
suggests the higher pressure disturbances as the train's speed M approaches unity. Since the infra-sound is
subjected to less dissipation in propagation, it is highly probable that the nonlinearity accumulates to give
rise eventually to emergence of shock waves in the far field.

In view of the physical consideration above, we formulate the propagation of pressure disturbances in
the tunnel with the array of resonators shown in Fig.1. For simplicity, let identical resonators be connected
with the axially equal spacing and take this spacing much smaller than the characteristic wavelength so that
the resonators may be regarded as continuously distributed along the tunnel. In formulation, the effect of
friction at the tunnel wall is taken into account whereas the effect of diffusivity of sound itself is ignored. The
wall friction is important in evaluating the far-filed behaviour quantitatively because it exhibits such a
hereditary effect as to accumulate in the course of propagation.

By taking account of this wall friction, at first, we derive the nonlinear wave equations for the far-field
propagation of pressure disturbances in the tunnel with the array of resonators. Examining the linear
dispersion relation, we look at the effect of the array of resonators on propagation of infinitesimally small
pressure disturbances. By solving typical initial-value problems for the equations, next, we describe the
effect of resonators in propagation of pressure disturbances and especially in suppression of emergence of
shock waves.

For a far-field behaviour, the quasi-one-dimensional propagation is assumed for the acoustic main flow
in the tunnel except for a thin boundary layer adjacent to the tunnel wall and a vicinity of the orifices from
the resonators (see Fig.6). Here the term 'quasi-one dimension' is used in the sense that the cross-section
of the acoustic main flow varies slowly along the tunnel. For this main flow, the equation of continuity is
given by

w_ 9 . _1
(1) at +6x(pu)_A pvnds:

where p and U denote, respectively, the mean values of the density and the axial velocity of the air
averaged over the cross-section of the main flow,x and t being the axial coordinate and the time. The right-
hand side represents the mass flux density pv, into the main flow through the edge of the boundary layer
and the orifices of the resonators, v, being the small velocity inward normal to the boundary of the cross-
section of the main flow and ds the line element along it.

The diffusivity of sound is neglected so the equation motion for the main flow in the axial direction is
given by

ou ou _ 1dp
2) W, __19P
@ St T
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where p is the mean pressure averaged over the cross-section of the main flow. In addition to these two
equations, there exists between p and p the adiabatic relation p/po =(p/po)” where the suffix 0 implies the
respective equilibrium values. For closure of the equations, it is necessary to specify the mass flux on the
right-hand side of (1) due to the boundary layer and the resonators. The boundary layer consists of two
layers for the velocity and the temperature. It is known that the velocity at the edge of the boundary layer »,
corresponding to », is given in terms of the velocity in the main flow by

3 = C (/2 1 duxt') T
O w7 iw w

with C=1+(y-1)/Pr'2 where v is the kinematic viscosity and Pr is the Prandtl number. The velocity », is
given by the herediatry integral of u with respect to the past time ' up to t. This integral is nothing but the
X derivative of the fractional derivative of order minus 1/2 for u defined by

M f
4) -1 u(x,t'yde’
at’]/z JU _0 t - t !

To derive another contribution to the mass flux from the resonator, it is necessary to0 examine its
response. Let the resonator consist of the cavity of volume V and the passage as a throat of cross-sectional
area B and of length L and let all length-scale be much shorter than a characteristic wavelength of pressure
disturbances. Assuming the cavity's volume be far larger than that of throat, the motion in the cavity is
neglected so that only the conservation of mass is considered:

30c
5 v¥e_-Bg,
(5) ot q

where p. is the averaged density of air in the cavity and q denotes the mass flux through the throat from
the tunnel to the cavity. The compressibility of the air in the throat can be ignored because the throat's
length is much shorter than the characteristic wavelength. Hence the mass flux from the throat into the
tunnel pr, is constant along the throat and is equal to -q. For the air in the throat, the equation of motion in
the axial direction can be averaged over the whole cross-section of the throat including the boundary layer
as

d — 0~ p o
6) —(ov)+ vi)=-.&
(6) at(p") @(p ) 3 B

where y denotes the axial coordinate along the throat with its origin at the orifice to the tunnel. Here p, », p
denote, respectively, the density of the air in the throat, its velocity in the y direction and the pressure
where the bar designates the averaged quantity over the cross-section. The wall friction ¢ per unit axial
length can be evaluated by examining the boundary layer near the throat wall. But since the air in the throat
can be regarded as being incompressible, we have only to consider the boundary layer for the velocity
unlike in the case for the tunnel. In this consequence, ¢ can be given by the following hereditary integral:

t '
7 o =2B (2 1__9q&t') 4.
(™) G T e ;
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whether r is the hydraulic radius of the throat. Because this integral corresponds to the first-order derivative
of the fractional derivative of minus 1/2 for g with respect to {, it is called the derivative of order 1/2.

For the motion in the throat, we linearise to neglect the quadratic momentum flux density (where p is
close 1o po) and integrate (6) from one orifice at the tunnel side y=0 to the other one at the cavity side
y=L. Here note again that pr averaged over the cross-section is equal to ¢ and that ¢ and o are
independent of y. It is assumed that the pressure at y=0 is equal to that in the tunnel at that section, while
the pressure at y=L is equal to that in the cavity p.. In order to express ¢ in (5) in terms of p,, the adiabatic
relation is linearised as dp./dp. =ao?. Then we derive the 'differential equation' for p.'(= pe-po) with p'(=p-

Po):

(8) azp'c N 2V1/2 a3/zplc

2 s tetpe=0fp,
ot A

where wo? (=Bag?/LV) is the natural frequency of the resonator and the derivative of order 3/2 is defined as
the one by differentiating the derivative of order 1/2 once with respect to .

We now complete the mass flux on the right-hand side of (1). For the resonators almost continuouly
distributed with the axially equal spacing d, let their number density be N (=1/d). Then the mass flux per
unit axial length can be given as

© L) pvmds=1(E-NB) pow - NBg],

where R is the hydraulic radius of the tunnel and NB accounts for the total cross-sectional area of the
orifices per unit axial length. Thus (1), (2) and (8) are closed for p, U and p'c. But using the local sound
speed af = (dp/dp)'"? = ag(p/po )] instead of p, (1) and (2) are finally reduced to the following equations:

10) [+ (u=a) ) (u=2ra)

R* o V2ax” Apoap ot

’

with the sign vertically ordered where 1/R* is defined as [1-NRB/2AYR with B/A=(r/R)?>. The left-hand sides
of the equations describe the well-known unsteady one-dimensional flow of compressible gas, while the
right-hand sides describe the effects of the wall friction and the resonators. To pick up the propagation
along the positive directon of the x axis, we introduce the nondimensional retarded time 6[ = w(I-X/ao), »: the
characteristic frequency of pressure disturbances] and the far-field variable X (=¢ wX /ag) associated with
the order of nonlinearity ¢ (<<1). In addition to 6 and X, we set [(y +1)/2]u/ao and [(y + 1)/2y] D'c/Do 10 be f
and eg, respectively and neglect higher order terms in e. Then (10) and (8) are reduced to the following
equations:

1/2
RV S A e 2
aX ~ a6 9612 k14

32g
96>

3/2
+5,a g+.Qg=.Qf,

(12) 303/2
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where

1/2
(13) 6g =0T oV

g§R* '’ 2eAd’

1/2
6r=2’(irw)—“‘ and £ =(—a%)2

are the constants. Here 8z and 8, designate the ratio of the boundary-layer thickness (Vw)'? to the radius of
the tunnel and that of the throat, respectively, while x and @ are the coupling parameter and the tuning
parameter, respectively, through which the effect of the array of resonators is taken into account.

Let us now evaluate numerically these coefficients. As a typical example, a tunnel of diameter 10m is
assumed with the resonator having a spherical cavity of diameter of 4m and a throat of diameter 1m and of
length 3m. Then the natural frequency wo is given by 4.8 Hz for ap =340m/s. For a characteristic frequency
=5 Hz, we have sg=2.0x107%/e, 8r=2.7x10"3 and x =2.1x107%/ for d=10m (N=0.1/m) where v=1.4,
Pr=0.72 and v=1.45x10""m?/s. If the pressure level ¢ is assumed to be 0.002, sz and x take the values 0.1
and 10, respectively.

LINEAR DISPERSION RELATION
Before proceeding to the nonlinear problem, we examine the effect of the array of resonators on

propagation of pressure disturbances of infinitesimally small amplitude. Assuming f and g be in the form of
expli(6-SX)] (S: constant) and linearising (11), S becomes complex. lts imaginary part S;

k0,2
(R-1-8 .W2)* + 8212

=115
(14) S \/i[ R+

gives the spatial damping rate with respect to X. The first term in the square bracket gives the inherent
decay due to the wall friction while the second term gives the enhancement in the decay by the array of the
resonators. Figure 7(a) shows the absolute value of S; versus wo/w(=0"2). It has the maximum damping rate
|Si] =2"2x/8, at wolw=1+8,/2"2+ ... Thus if wo is chosen close to o, the decay can be enhanced.

On the other hand, the real part of S, S,, corresponds to the inverse of propagation velocity. It is given
by

(15) S,= Log 4 X2(210,42)
2 (2-1-6,/27° + 821

Figure 7(b) shows S, versus wo/e(=Q"2). In the limit as wo/w— 0, S, approaches sr/2'2 for the value without
the array, while in the other limit as wo/w— o, S, approaches 5/2'2 + x. Between these limits, the array of
resonators gives rise to the dispersion. Here note that the wall friction itself also contributes fo the
dispersion but it is small and secondary compared with the one due to the array of resonators.

EFFECT OF THE ARRAY OF RESONATORS ON EVOLUTION OF PRESSURE DISTURBANCES
By solving an initial (physically boundary) value problem for (11) and (12), we examine the effect of the

array of resonators. To this end, it is convenient to express them in the 'characteristic form'. Along the
'characteristics' defined by
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(11) and (12) can be written as

(17) fé:ﬁRﬁ-x"_g

501/2 00’
azg 63/2g
S Qo=
(18) 662+ ,603/2+ g=8f,

As a typical initial condition for f at X=0, we consider a pair of positive (compression) and negative
(expansion) pulses given by the derivative of the Gaussian-shaped pulse:

(19)  f(6,X=0)=-y2¢e 6 exp(-62),

where the factor (2e)'2 is introduced to normalize the maximum of 7. The initial value for ¢ is determined as
the solution to (18) with f prescribed by (19). If the wall friction and the array of resonators are ignored, the
initial profile given by (19) evolves into two shock waves known as the so-called N-wave. So we compare
with the evolution from (19) in the tunnel without the array and that in the tunnel with the array. In the
following, ég and é, are fixed to be 0.1 and 0.01, respectively.

At first, Fig.8 shows the evolution in the tunnel without the array of resonators. This case corresponds
formally to setting x=0 in (17). Here f corresponds to the pressure p' in the tunnel relative to the
atmospheric pressure through e f=[(y+1)/2y]p'/po. It is seen that two shock waves (i.e., discontinuity in
profile) emerge at X=1.0265 and X=1.0530, respectively. It is also seen that the discontinuity appears
rounded on its right-hand side and the long fail appears by the hereditary effect due to the wall friction. For
» =5 Hz and ¢ =0.002, in passing, the unity in X corresponds to about 5 km.

We now demonstrate the evolution in the tunnel with the array of resonators. The coupling parameter x
is chosen to be unity while the tuning parameter Q is also chosen to be unity so that the large decay can be
expected. Figure 9(a) shows the evolution of f from X=0 to X=2. The leading shock wave appears at
X=0.8630, while the frailing one appears at X=1.2960. Comparing this figure with the one without the
array, the trailing shock wave appears earlier and it grows faster and becomes positive. Figure 9(b) shows
the evolution of g where the direction of X is reversely taken so that the oscillatory initial profile of g can be
seen. It is found that this size of the resonator is useless for suppression of emergence of shock waves.

Next we show the evolution for a larger value of the coupling parameter x =10. It is evident from (14)
that the damping rate is increased with x. Figure 10(a) shows that the initial profile evolves into ripples with
no indication of emergence of shock waves. Figure 10(b) shows the evolution of g, which quickly decays
out. Thus it is found that the size of the resonator can suppress propagation of pressure disturbances and
emergence of shock waves in the far field.

For 9<<1 or >>1, the linear damping rate is small. For @=0.1, it is found that two shock waves
emerge even for x=10. But for @=10, interestingly enough, the initial pressure disturbances evolve
smoothly without any shock waves even for x =1 as shown in Fig.11, although their magnitude does not
decay out so pronouncedly as in the case shown in Fig.10 because of the small damp ing rate. No
emergence of shock waves in this case resulis from the dispersion of acoustic waves caused by the array
of resonators. To see this, in fact, g in (12) is approximated for 0>>1 by
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92 3/
s Eea oy,

Substituting this into (11) and neglecting the small terms with 6z, we have the well-known Korteweg-de
Vries equation. This equation suggests that the array gives rise to the higher-order dispersion, which can
now compete with the nonlinear steepening to suppress emergence of shock waves. In this case, it is
expected that 'acoustic soliton' may emerge in a 'far' far field. This acoustic soliton is propagated in the
form of a pulse rather than a shock wave and its width is determined by x/Q. Thus if Q is taken extremely
large so that x/@ becomes small, there may appear another noise problem associated with propagation of
this pulse.

Upon examing evolutions in various cases of the parameters x and @, genrally speaking, it is found that
for Q=1, propagation of pressure disturbances is significantly suppressed so that emergence of shock
waves can be avoided if x is taken as great as 10. It is also found that for a fixed value of x such as unity,
emergence of shock waves can be avoided as © is taken greater than unity. But the propagation of pressure
disturbances persists over a long distance without shock waves. These results still hold for even smaller
value of §, such as 0.0027.

For other types of initial condition, the evolution is examined for a single Gaussian-shaped pulse given
by

(21) (8, X=0)= exp(-62).

Then it is confirmed that the resulis derived for the condition (19) hold similarly.
NONLINEAR EFFECT OF RESONATORS

Next we examine the case with the high pressure level of ¢ such as ¢ =0.1 (corresponding to 175 dB in
SPL). As the pressure level is increased, the nonlinear response of the resonator is enhanced, especially,

due to the nonlinear loss due to the jet flow formed on leaving the orifice of the resonators. Then (12) is
modified to include the nonlinear response of the resonator ey:

2 3/2
22) 98,5958  0g-qf+ev,
36> 36’2
where ey is deefined as
2,2 2
23) ew=e[(LL)98° 2 (@/¥L)" 38| 3
Y+17 592 v+l @2 a0 |46

where L, stands for the effective length of the throat with the end corrections. The first term represents the
nonlinearity resulting from the adiabatic change in the cavity, and the second terms represents the non-
linear loss due to the jet flow. On deriving the resonator's response, the length of the throat is assumed to
be much shorter than the characteristic wavelength, i.e., ao/wle>>1. But this loss may be neglected by
faking ¢ to be sufficiently small. As ¢ becomes large, however, it becomes prominent, particularly, for a
small value of Q, whereas the effect of wall friction becomes small in comparison with the nonlinearity (see
the definition of ég).

Here we remark the end corrections. When the effective length of the throat is introduced, L in the
definition of wo should be replaced by L, accordingly. In addition, the end corrections for the wall friction
may also be made by lengthening L to L' so that the definition of &, is multiplied by a factor L'/L,. In our
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formulation, we take the position that these quantities are to be determined experimentally. To simplify the
discussion, however, we ignore the end corrections to set L,=L"=L, bearing in mind that they might modify
results quantitatively.

As a case with higher pressure level, we consider another tunnel of smaller diameter 7m with the
resonator having a spherical cavity of diameter 6m and the throat of diameter 2m and of length 3m. For this
tunnel, the natural frequency wo is given by 5.2 Hz and 85 =2.8x107%/¢, §,=1.4x107% and x =1.5x10~"/e for
the same spacing d=10m. Here if ¢ is assumed to be 0.1, x, i.e., the effective size of the resonator is much
smaller than 10 but e(ao/wl)? now takes a large value 1.3. It should be remarked here that the ratio V/Ad-
(=2ex) cannot be taken large because it controls the degree of reflection at each resonator and the
derivation of the governing equations is based on the assumption of small reflection by each resonator, i.e.,
V/Ad<<1.

The effect of the array of resonators is examined. It is found that for x =0 =1, there emerge shock
waves from both initial conditions (19) and (21) even if the nonlinear loss is taken into account. But as @ is
increased to 10, there is no indication of shock waves at all. It is confirmed that the results obtained for the
lower pressure disturbances still hold for this case.

EFFECT OF DOUBLE ARRAY

In addition to the single array of resonators, we examine the effect of the double array. For this array,
two 'coupling parameters’ x; (i=1,2) and 'tuning parameters' ©; (i=1,2) control the effect of the array:

' V; W ;12
K= ————— d 0. = (UL ,
l 26Ad ; o l ( w )

where the suffix i designates the respective quantities pertinent to the array 1 and 2. The far-field
propagation of pressure disturbances is described by the following equations:

3 ) 81/2 9 9
@4y U O _ 5 O 381 982
ox 7 96 36172 PY) EY)

62 83/2

(25) aTil+ 0r1 60521 +82181=1f,
62 63/2

(26) ;le“r 5r260—3§22+ g2=5f,

where f, g1 and g2 correspond to the pressure appropriately normalized in the tunnel, in the cavity of the
array 1 and 2, respectively and &, (i=1,2) are defined by the hydraulic radius of each throat. By solving
evolution problems for (24)-(26), it is found that the choice of the coupling parameters even smaller than 10
is enough if Q1 is set equal to unit while Q2 is set far greater than unity, for example €1 =1 and Q2 = 5 for
x1 =x2 =1. For this choice, the initial pressure disturbances are decayed out very quickly.

EFFECT OF INVENTION

By the numerical simulation of the spatial evolutions of the pressure disturbances in the tunnel with the
structure proposed, it is proved that the array of resonators is very effective in suppressing propagation of
pressure disturbances and especially emergence of shock waves. In order for the array to be effective, of
course, a greater value of x should be chosen for =1 as far as the basic assumption of the small
reflection (VAd<<1) is not violated. Furthermore if the double (multiple) array can be connected, its effect
is enhanced significantly.

In addition, it is the important finding that if Q is set to a greater value than unity, e.g., 10, even smaller
value of x such as unity is enough for suppression of emergence of shock waves but the propagation of
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pressure disturbances persits over a long distance. This is due to the higher-order dispersion introduced by
the array of resonators.

For @ much smaller than unity, e.g., 0.1, there always appear shock waves even for a large value of x.
This resuts from the fact that for 9<<1, the array introduces only the lower-order dispersion which cannot
counteract the nonlinearity to allow emergence of shock waves. It is concluded finally that after the shock
waves are once formed, the array of resonators is inactive for them and therefore, before that, dispersing
the pressure disturbances is essential for suppression of emergence of shock waves.

Claims
1. A tunnel-structure where many cavities are arranged in the outside of the tunnel and in array axially and

each cavity is connected to the tunnel through a connecting passage(s) so that propagation of pressure
disturbances can be suppressed and especially emergence of acoustic shock waves can be avoided.
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FIG .1
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FIG. 2
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(b)

Spatial Evolution of f and g for k=1,
=1, 6,=0.1 and 6,=0.01; Tne Vertical Arrows
Measurg Unity of fand g.
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FIG.11

U330T ! Gr=o.l, 5r=0-oj,\§:l(o) k=14

-4 <8<12, 0<X<2, (=3.6)

21



	bibliography
	description
	claims
	drawings

