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©  Tunnel-structure  to  suppress  propagation  of  pressure  disturbances  generated  by  travelling  of 
high-speed  trains. 

©  A  tunnel-structure  for  travelling  of  high-speed  trains  is  claimed  wherein  propagation  of  pressure  disturbances 
generated  by  the  train  can  be  suppressed  and  especially  emergence  of  acoustic  shock  waves  can  be  avoided. 
This  structure  consists  of  the  main  tunnel  for  the  trains  and  of  many  cavities  arranged  in  the  outside  of  the 
tunnel  and  in  array  axially  with  each  cavity  connected  to  the  tunnel  through  a  connecting  passage(s). 
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FIELD  OF  THE  INVENTION 

The  present  invention  relates  to  tunnel-structure  so  that  propagation  of  pressure  disturbances  generated 
by  travelling  of  high-speed  trains  can  be  suppressed  and  especially  emergence  of  acoustic  shock  waves 

5  can  be  avoided. 

PRIOR  ART 

It  is  likely  that  high-speed  trains  in  future  must  travel  inside  of  a  tunnel,  namely  a  tubular  passage  in 
io  general,  because  of  the  environmental  noise  problem  and  the  weather  problem.  Pressure  disturbances 

generated  by  travelling  of  trains  are  propagated  along  a  tunnel  in  the  form  of  sound.  Then  as  the  tunnel 
plays  a  role  of  a  waveguide  for  sound,  they  are  transmitted  far  down  without  any  geometrical  spreading. 
While  their  intensity  depends  crucially  on  the  ratio  of  a  train's  cross-sectional  area  to  a  tunnel's  one,  the 
faster  the  train  travels,  the  more  intense  sound  is  generated.  Thus  there  will  arise  new  noise  problem  in  the 

75  tunnel  associated  with  propagation  of  the  so-called  nonlinear  acoustic  waves. 
Even  at  present,  when  the  high-speed  train  (Shinkansen)  rushes  into  the  tunnel,  indeed,  there  happens 

the  burst  tone  at  the  other  end  of  the  tunnel.  As  the  train's  speed  becomes  high,  this  problem  would 
become  severer  unless  suitable  measures  were  taken.  Thus  it  may  be  projected  that  the  magnetically 
levitated  trains  will  travel  inside  of  tunnels  as  much  as  possible.  In  fact,  the  test  line  now  under  way  is  to  be 

20  constructed  almost  in  the  tunnels  over  the  line  of  40km  long.  When  the  magnitude  of  pressure  disturbances 
becomes  high  in  such  a  long  tunnel  unprecedentedly,  profiles  of  pressure  disturbances  tend  to  be 
steepened  due  to  the  nonlinearity  to  lead  eventually  to  emergence  of  shock  waves  unexpectedly  far  down 
the  tunnel,  even  if  the  train's  speed  is  well  below  the  sound  speed.  Emergence  of  the  shock  waves  will  give 
rise  not  only  to  severer  noise  problem  but  also  to  deterioration  in  performance  and  durability  of  the  trains  as 

25  well  as  the  tunnels. 
For  reduction  of  this  problem,  it  is  essential  to  lower  the  ratio  of  the  train's  cross-sectional  area  to  the 

tunnel's  one.  This  ratio  is  set  to  be  21%  for  the  Shinkansen,  while  for  the  magnetically  levitated  trains,  it  is 
lowered  to  be  12%.  The  smaller  value  of  this  ratio  means  the  larger  tunnel's  cross-sectional  area  and  also 
the  higher  cost  in  construction.  The  present  invention  makes  it  possible  to  suppress  propagation  of  pressure 

30  disturbances  generated  by  travelling  of  high-speed  trains  even  in  a  tunnel  of  smaller  cross-sectional  area 
and  especially  to  avoid  emergence  acoustic  shock  waves. 

SUMMARY  OF  THE  INVENTION 

35  The  tunnel  structure  claimed  by  this  inven-tion  consists,  as  shown  in  Fig.1,  of  the  main  tunnel  1  for  the 
trains  and  of  many  cavities  arranged  in  the  outside  of  the  tunnel  and  in  array  axially  with  each  cavity  2 
connected  to  the  tunnel  through  a  passage  3.  Here  the  cavity  is  not  necessarily  a  sphere  and  both  axes  of 
the  tunnel  and  the  passage  are  not  necessarily  normal  each  other.  Also  the  passages  may  be  positioned 
arbitrarily  around  the  periphery  of  the  tunnel.  Technically,  the  above  structure  is  realizable  as  shown  in  Fig.2 

40  by  arranging  a  side  tunnel  4  in  parallel  with  the  main  one  and  partitioning  it  by  a  bulkhead  5  into 
compartments  as  a  cavity,  which  are  connected  to  the  tunnel  through  passages.  But  the  axial  spacing 
between  the  neighbouring  resonators  should  be  taken  much  smaller  than  a  characteristic  wavelength  of  the 
pressure  disturbances.  This  requirement  is  satisfied  in  the  far  field  because  the  characteristic  wavelength 
there  is  determined  by  the  train's  axial  length  so  that  the  pressure  disturbances  are  propagated  as  an  infra- 

45  sound.  As  an  extension,  two  tunnels  can  share  the  one  side  tunnel  4  as  shown  in  Fig.3,  connected  by  the 
passages  with  suitable  dampers  or  bulk  heads  6.  In  addition,  if  different  kinds  of  the  array  are  connected, 
the  effect  of  suppression  of  propagation  of  pressure  disturbances  is  enhanced  significantly.  As  shown  in 
Fig.4,  for  example,  the  cavities  7  and  8  of  different  volume  are  connected  through  the  passages  9  and  10  of 
different  size  with  each  axial  distance.  This  double  array  can  be  realized  as  shown  in  Fig.5  without 

50  arranging  two  side  tunnes  by  partitioning  the  one  side  tunnel  11  into  compartments  12  of  two  different 
volume  with  the  passages  13  of  two  different  cross-sectional  area. 

One  unit  of  the  cavity  and  the  connecting  passage  constitutes  the  resonator.  If  its  natural  frequency  is 
chosen  to  be  near  to  the  characteristic  frequency  of  the  pressure  disturbances,  it  is  expected  that  their 
energy  is  absorbed  in  the  resonators.  By  arranging  many  resonators  in  array,  this  effect  will  be  enhanced. 

55  But  what  is  to  be  emphasized  is  that  the  array  of  resonators  does  not  only  decay  the  propagation  of 
pressure  disturbances  by  absorbing  their  energy  but  also  make  their  propagation  velocity  dependent  of  the 
frequency.  In  other  words,  the  array  introduces  the  dispersion  into  acoustic  waves.  It  is  this  dispersion 
rather  than  the  dissipation  due  to  the  absorption  of  energy  that  can  suppress  emergence  of  shock  waves  by 

2 
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'dispersing'  high  frequency  components  generated  by  the  nonlinearity  in  the  course  of  propagation. 
For  this  end,  there  arises  an  important  problem  as  to  how  to  design  the  array  suitably.  For  identical 

cavity  and  passage  connected  with  axially  equal  spacing,  it  is  shown  that  the  effect  of  the  array  of 
resonators  is  controlled  by  two  parameters  called  the  'coupling  parameter'  x  and  the  'tuning  parameter'  0 

5  defined,  respectively,  by 

10 

k  =  - K —   and  Q  =  ( ^ y  
2eAd  to 

where  V,  A  and  d  denote,  respectively,  the  cavity's  volume,  the  tunnel's  cross-sectional  area  and  the  axial 
spacing,  e  {=  [(7  +  1)/27]Ap/p0«1}  being  the  measure  of  the  maximum  pressure  disturbances  Ap  relative 
to  the  atmospheric  pressure  po  and  7  the  ratio  of  the  specific  heats  for  the  air.  A  characteristic  frequency  of 

15  the  pressure  disturbances  is  designated  by  01,  while  oi0  denotes  the  natural  frequency  of  the  resonator  given 
by  (Ba02/L  V)vz  where  B  and  L  denote,  respectively,  the  passage's  cross-sectional  area  and  its  length,  a0 
being  the  sound  speed. 

The  parameter  x  determines  the  size  of  the  cavity's  volume  V  relative  to  the  tunnel's  volume  per 
spacing  Ad,  while  the  latter  0  determines  the  size  of  the  passage's  cross-sectional  area  B  and  its  length  L. 

20  It  is  shown  that  the  array  of  the  resonators  is  very  effective  if  x  is  chosen  large  enough  to  be  10,  while  0  is 
set  greater  than  unity.  For  the  double  array,  two  'coupling  parameters'  *,•(/=  1,2)  and  'tuning  parameters'  0,-  - 
(/=  1  ,2)  control  the  effect  of  the  array: 

Ki  =  - ^ —   and  fl,  =  ( ^ ) 2 ,  
lEAdi  0  

where  the  suffix  /  designates  the  respective  quantities  pertinent  to  the  array  1  and  2.  It  is  found  that  the 
30  choice  of  the  coupling  parameters  even  smaller  than  10  is  enough  if  Qi  is  set  equal  to  unity,  while  n2  is  set 

far  greater  than  unity,  for  example  Qi  =  1  and  n2  =  5  for  *i  =  x2  =  1  . 

BRIEF  DESCRIPTION  OF  THE  DRAWINGS 

35  Figure  1  .A  tunnel  to  which  a  cavity  is  connected  in  array  through  a  passages. 
Figure  2.  A  tunnel  with  a  side  tunnel  partitioned  into  compartments  as  a  cavity  by  the  bulkhead. 
Figure  3.  Two  tunnels  sharing  one  side  tunnel  with  the  connecting  passages  having  suitable  dampers  or 

bulkheads. 
Figure  4.  A  tunnel  to  which  the  two  different  kind  of  cavities  and  passages  are  connected. 

40  Figure  5.  A  tunnel  with  a  side  tunnel  partitioned  into  two  differernt  sizes  of  compartments  and 
connected  by  two  different  sizes  of  passages. 

Figure  6.  Geometrical  configuration  of  the  problem. 
Figure  7.  Dispersion  relation  where  (a)  shows  the  absolute  value  of  the  imaginary  part  of  S,  Sh  versus 

010/01  while  (b)  shows  its  real  part  Sr  versus  010I01. 
45  Figure  8.  Evolution  of  pressure  disturbances  in  the  tunnel  without  the  array  of  resonators  where  the 

normalised  pressure  f  in  the  tunnel  is  shown  and  the  vertical  arrow  measures  unity  of  f. 
Figure  9.  Evolution  of  pressure  disturbances  in  the  tunnel  with  the  array  of  resonators  having  x  =  1  and 

0  =  1  where  (a)  and  (b)  show  the  normalised  pressure  f  and  g  in  the  tunnel  and  in  the  cavity,  respectively 
and  the  vertical  arrow  measures  unity  of  the  respective  quantity. 

50  Figure  10.  Evolution  of  pressure  disturbances  in  the  tunnel  with  the  array  of  resonators  having  x  =  10 
and  0  =  1  where  (a)  and  (b)  show  the  normalised  pressure  f  and  g  in  the  tunnel  and  in  the  cavity, 
respectively  and  the  vertical  arrow  measures  unity  of  the  respective  quantity. 

Figure  1  1  .  Evolution  of  pressure  disturbances  in  the  tunnel  with  the  array  of  resonators  having  x  =  1  and 
0  =  10  where  (a)  and  (b)  show  the  normalised  pressure  f  and  g  in  the  tunnel  and  in  the  cavity,  respectively 

55  and  the  vertical  arrow  measures  unity  of  the  respective  quantity. 

DESCRIPTION  OF  THE  PREFERRED  EMBODIMENT 

3 
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FORMULATION  OF  THE  PROBLEM 

In  considering  the  sound  field  generated  by  travelling  of  a  train,  it  is  important  to  distinguish  between  a 
near  field  and  a  far  field  from  the  train.  In  the  near  field,  many  sources  of  sound  are  identified,  especially,  to 

5  be  attributed  to  a  train's  geometry  as  well  as  a  tunnel's  one.  In  this  field,  very  complicated  sound  field  of 
three-dimensional  nature  is  built  up,  involving  a  wide  range  of  frequencies.  With  the  distance  away  from  the 
train,  however,  high-frequency  components  in  the  complicated  behaviour  will  fade  out  due  to  the  significant 
dissipation  so  that  almost  one-dimensional  propagation  will  survive  along  the  tunnel  in  the  far  field. 

To  determine  its  typical  frequency,  no  other  physical  quantities  are  available  than  the  tunnel's  diameter 
io  D,  the  train's  speed  U  and  its  axial  length/.  These  quantities  suggest  the  frequency  to  be  determined  by  a0/l 

or  U/D.  Suppose,  for  example,  that  the  train  of  length  200  m  be  travelling  with  a  speed  150  m/s  (540  km/h) 
in  a  tunnel  of  diameter  10m.  The  former  estimation  gives  the  frequency  of  a  few  Hertz,  while  the  latter  also 
gives  a  similar  frequency,  even  if  the  Doppler  effect  is  taken  into  account.  In  the  far  field,  thus,  the  infra- 
sound  will  be  propagated. 

is  As  for  their  magnitude,  the  maximum  magnitude  of  the  pressure  disturbances  could  be  generated  when 
the  trains  suddenly  sets  into  motion  with  a  constant  speed  U.  The  linear  acoustic  theory  predicts  that  its 
magnitude  is  given  roughly  by  $MI(\-M)  relative  to  the  atmospheric  pressure  where  /3  denotes  the  ratio  of 
the  train's  cross-sectional  area  to  the  tunnel's  one  and  M  (  =  L//a0<1)  denotes  the  train's  Mach  number.  This 
suggests  the  higher  pressure  disturbances  as  the  train's  speed  M  approaches  unity.  Since  the  infra-sound  is 

20  subjected  to  less  dissipation  in  propagation,  it  is  highly  probable  that  the  nonlinearity  accumulates  to  give 
rise  eventually  to  emergence  of  shock  waves  in  the  far  field. 

In  view  of  the  physical  consideration  above,  we  formulate  the  propagation  of  pressure  disturbances  in 
the  tunnel  with  the  array  of  resonators  shown  in  Fig.1.  For  simplicity,  let  identical  resonators  be  connected 
with  the  axially  equal  spacing  and  take  this  spacing  much  smaller  than  the  characteristic  wavelength  so  that 

25  the  resonators  may  be  regarded  as  continuously  distributed  along  the  tunnel.  In  formulation,  the  effect  of 
friction  at  the  tunnel  wall  is  taken  into  account  whereas  the  effect  of  diffusivity  of  sound  itself  is  ignored.  The 
wall  friction  is  important  in  evaluating  the  far-filed  behaviour  quantitatively  because  it  exhibits  such  a 
hereditary  effect  as  to  accumulate  in  the  course  of  propagation. 

By  taking  account  of  this  wall  friction,  at  first,  we  derive  the  nonlinear  wave  equations  for  the  far-field 
30  propagation  of  pressure  disturbances  in  the  tunnel  with  the  array  of  resonators.  Examining  the  linear 

dispersion  relation,  we  look  at  the  effect  of  the  array  of  resonators  on  propagation  of  infinitesimally  small 
pressure  disturbances.  By  solving  typical  initial-value  problems  for  the  equations,  next,  we  describe  the 
effect  of  resonators  in  propagation  of  pressure  disturbances  and  especially  in  suppression  of  emergence  of 
shock  waves. 

35  For  a  far-field  behaviour,  the  quasi-one-dimensional  propagation  is  assumed  for  the  acoustic  main  flow 
in  the  tunnel  except  for  a  thin  boundary  layer  adjacent  to  the  tunnel  wall  and  a  vicinity  of  the  orifices  from 
the  resonators  (see  Fig.6).  Here  the  term  'quasi-one  dimension'  is  used  in  the  sense  that  the  cross-section 
of  the  acoustic  main  flow  varies  slowly  along  the  tunnel.  For  this  main  flow,  the  equation  of  continuity  is 
given  by 

where  p  and  u  denote,  respectively,  the  mean  values  of  the  density  and  the  axial  velocity  of  the  air 
averaged  over  the  cross-section  of  the  main  flow,x  and  f  being  the  axial  coordinate  and  the  time.  The  right- 
hand  side  represents  the  mass  flux  density  pv„  into  the  main  flow  through  the  edge  of  the  boundary  layer 

50  and  the  orifices  of  the  resonators,  vn  being  the  small  velocity  inward  normal  to  the  boundary  of  the  cross- 
section  of  the  main  flow  and  ds  the  line  element  along  it. 

The  diffusivity  of  sound  is  neglected  so  the  equation  motion  for  the  main  flow  in  the  axial  direction  is 
given  by 

40 

45 

55 

4 



EP  0  515  912  A2 

10 

20 

55 

where  p  is  the  mean  pressure  averaged  over  the  cross-section  of  the  main  flow.  In  addition  to  these  two 
equations,  there  exists  between  p  and  p  the  adiabatic  relation  p/po  =(p/po)T  where  the  suffix  0  implies  the 
respective  equilibrium  values.  For  closure  of  the  equations,  it  is  necessary  to  specify  the  mass  flux  on  the 
right-hand  side  of  (1)  due  to  the  boundary  layer  and  the  resonators.  The  boundary  layer  consists  of  two 
layers  for  the  velocity  and  the  temperature.  It  is  known  that  the  velocity  at  the  edge  of  the  boundary  layer  vb 
corresponding  to  vn  is  given  in  terms  of  the  velocity  in  the  main  flow  by 

with  C=1  +  (7-1)/Pr1/2  where  v  is  the  kinematic  viscosity  and  Pr  is  the  Prandtl  number.  The  velocity  vb  is 
15  given  by  the  herediatry  integral  of  u  with  respect  to  the  past  time  f  up  to  f.  This  integral  is  nothing  but  the 

x  derivative  of  the  fractional  derivative  of  order  minus  1/2  for  u  defined  by 

d-1/2u 
(4)  - ^   =  t \   V 7 ~ " ^ , ) d < ,  

To  derive  another  contribution  to  the  mass  flux  from  the  resonator,  it  is  necessary  to  examine  its 
25  response.  Let  the  resonator  consist  of  the  cavity  of  volume  V  and  the  passage  as  a  throat  of  cross-sectional 

area  B  and  of  length  L  and  let  all  length-scale  be  much  shorter  than  a  characteristic  wavelength  of  pressure 
disturbances.  Assuming  the  cavity's  volume  be  far  larger  than  that  of  throat,  the  motion  in  the  cavity  is 
neglected  so  that  only  the  conservation  of  mass  is  considered: 

30 

(5)  V ^   =  B q ,  
at 

35  where  pc  is  the  averaged  density  of  air  in  the  cavity  and  q  denotes  the  mass  flux  through  the  throat  from 
the  tunnel  to  the  cavity.  The  compressibility  of  the  air  in  the  throat  can  be  ignored  because  the  throat's 
length  is  much  shorter  than  the  characteristic  wavelength.  Hence  the  mass  flux  from  the  throat  into  the 
tunnel  pvn  is  constant  along  the  throat  and  is  equal  to  -q.  For  the  air  in  the  throat,  the  equation  of  motion  in 
the  axial  direction  can  be  averaged  over  the  whole  cross-section  of  the  throat  including  the  boundary  layer 

40  as 

45 

where  y  denotes  the  axial  coordinate  along  the  throat  with  its  origin  at  the  orifice  to  the  tunnel.  Here  p,  v,  p 
denote,  respectively,  the  density  of  the  air  in  the  throat,  its  velocity  in  the  y  direction  and  the  pressure 
where  the  bar  designates  the  averaged  quantity  over  the  cross-section.  The  wall  friction  a  per  unit  axial 

50  length  can  be  evaluated  by  examining  the  boundary  layer  near  the  throat  wall.  But  since  the  air  in  the  throat 
can  be  regarded  as  being  incompressible,  we  have  only  to  consider  the  boundary  layer  for  the  velocity 
unlike  in  the  case  for  the  tunnel.  In  this  consequence,  a  can  be  given  by  the  following  hereditary  integral: 

(7)  a  =  2 & ( v ) i / 2 f r _ ^ = a 2 f e f l d f l  

5 
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whether  r  is  the  hydraulic  radius  of  the  throat.  Because  this  integral  corresponds  to  the  first-order  derivative 
of  the  fractional  derivative  of  minus  1/2  for  q  with  respect  to  f,  it  is  called  the  derivative  of  order  1/2. 

For  the  motion  in  the  throat,  we  linearise  to  neglect  the  quadratic  momentum  flux  density  (where  p  is 
close  to  po)  and  integrate  (6)  from  one  orifice  at  the  tunnel  side  y=0  to  the  other  one  at  the  cavity  side 

5  y=L.  Here  note  again  that  pv  averaged  over  the  cross-section  is  equal  to  q  and  that  q  and  a  are 
independent  of  y.  It  is  assumed  that  the  pressure  at  y=0  is  equal  to  that  in  the  tunnel  at  that  section,  while 
the  pressure  at  y=L  is  equal  to  that  in  the  cavity  pc.  In  order  to  express  q  in  (5)  in  terms  of  pc,  the  adiabatic 
relation  is  linearised  as  6pc/6pc  =  a02.  Then  we  derive  the  'differential  equation'  for  pc'(  =  pc-Po)  with  p'(  =  p- 
Po): 

10 

(8)  ^ f ^ ^ i ^ l p : - ^ ,  
dr   r  d r i l  

15 
where  o>02  (  =  Ba02/LV)  is  the  natural  frequency  of  the  resonator  and  the  derivative  of  order  3/2  is  defined  as 
the  one  by  differentiating  the  derivative  of  order  1/2  once  with  respect  to  f. 

We  now  complete  the  mass  flux  on  the  right-hand  side  of  (1).  For  the  resonators  almost  continuouly 
distributed  with  the  axially  equal  spacing  d,  let  their  number  density  be  N  (  =  1/0).  Then  the  mass  flux  per 

20  unit  axial  length  can  be  given  as 

25 
(9)  1  I  pvnds   • l - [ ( ^ - - N B ) p < l v b - N B q ] ,  

I  A  K 

where  R  is  the  hydraulic  radius  of  the  tunnel  and  NB  accounts  for  the  total  cross-sectional  area  of  the 
orifices  per  unit  axial  length.  Thus  (1),  (2)  and  (8)  are  closed  for  p,  u  and  p'c.  But  using  the  local  sound 

30  speed  a[  =  (dp/dp)1'2  =  a0(p/po)<T"1)/2]  instead  of  p,  (1)  and  (2)  are  finally  reduced  to  the  following  equations: 

(10)  [ -   +  { u ± a ) ^ - ] ( u ± - ^ - a )  

35 

±2Ca0vV2  3-1/2  3  
 ̂ N y   dp<c 

R*  dt-y2Kdx}  Apoao  Bt  ' 

with  the  sign  vertically  ordered  where  MR*  is  defined  as  [\-NRBI2A\IR  with  B/A  =  (r/R)2.  The  left-hand  sides 
of  the  equations  describe  the  well-known  unsteady  one-dimensional  flow  of  compressible  gas,  while  the 
right-hand  sides  describe  the  effects  of  the  wall  friction  and  the  resonators.  To  pick  up  the  propagation 
along  the  positive  directon  of  the  x  axis,  we  introduce  the  nondimensional  retarded  time  0[  =  co(f-x/a0),  o>:  the 

45  characteristic  frequency  of  pressure  disturbances]  and  the  far-field  variable  X  (  =  e  o>x  /a0)  associated  with 
the  order  of  nonlinearity  e  («1).  In  addition  to  0  and  X,  we  set  [(7  +  1  )/2]u/a0  and  [(7  +  1)/27]  p'c/Po  to  be  ef 
and  eg,  respectively  and  neglect  higher  order  terms  in  e.  Then  (10)  and  (8)  are  reduced  to  the  following 
equations: 

50 

(11)  * f . f i f   =  . 8 R ^  dl/2f  „ B g  
1/2  "  

dd  ' 

55 
(12) 

dd 3/2 
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where 

10 

30 

40 

45 

50 

(13)  f r . c W "   
,  

n -  

a , . * ^   and  O  = ( ^ ) 2  

are  the  constants.  Here  5R  and  5r  designate  the  ratio  of  the  boundary-layer  thickness  (V/o>)vz  to  the  radius  of 
the  tunnel  and  that  of  the  throat,  respectively,  while  x  and  0  are  the  coupling  parameter  and  the  tuning 

15  parameter,  respectively,  through  which  the  effect  of  the  array  of  resonators  is  taken  into  account. 
Let  us  now  evaluate  numerically  these  coefficients.  As  a  typical  example,  a  tunnel  of  diameter  10m  is 

assumed  with  the  resonator  having  a  spherical  cavity  of  diameter  of  4m  and  a  throat  of  diameter  1  m  and  of 
length  3m.  Then  the  natural  frequency  o>0  is  given  by  4.8  Hz  for  a0  =340m/s.  For  a  characteristic  frequency 
co  =  5  Hz,  we  have  BR  =  2.0x1  0_+/e,  5/-=2.7x10-3  and  x=2.1x10_2/e  for  d=10m  (A/=0.1/m)  where  7  =  1.4, 

20  Pr=0.72  and  v=  1  .45x10_5m2/s.  If  the  pressure  level  e  is  assumed  to  be  0.002,  SR  and  x  take  the  values  0.1 
and  10,  respectively. 

LINEAR  DISPERSION  RELATION 

25  Before  proceeding  to  the  nonlinear  problem,  we  examine  the  effect  of  the  array  of  resonators  on 
propagation  of  pressure  disturbances  of  infinitesimally  small  amplitude.  Assuming  f  and  g  be  in  the  form  of 
exp[i(0-SX)]  (S:  constant)  and  linearising  (11),  S  becomes  complex.  Its  imaginary  part  S, 

(i4)  Si  =  - - L [ s R +   y f : f   .  ] 
(£-l-(5rAT)2  +  <52/2 

gives  the  spatial  damping  rate  with  respect  to  X.  The  first  term  in  the  square  bracket  gives  the  inherent 
35  decay  due  to  the  wall  friction  while  the  second  term  gives  the  enhancement  in  the  decay  by  the  array  of  the 

resonators.  Figure  7(a)  shows  the  absolute  value  of  S,  versus  o>0/o>(  =  Qvz).  It  has  the  maximum  damping  rate 
\S,\  =2vzx/Sr  at  o>o/o>  =  1  +5r/21/2  +  ....  Thus  if  o>0  is  chosen  close  to  o>,  the  decay  can  be  enhanced. 

On  the  other  hand,  the  real  part  of  S,  Sr,  corresponds  to  the  inverse  of  propagation  velocity.  It  is  given 
by 

S  « f l ( f l . l ^ )  
»2  ( 0 - y . S r H 2 f   +  « ? / 2  

Figure  7(b)  shows  Sr  versus  o>0/o>(  =  Qvz).  In  the  limit  as  o>0/o>-*  0,  Sr  approaches  5r/21/2  for  the  value  without 
the  array,  while  in  the  other  limit  as  o>0/o>-*  °°,  Sr  approaches  5r/21/2  +  x.  Between  these  limits,  the  array  of 
resonators  gives  rise  to  the  dispersion.  Here  note  that  the  wall  friction  itself  also  contributes  to  the 
dispersion  but  it  is  small  and  secondary  compared  with  the  one  due  to  the  array  of  resonators. 

EFFECT  OF  THE  ARRAY  OF  RESONATORS  ON  EVOLUTION  OF  PRESSURE  DISTURBANCES 

By  solving  an  initial  (physically  boundary)  value  problem  for  (11)  and  (12),  we  examine  the  effect  of  the 
array  of  resonators.  To  this  end,  it  is  convenient  to  express  them  in  the  'characteristic  form'.  Along  the 

55  'characteristics'  defined  by 
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5 
(1  1  )  and  (1  2)  can  be  written  as 

w (17) 
d d m   d e '  dX 

15 
(18) 

As  a  typical  initial  condition  for  f  at  X=0,  we  consider  a  pair  of  positive  (compression)  and  negative 
(expansion)  pulses  given  by  the  derivative  of  the  Gaussian-shaped  pulse: 

(19)  f(e,X=0)  =  -y/2e  6  exp(-02), 

where  the  factor  (2e)1/2  is  introduced  to  normalize  the  maximum  of  f.  The  initial  value  for  g  is  determined  as 
the  solution  to  (18)  with  f  prescribed  by  (19).  If  the  wall  friction  and  the  array  of  resonators  are  ignored,  the 

25  initial  profile  given  by  (19)  evolves  into  two  shock  waves  known  as  the  so-called  N-wave.  So  we  compare 
with  the  evolution  from  (19)  in  the  tunnel  without  the  array  and  that  in  the  tunnel  with  the  array.  In  the 
following,  SR  and  Sr  are  fixed  to  be  0.1  and  0.01,  respectively. 

At  first,  Fig.8  shows  the  evolution  in  the  tunnel  without  the  array  of  resonators.  This  case  corresponds 
formally  to  setting  x  =  0  in  (17).  Here  f  corresponds  to  the  pressure  p'  in  the  tunnel  relative  to  the 

30  atmospheric  pressure  through  e  f=[(y  +  '\)/2y]p'/po.  It  is  seen  that  two  shock  waves  (i.e.,  discontinuity  in 
profile)  emerge  at  X=  1  .0265  and  X=  1  .0530,  respectively.  It  is  also  seen  that  the  discontinuity  appears 
rounded  on  its  right-hand  side  and  the  long  tail  appears  by  the  hereditary  effect  due  to  the  wall  friction.  For 
co  =  5  Hz  and  €  =  0.002,  in  passing,  the  unity  in  X  corresponds  to  about  5  km. 

We  now  demonstrate  the  evolution  in  the  tunnel  with  the  array  of  resonators.  The  coupling  parameter  x 
35  is  chosen  to  be  unity  while  the  tuning  parameter  0  is  also  chosen  to  be  unity  so  that  the  large  decay  can  be 

expected.  Figure  9(a)  shows  the  evolution  of  f  from  X=0  to  X=2.  The  leading  shock  wave  appears  at 
X=  0.8630,  while  the  trailing  one  appears  at  X=  1.2960.  Comparing  this  figure  with  the  one  without  the 
array,  the  trailing  shock  wave  appears  earlier  and  it  grows  faster  and  becomes  positive.  Figure  9(b)  shows 
the  evolution  of  g  where  the  direction  of  X  is  reversely  taken  so  that  the  oscillatory  initial  profile  of  g  can  be 

40  seen.  It  is  found  that  this  size  of  the  resonator  is  useless  for  suppression  of  emergence  of  shock  waves. 
Next  we  show  the  evolution  for  a  larger  value  of  the  coupling  parameter  x  =  10.  It  is  evident  from  (14) 

that  the  damping  rate  is  increased  with  x.  Figure  10(a)  shows  that  the  initial  profile  evolves  into  ripples  with 
no  indication  of  emergence  of  shock  waves.  Figure  10(b)  shows  the  evolution  of  g,  which  quickly  decays 
out.  Thus  it  is  found  that  the  size  of  the  resonator  can  suppress  propagation  of  pressure  disturbances  and 

45  emergence  of  shock  waves  in  the  far  field. 
For  n«1  or  n»1,  the  linear  damping  rate  is  small.  For  0  =  0.1,  it  is  found  that  two  shock  waves 

emerge  even  for  x  =  10.  But  for  0  =  10,  interestingly  enough,  the  initial  pressure  disturbances  evolve 
smoothly  without  any  shock  waves  even  for  x  =  1  as  shown  in  Fig.11,  although  their  magnitude  does  not 
decay  out  so  pronouncedly  as  in  the  case  shown  in  Fig.  10  because  of  the  small  damp  ing  rate.  No 

50  emergence  of  shock  waves  in  this  case  results  from  the  dispersion  of  acoustic  waves  caused  by  the  array 
of  resonators.  To  see  this,  in  fact,  g  in  (12)  is  approximated  for  Q»1  by 

20 

55 

8 
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(20) 
30 3/2 

= / . i ( J i + ^ - ^ 3 r )   +  o ( A - )  
dd 

10 

15 

20 

25 

Substituting  this  into  (11)  and  neglecting  the  small  terms  with  BR,  we  have  the  well-known  Korteweg-de 
Vries  equation.  This  equation  suggests  that  the  array  gives  rise  to  the  higher-order  dispersion,  which  can 
now  compete  with  the  nonlinear  steepening  to  suppress  emergence  of  shock  waves.  In  this  case,  it  is 
expected  that  'acoustic  soliton'  may  emerge  in  a  'far'  far  field.  This  acoustic  soliton  is  propagated  in  the 
form  of  a  pulse  rather  than  a  shock  wave  and  its  width  is  determined  by  x/Q.  Thus  if  0  is  taken  extremely 
large  so  that  x/Q  becomes  small,  there  may  appear  another  noise  problem  associated  with  propagation  of 
this  pulse. 

Upon  examing  evolutions  in  various  cases  of  the  parameters  x  and  0,  genrally  speaking,  it  is  found  that 
for  0=1,  propagation  of  pressure  disturbances  is  significantly  suppressed  so  that  emergence  of  shock 
waves  can  be  avoided  if  x  is  taken  as  great  as  10.  It  is  also  found  that  for  a  fixed  value  of  x  such  as  unity, 
emergence  of  shock  waves  can  be  avoided  as  0  is  taken  greater  than  unity.  But  the  propagation  of  pressure 
disturbances  persists  over  a  long  distance  without  shock  waves.  These  results  still  hold  for  even  smaller 
value  of  Br  such  as  0.0027. 

For  other  types  of  initial  condition,  the  evolution  is  examined  for  a  single  Gaussian-shaped  pulse  given 
by 

(21) f(6,  X=0)=  exp(-02) 

Then  it  is  confirmed  that  the  results  derived  for  the  condition  (19)  hold  similarly. 

30  NONLINEAR  EFFECT  OF  RESONATORS 

Next  we  examine  the  case  with  the  high  pressure  level  of  e  such  as  €  =  0.1  (corresponding  to  175  dB  in 
SPL).  As  the  pressure  level  is  increased,  the  nonlinear  response  of  the  resonator  is  enhanced,  especially, 
due  to  the  nonlinear  loss  due  to  the  jet  flow  formed  on  leaving  the  orifice  of  the  resonators.  Then  (12)  is 

35  modified  to  include  the  nonlinear  response  of  the  resonator  e4>: 

40 

where  ^  is  deefined  as 

(22) 
d2e  d3/2e 

d d '  86 3/2 

45 (23)  £  V E i ( l A ^ ^ S l   2  (ao/coLey 
lKr+ i}   B e 2 ~ r + i   Q2  dd 

dg_ 
dd  

] ,  

where  Le  stands  for  the  effective  length  of  the  throat  with  the  end  corrections.  The  first  term  represents  the 
50  nonlinearity  resulting  from  the  adiabatic  change  in  the  cavity,  and  the  second  terms  represents  the  non- 

linear  loss  due  to  the  jet  flow.  On  deriving  the  resonator's  response,  the  length  of  the  throat  is  assumed  to 
be  much  shorter  than  the  characteristic  wavelength,  i.e.,  a0/co/_e»1.  But  this  loss  may  be  neglected  by 
taking  €  to  be  sufficiently  small.  As  €  becomes  large,  however,  it  becomes  prominent,  particularly,  for  a 
small  value  of  0,  whereas  the  effect  of  wall  friction  becomes  small  in  comparison  with  the  nonlinearity  (see 

55  the  definition  of  SR). 
Here  we  remark  the  end  corrections.  When  the  effective  length  of  the  throat  is  introduced,  L  in  the 

definition  of  o>0  should  be  replaced  by  Le  accordingly.  In  addition,  the  end  corrections  for  the  wall  friction 
may  also  be  made  by  lengthening  L  to  /_'  so  that  the  definition  of  Sr  is  multiplied  by  a  factor  L'/Le.  In  our 

9 
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formulation,  we  take  the  position  that  these  quantities  are  to  be  determined  experimentally.  To  simplify  the 
discussion,  however,  we  ignore  the  end  corrections  to  set  Le  =  L'  =  L,  bearing  in  mind  that  they  might  modify 
results  quantitatively. 

As  a  case  with  higher  pressure  level,  we  consider  another  tunnel  of  smaller  diameter  7m  with  the 
5  resonator  having  a  spherical  cavity  of  diameter  6m  and  the  throat  of  diameter  2m  and  of  length  3m.  For  this 

tunnel,  the  natural  frequency  o>0  is  given  by  5.2  Hz  and  SR  =  2.8x1  0_+/e,  5r  =  1.4x10-3  and  x  =  1.5x10_1/e  for 
the  same  spacing  c/=10m.  Here  if  e  is  assumed  to  be  0.1,  x,  i.e.,  the  effective  size  of  the  resonator  is  much 
smaller  than  10  but  e(a0/o>L)2  now  takes  a  large  value  1.3.  It  should  be  remarked  here  that  the  ratio  V/Ad- 
(  =  2ex)  cannot  be  taken  large  because  it  controls  the  degree  of  reflection  at  each  resonator  and  the 

io  derivation  of  the  governing  equations  is  based  on  the  assumption  of  small  reflection  by  each  resonator,  i.e., 
V/Ad«-i. 

The  effect  of  the  array  of  resonators  is  examined.  It  is  found  that  for  x  =  n  =  1,  there  emerge  shock 
waves  from  both  initial  conditions  (19)  and  (21)  even  if  the  nonlinear  loss  is  taken  into  account.  But  as  0  is 
increased  to  10,  there  is  no  indication  of  shock  waves  at  all.  It  is  confirmed  that  the  results  obtained  for  the 

is  lower  pressure  disturbances  still  hold  for  this  case. 

EFFECT  OF  DOUBLE  ARRAY 

In  addition  to  the  single  array  of  resonators,  we  examine  the  effect  of  the  double  array.  For  this  array, 
20  two  'coupling  parameters'  x,  (/=  1  ,2)  and  'tuning  parameters'  0,-  (/=  1  ,2)  control  the  effect  of  the  array: 

25 

30 

35 

50 

Ki  =  — ^ —   and  Qi  =  { C ^ f ,  
lEAdi  O) 

where  the  suffix  /  designates  the  respective  quantities  pertinent  to  the  array  1  and  2.  The  far-field 
propagation  of  pressure  disturbances  is  described  by  the  following  equations: 

(24) 
dx  J  dd  K  

d 6 m   
1  de  dd 

(25)  ^ + d r l d - ^ + Q l g l   =  £21f,  
dd2  dd312 

(26)  ^ f + S r 2 d - ^ + Q 2 g 2   =  Q 2 f ,  
40  d02  dd3/2 

where  f,  g1  and  g2  correspond  to  the  pressure  appropriately  normalized  in  the  tunnel,  in  the  cavity  of  the 
array  1  and  2,  respectively  and  Sri  (/=1,2)  are  defined  by  the  hydraulic  radius  of  each  throat.  By  solving 

45  evolution  problems  for  (24)-(26),  it  is  found  that  the  choice  of  the  coupling  parameters  even  smaller  than  10 
is  enough  if  0i  is  set  equal  to  unit  while  n2  is  set  far  greater  than  unity,  for  example  0i  =  1  and  n2  =  5  for 
xi  =x2  =  1.  For  this  choice,  the  initial  pressure  disturbances  are  decayed  out  very  quickly. 

EFFECT  OF  INVENTION 

By  the  numerical  simulation  of  the  spatial  evolutions  of  the  pressure  disturbances  in  the  tunnel  with  the 
structure  proposed,  it  is  proved  that  the  array  of  resonators  is  very  effective  in  suppressing  propagation  of 
pressure  disturbances  and  especially  emergence  of  shock  waves.  In  order  for  the  array  to  be  effective,  of 
course,  a  greater  value  of  x  should  be  chosen  for  0  =  1  as  far  as  the  basic  assumption  of  the  small 

55  reflection  (V/Ad«'\)  is  not  violated.  Furthermore  if  the  double  (multiple)  array  can  be  connected,  its  effect 
is  enhanced  significantly. 

In  addition,  it  is  the  important  finding  that  if  0  is  set  to  a  greater  value  than  unity,  e.g.,  10,  even  smaller 
value  of  x  such  as  unity  is  enough  for  suppression  of  emergence  of  shock  waves  but  the  propagation  of 

10 
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pressure  disturbances  persits  over  a  long  distance.  This  is  due  to  the  higher-order  dispersion  introduced  by 
the  array  of  resonators. 

For  0  much  smaller  than  unity,  e.g.,  0.1,  there  always  appear  shock  waves  even  for  a  large  value  of  x. 
This  resuts  from  the  fact  that  for  n«1,  the  array  introduces  only  the  lower-order  dispersion  which  cannot 

5  counteract  the  nonlinearity  to  allow  emergence  of  shock  waves.  It  is  concluded  finally  that  after  the  shock 
waves  are  once  formed,  the  array  of  resonators  is  inactive  for  them  and  therefore,  before  that,  dispersing 
the  pressure  disturbances  is  essential  for  suppression  of  emergence  of  shock  waves. 

Claims 
10 

1.  A  tunnel-structure  where  many  cavities  are  arranged  in  the  outside  of  the  tunnel  and  in  array  axially  and 
each  cavity  is  connected  to  the  tunnel  through  a  connecting  passage(s)  so  that  propagation  of  pressure 
disturbances  can  be  suppressed  and  especially  emergence  of  acoustic  shock  waves  can  be  avoided. 
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