

Europäisches Patentamt
European Patent Office
Office européen des brevets

⑪ Publication number:

0 516 041 A1

⑫

EUROPEAN PATENT APPLICATION

⑬ Application number: 92108840.7

⑮ Int. Cl. 5: B41F 33/00, B41F 31/02,
B41F 31/04

⑯ Date of filing: 26.05.92

⑰ Priority: 29.05.91 JP 155913/91

⑲ Date of publication of application:
02.12.92 Bulletin 92/49

⑳ Designated Contracting States:
DE FR GB

㉑ Applicant: Dainippon Screen Mfg. Co., Ltd.
1-1, Tenjinkitamachi Teranouchi-Agaru
4-chome Horikawa-Dori
Kamikyo-ku Kyoto 602(JP)

㉒ Inventor: Oda, Osamu, c/o Dainippon Screen
Mfg. Co., Ltd.

1-1 Tenjinkitamachi, Teranouchi-agaru
4-chome

Horikawa-dori, Kamikyo-ku, Kyoto(JP)

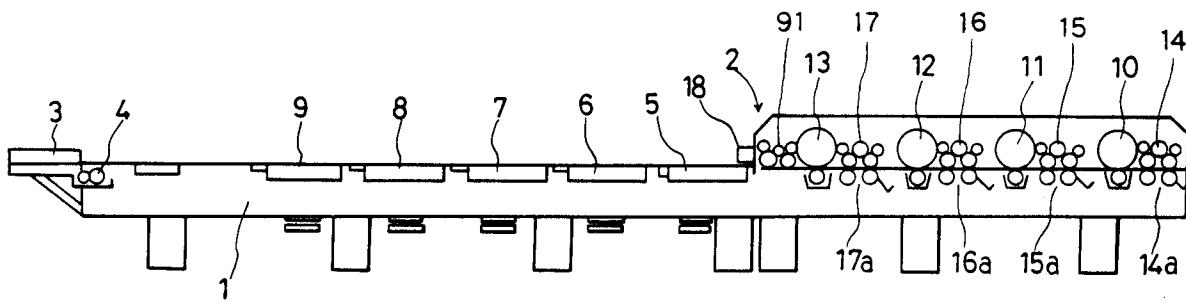
Inventor: Kadota, Tomoyuki, Dainippon
Screen Mfg. Co., Ltd.

1-1 Tenjinkitamachi, Teranouchi-agaru
4-chome

Horikawa-dori, Kamikyo-ku, Kyoto(JP)

㉓ Representative: Goddar, Heinz J., Dr. et al
FORRESTER & BOEHMERT

Franz-Joseph-Strasse 38
W-8000 München 40(DE)


㉔ Ink supply apparatus of a proofing press.

㉕ An ink supply apparatus is for use in a proofing press which comprises plate tables (6) on which a printing plates (A) are set, a paper table (5) on which a printing paper (B) is set, and a carriage (2) which travels on the plate tables (6) and the paper table (5). The apparatus comprises an illuminating measurement unit (18) for measuring reflected light intensity, an ink control unit (50), and ink supply devices (22). The measurement unit (18) is installed on the carriage (2). The unit (18) obtains reflected

light intensities from density reference charts (82) printed on the printing paper (B) set on the paper table (5), and measures the extent and location of the area of the image etched on each of the printing press plates (A) set on the plate tables (6), during travel of the carriage (2). The quantity of the ink supplied by the ink supply devices (22) is controlled in accordance with the print density and image areas.

FIG. 2

EP 0 516 041 A1

BACKGROUND OF THE INVENTION

The present invention relates generally to an ink supply apparatus. More specifically, it relates to an ink supply apparatus in a proofing press machine which comprises plate tables on which a press plate are set, a paper table on which a printing paper is set, and an inking and printing carriage movable along the plate tables and the paper table.

An offset proofing press machine described in Japanese Patent Laying-Open No.312146/1988 employs a densitometer on a carriage which can travel along printing plate tables and a printing paper table. The densitometer measures the density of marks in a density reference chart, printed on a printing paper when the carriage travels over the paper table onto which the paper is set. The carriage thus equipped determines the quantity of ink supplied by the carriage according to the measurement by the densitometer.

In order to optimally control the ink supply quantity, however, the density measurements obtained from the density marks on the printing paper are not adequate. It is preferable that not only density data derived from the density reference chart, but also measurement of the photo-etched image area on the printing plates be utilized as control parameters for controlling the ink supply quantity.

Japanese Patent Laying-Open No.174159/1987 discloses a device for measuring the area of an image on a printing plate. The obtained data are utilized as a control parameter during ink supply in the carriage. However, the device occupies space in addition to that required for the proofing press machine itself, thus complicating the structure of entire system, and increasing the manufacturing cost.

SUMMARY OF THE INVENTION

It is an object of the present invention to optimally determine supply ink employing both a printing paper density reference chart and measurement of the image area etched on a press plate as control parameters, while maintaining simplicity of structure.

An automatic ink supply apparatus according to the present invention is for use in a proofing press machine which includes plate tables on which press plates are set, a paper table on which a printing paper is located, and an inking and printing carriage capable of traveling along the plate tables and the paper table.

The apparatus comprises means provided in the carriage for quantitatively detecting the intensity of source light sent from the means during the

course of carriage travel and reflected from the material set on the tables, means for deriving printing density data from a density reference chart printed on the printing paper set on the paper table, means for measuring the image area of the printing plates set on the plate table, and means for controlling ink supply amount in the carriage. The printing density derivation means derives the printing density in accordance with information obtained from the reflected light intensity measurement means. The image area measurement means measures the area of the image etched on the printing plates in accordance with information obtained by the same means. Then, the ink supply means accordingly determines the ink supply quantity in the carriage based upon the printing density and image area data.

Thus the reflected light intensity measurement means is employed to obtain data pertaining to both the printing density and the image area measurement, whereby the ink maybe optimally supplied by means of a structure which does not necessitate added complexity.

The foregoing and other objects and advantages of the present invention will become more apparent from the following detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

30 Fig. 1 is a plan view showing a proofing press machine to which an embodiment according to the present invention is applied;
 Fig. 2 is an elevational view of the machine of Fig. 1;
 35 Fig. 3 is a perspective view showing an inking carriage, a portion of which is cut away;
 Fig. 4 is a perspective view diagraming an ink supply device;
 Fig. 5 is a fragmentary perspective view showing a measuring unit;
 40 Fig. 6 is a schematic diagram of a color patch sensor unit;
 Fig. 7 is a schematic diagram of a light optical feedback sensor unit;
 Fig. 8 is a schematic diagram of a white reference sensor unit;
 Fig. 9 is a schematic block representation of a measurement unit of Fig. 5;
 Fig. 10 is a schematic block diagram of machine control units;
 45 Fig. 11 is an exemplary plan view of a printing plate;
 Fig. 12 represents an example of a print;
 Figs. 13-15 are main control unit control process flow charts; and main body control unit;
 50 Figs. 16-19 are ink control unit control process flow charts.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The proofing press illustrated in Figs. 1 and 2 is principally composed of a horizontally extended frame 1, a horizontally conveyable carriage 2 disposed on the frame 1, a dampening device 4 located in one end (the left end in Figs. 1 and 2) of the frame 1, and first to fourth fixed ink rollers 14a, 15a, 16a and 17a located in the opposite end of the frame 1. A paper table 5, and first, second, third and fourth color plate tables 6, 7, 8, and 9, are mounted along the midportion of the frame 1 in that order, approaching the dampening device 4. Located adjacent the dampening device 4 is a registering device 3 which travels along the plate tables 6 to 9, registering printing plates installed therein. The carriage 2 incorporates water-dampening rollers 91, first to fourth color ink rollers 14, 15, 16 and 17, and first to fourth blanket cylinders 10, 11, 12 and 13. The dampening rollers 91 engage with the dampening device 4 when the carriage 2 reaches the leftward extent of its travel, and thereafter supply dampening water to the printing plates set on the plate tables 6 to 9 as the carriage 2 travels back along them. The first to fourth color ink rollers 14 to 17 contact fixed ink rollers 14a to 17a, respectively, when the carriage 2 is located in its "home" position, at the right end, and they supply ink to the printing plates as the carriage 2 travels along the plate tables 6 to 9. The first to fourth color blanket cylinders 10 to 13 transfer images obtained from the printing plates to a printing paper set on the paper table 5 as the carriage 2 travels along the plate tables 6 to 9 and the paper table 5. The carriage 2 additionally mounts a measurement unit 18 along the side which comes nearest the dampening device 4 in operation. As shown in Fig. 3, the carriage 2 further comprises an encoder 19 for detecting the transit location of the carriage 2, and an operation panel 21 including a display 20 and a keyboard (described later), and ink supply devices 22 for supplying ink to the ink rollers 14 to 17.

The ink supply devices 22 include an ink discharge unit 23 incorporating a nozzle, as shown in Fig. 4. Each ink discharge unit 23 is adapted so that its movement by means of a screw rod 24 is parallel with the corresponding ink roller 14 (15, 16 and 17). The screw rod 24 is connected to a motor 26 through a power transfer arrangement 25 composed of pulleys and a belt.

Located between each of the ink rollers 14 (15, 16 and 17) and the corresponding ink discharge unit 23 is an ink supply roller 27, which is swung from one to the other of the devices by means of a piston 29 through a pivoting rod 28. The ink rollers 14 (15, 16 and 17) are brought into contact with

their respective fixed rollers 14a (15a, 16a and 17a) by a drive motor (not shown) provided in the frame 1 and rotate together with them, whereby ink is distributed over the rollers. It is feasible that the ink discharge unit 23 could supply ink directly to the ink rollers 14 (15, 16 and 17), wherein the ink supply rollers 27 could be omitted.

The measurement unit 18 is, as shown in Fig. 5, composed of a case 30 and a measurement assembly 31 disposed therein. The measurement assembly 31 includes a sensor unit 32, having an exterior exposure through a slot 33 formed along the underside of the case 30. The measurement assembly 31 includes optical fibers 34 adjacent to the sensor unit 32, in which arrangement reflected light sent from the optical fibers 34 is detected by the sensor unit 32. A halogen lamp (not shown) is provided at the base of the optical fibers 34 so that the ends of the optical fibers 34 adjacent to the sensor unit 32 illuminate. The tips of the optical fibers 34 are located at a pitch of 10 millimeters.

As shown in Fig. 9, the sensor unit 32 comprises a mother board 35 which is connected to an ink control unit 50 (described momentarily). The sensor unit 32 further comprises a white reference sensor 36, a first light-feedback sensor 37, a second light-feedback sensor 38, and a plurality of color patch sensors 39. These sensors 36 to 39 are connected to the mother board 35 through AMP boards 40 and A/D conversion boards 41.

As illustrated in Fig. 6, each of the color patch sensors 39 contains photodiodes 43 which are attached to an attachment plate 42 measure ink density of each of colors, yellow (Y), magenta (M), cyan (C) and black (BK). Complementary color filters 44 corresponding to these four colors respectively are located on the light-receive ends of the photodiodes 43. Both of the light-feedback sensors units 37 and 38, detailed in Fig. 7, include photodiodes 43a for which provide feedback in order to keep the light intensity of the light source constant, while the remainder of the structure is the same as that of a sensor 39. The white reference sensor unit 36 comprises, as shown in Fig. 8, a white reference photodiode 43b which detects a measurement signal mark (described later) on either the press plate or the printing paper and measures the light reflectance of the printing paper background. These photodiodes 43, 43a and 43b are each connected to a respective AMP board 40 (Fig. 9). The photodiodes 43, 43a and 43b are located at a 10 millimeter pitch as likewise are the tips of the optical fibers 34.

The proofing press is provided both with a main control unit 60 as diagramed in Fig. 10 which controls the overall operation of the proofing press, as well as the above-mentioned ink control unit 50. Both control units 50 and 60 contain a microcom-

puter comprising a CPU, a ROM, a RAM and so on. Various kinds of information is interchanged between the control units 50 and 60 in order to coordinate their operations.

The ink control unit 50 controls the ink supply operation and is connected to the aforescribed measurement unit 18, the display 20 and the ink supply devices 22. The ink control unit 50 is also connected to a key panel 51 provided on the operation panel 21 for key input of commands, to a data input FD drive 52 into which floppy discs storing basic data are inserted, as well as to other input/output devices.

The main control unit 60 is connected with the encoder 19 and controls such operations of the proofing press main body as the travel of the carriage 2. A key panel 61, also provided on the operation panel 21 for input of commands by an operator, a carriage driving device 62 including a motor which reciprocates the carriage 2, and an ink roller driving device 63 including a motor which rotates the fixed ink rollers 14a to 17a, as well as other input/output devices, are connected to the main control unit 60.

Reference is now made to Fig. 11, showing a printing plate in use during operation of the proofing press, and to Fig. 12, showing an example of print material printed thereby. The press plate A of Fig. 11 is set on the first color (BK) plate table 6. In addition to an image 71, management patches 72 consisting of a number of rectangular patterns and a measurement signal mark 74 are photo-etched on the printing plate A. The management patches 72 are used for printing density management solid patches 82, and thus taken together constitute ink-receiving area in addition to the image area. The printing paper B of Fig. 12 is set on the paper table 5. The four printing colors have been already printed on the printing paper B, whereby an image 81, density management solid patches 82 in each of the four colors, and a start measurement mark 84 appear thereon. The start measurement mark 84 is printed by the measurement signal mark 74 etched on the printing plate A. The solid patches 82 which correspond to the color BK are printed by the management patches 72 (Fig. 11) on the printing plate A, and solid patches 82 corresponding to the other three colors Y, M and C are printed by the management patches 72 etched on to the respective printing plates A.

The area indicated by reference numeral 83 in Fig. 12 is a white reference area which is measured by the white reference sensor 36 in order to compute the light reflectance of the printing paper B. An area 73 (Fig. 11) on the printing plate A corresponding to the white reference area 83 contains no image. A blank area 75 along the gripped edge of the printing plate A in Fig. 11 is utilized for

calibration when the image area 71 is measured. The area 75 is skipped when the printing plates A are etched, and thus contains no image.

The operation of this embodiment will hereinafter be described with reference to the flow charts of Figs. 13 to 15, illustrating the control process of the main control unit 60, and to those of Figs. 16 to 19 illustrating the control process of the ink control unit 50.

General Flow

When the program in the main control unit 60 begins, an initialization is carried out at step S1 of Fig. 13, in which, inter alia, the carriage 2 is set home along the frame 1. After the initialization, the program proceeds to step S2. At step S2, it is determined whether or not initial ink supply is commanded through input at the key panel 61. If not, the program proceeds to step S3. At step S3, it is determined whether or not additional ink supply is commanded through input at the key panel 61. If not, the program proceeds to step S4. At step S4, it is determined whether or not a print start command has been input through the key panel 61. If the command has not been received, the program returns to step S2. That is, the program waits for the command through input at the key panel 61 at steps S2 to S4.

Meanwhile, when the program in the ink control unit 50 starts, an initialization is carried out at step P1 of Fig. 16, in which, inter alia, the ink supply devices 22 are set into their initial positions. After the initialization, the program proceeds to step P2, at which it is determined whether new ink supply conditions have been input through the key panel 51. If no such conditions have been input, the program proceeds to step P3, at which it is determined whether the ink initial supply operation has been instructed by the main control unit 60 or not. If the determination is "No", the program proceeds to step P4. At step P4, it is determined whether the additional ink supply operation has been instructed by the main control unit 60. If the determination is "No", the program proceeds to step P5, at which it is determined whether an automatic ink supply instruction is has been given by the main control unit 60 or not. At step P5, if the determination is "No", the program returns to step P2. That is, the program awaits the issuance of various instructions at steps P2 to P5.

Wherein an operator inputs information through the key panel 51 into the ink control unit 50 pertaining to paper quality, printing plate type, inks type, desired density, and color designation conditions, the program proceeds from step P2 to step P6 of Fig. 16. At step P6, the ink control unit 50 stores the input conditions, whereupon the program

returns to the main routine.

Initial Supply

If an operator has input the initial ink supply command into the main control unit 60 through the key panel 61, the program therein proceeds from step S2 to step S5 of Fig. 13. At step S5, the main control unit 60 sends the initial ink supply instruction to the ink control unit 50. At step S6, an ink rolling-up subroutine as shown in Fig. 14 is carried out.

At step S7 of Fig. 14, the carriage 2 is driven toward the dampening device 4. Then, at step S8, the program awaits the detection of the carriage 2 at the limit of its travel path. Once the carriage 2 reaches the extent of its travel toward the dampening device 4, it is driven reversely through direction at step S9.

At step S10, it is determined whether an await period prior to the switching-on of the light source (halogen lamp) used for the measurement taken by the measurement unit 18 has elapsed. At step S11, it is determined whether a pause until the measurement unit 18 is to begin start measurement has elapsed. The determinations at step S10 and step S11 are made according to the travel location of the carriage 2 as detected by the encoder 19. At step S12, it is determined whether a roller driving instruction (described later) has been given by the ink control unit 50. If the determination is "No", the program proceeds to step S13, at which miscellaneous processes may be executed, then it returns to step S10.

When the await period at step S10 has elapsed, the determination therein becomes "Yes" and the program proceeds to step S14. At step S14, the main control unit 60 sends a switch on exposure lamp instruction to the ink control unit 50. Upon execution of the process at step S14, the program returns to step S11. Then, wherein the time awaiting the start of measurement has elapsed, the determination at step S11 becomes "Yes" and the program proceeds to step S15, at which the main control unit 60 gives a start measurement instruction to the ink control unit 50.

When the ink control unit 50 receives the initial supply instruction (step S5) from the main control unit 60, the program proceeds from step P3 to step P7 of Fig. 16, wherein the initial supply subroutine of Fig. 17 is executed. At step P8 of Fig. 17, the program in the ink control unit 50 awaits the switch on exposure lamp instruction sent by the main control unit 60, upon receipt of which the light exposure source in the measurement unit 18 is lighted at step P9. Then, at step P10, it is determined whether or not the start measurement instruction has been sent from the main control unit

60, and at step P11 it is determined whether or not an interval prior to exposure lamp switch-off has elapsed.

When the start measurement instruction (step S15) has been sent by the main control unit 60, the program proceeds from step P10 to step P12. At step P12, a zeroing process to calibrate measurement scale is carried out as each of the photodiodes 43 of the color patch sensors 39 measure the intensity of the light reflected by the blank area 75. After the zeroing process, the program proceeds to step P13. At step P13, the area of the image 71 inked on the printing plate A is measured. The color patch sensors 39 are also employed to obtain this measurement. The photodiodes 43 measure the reflected light intensity from the printing plate A at 10 millimeter pitch as the measurement unit 18 scans the surface of the printing plate A when the carriage 2 travels over it. As a result, voltage data measured by each of the photodiodes 43 are stored in the ink control unit 50.

At step P14, the white reference sensor 36 detects the measurement signal mark 74 whereby the finish of the scanning of image 71 is concluded. Thereupon, the determination becomes "Yes" at step P14 and the program proceeds to step P15. At step P15, clocking the lag after the detection of the measurement signal mark 74, the program awaits the arrival of the measurement unit 18 at the management patches 72 on the printing plate A, whereupon the program proceeds to step P16, at which 100 % value for calibration of the measurement scale is obtained as the photodiodes 43 corresponding to the respective color on the presently-scanned of the printing plates A measure the intensity of the light reflected by the management patches 72. The measurement signal mark 74 is employed in order to detect the boundary of the image 71 relative to the location of the management patches 72, since these positions vary according to the size of the printing plates A.

At step P17, it is determined whether or not a next printing plate exists. The program returns from step P17 to step P12, repeating the same measurement operation until the measurement of all four color printing plates is completed. After the completion of all of the measurements, the determination at step P17 becomes "No" and then the program returns to step P10.

When a given interval has elapsed thereafter, it is concluded that the time until the exposure lamp may be switched off has expired, and the program proceeds from step P11 to step P18. At step P18, calibrations are carried out in accordance with data obtained from the zeroing process at step P12 and the 100 % value measured at step P16 for each of the color printing plates A (Y, M, C and BK), then

the image areas on each of the four printing plates are calculated based upon the respective calibrated scales of measurement.

In calculating the image areas, the extent of the image existing on the printing plates is determined according to changes detected in the voltages measured by the sensors. Voltages thus measured by each sensor along its scanning line are stored and integrated. Each of the integrated amounts is converted into image area per sensor scanning line. The image area is calculated relative to the voltage values obtained through a given instance of measurement with respect to the calibrated 0 % to 100 % measurement scale.

The scanning-line measurement scale calibrations are carried out in order to compensate for those differences in the voltages converted from the intensity of the reflected light at the different photodiodes 43 which result from such non-image factors as dispersion of the exposure light intensity at the optical fibers 34 luminance ends and variations in the performance characteristics of the photodiodes 43, as well as from the fact that different color complementary filters 44 are installed on the photodiodes 43 to measure the density of the respective solid patches 82. These calibrations must be made in accordance with the reflected light intensity of both an area where no image exists and an area where 100 % image exists on the actual printing plate A by which printing is carried out, because every given printing plate A has a different light reflectance stemming from differences among the kinds of printing plates and changes in sensitivity brought about by use in etching.

The blank area 75 used to determine the 0 % calibration is provided on every printing plate A, for each of the colors Y, M, C and BK, as a non-etched area on the printing plate gripped side, so that zeroing processes may be performed through each of the photodiodes 43 as aligned at 10 millimeter pitch on each of the printing plates A. Meanwhile, the management patches 72 are etched at 40 millimeter pitch, being at such alternation on each of the respective printing plates A pitch that the solid patches 82 will be printed on the printing paper B at unique locations according to the different colors. Consequently, in the case of the printing plate A for the color BK as shown in Fig. 11, the photodiodes 43 for measuring the density of the solid BK patch 82 may carry out measurements for both the 0 % and the 100 % calibrations, but the other photodiodes 43 for the colors Y, M and C cannot carry out their respective measurements for 100 % calibration.

It is therefore necessary to derive assumed 100 % measurement values corresponding to those remaining photodiodes 43. The virtual 100 % mea-

surement value V for each of the areas measured by the sensors for Y, M and C is calculated as follows according to the 0 % measurement value V_o obtained by the sensors of a given color, and the 0 % measurement value V_{oB} and the 100 % measurement value V_{1B} obtained by the BK sensors;

$$V = (V_o / V_{oB}) \times V_{1B}.$$

Thus no special 100 % reference area is needed in order to calibrate measurement scales for the scanning lines wherein management patches 72 do not exist. Particularly, the image areas are thus precisely measured at 10 millimeter pitch without the additional requirement of special printing plates.

Following the process at step P18, the program proceeds to step p19, wherein initial ink supply amounts for each of the colors are calculated in accordance with the image areas calculated at step P18. The amounts of image area on each of the printing plates A calculated at step P18 are converted into the ink supply quantities for each of the respective colors according to a function whose parameters are color, paper quality, kind of ink, target density, plate type, etc. The ink supply quantities are set so as to correspond to the image area, amounts--greater for these regions in which the image is prevalent and lesser in those regions in which it is more scarce.

The data from the image areas exists as derived along the scanning lines at the 10 millimeter pitch at which the sensors are located, but the ink is supplied at 40 millimeter pitch, which corresponds to the pitch of the density measurement solid patches 82 (hereinafter described). Therefore, at the ink discharge unit 23 first supply point, the average between supply amounts calculated from the BK and C scanning lines along one end is defined as the ink supply quantity; and at the ink discharge unit 23 last supply point, the supply amount averaged from the values calculated from the M and Y scanning lines along the other end is defined as the ink supply amount; and finally at each of the 40 millimeter pitch supply points between both end supply points, the defined supply amount is averaged from the values calculated along the scanning lines for all of the colors Y, M, C and BK through each of the corresponding photodiodes 43.

After the calculation of the ink supply amounts, at step P20 initial ink rolling-up data for each color are displayed on the display 20. Afterwards, the ink control unit 50 instructs the main control unit 60 to drive the fixed ink rollers 14a to 17a. In the main control unit 60, the determination at step S12 in Fig. 14 thus becomes "Yes" and the program

proceeds to step S16. At step S16, the fixed ink rollers 14a to 17a and the ink rollers 14 to 17 are driven synchronously. At step S17, the main control unit 60 awaits a signal of the ink rolling-up operation termination from the ink control unit 50.

The ink control unit 50, at step P22 of Fig. 17, controls operation of the ink supply device 22 in accordance with the outcome of the calculations at step P19 and carries out the initial ink rolling-up operation. The ink discharge unit 23 is driven as indicated in Fig. 4 in the longitudinal direction of the ink rollers 14 (15, 16 and 17), and accordingly applies the correctly sufficient amount of ink to the respective points along the ink supply roller 27. Then, the ink supply roller 27 is driven toward the ink rollers 14 (15, 16 and 17) sideways by the piston 29, whereby applied ink is supplied to the ink rollers 14 (15, 16 and 17) from the ink supply roller 27.

After the initial ink rolling-up operation, at step P23, the ink control unit 50 notifies the main control unit 60 of the termination of the operation. Subsequently, the program returns to the main routine of Fig. 16. Meanwhile, in the main control unit 60, the determination at step S17 of Fig. 13 becomes "Yes" and then the program returns to the main routine therein.

Additional Supply

When a fresh printing plate is to be inked following a previously inked plate, the additional ink supply is commanded if necessary. If the main control unit 60 is given the command for additional supply from an operator through the key panel 21, the program proceeds from step S3 in Fig. 13 to step S26. At step S26, the main control unit 60 instructs the ink control unit 50 to supply additional ink. At step S27, the ink rolling-up subroutine of Fig. 14 is carried out. The operation of the ink rolling-up subroutine therein is the same as that during the initial ink supply operation and therefore need not be further explained.

When the ink control unit 50 receives the additional ink supply instruction from the main control unit 60 at step S26, the determination at step P4 of Fig. 16 becomes "Yes" and the program proceeds to the additional supply subroutine at step P27. In the additional ink supply subroutine diagramed in Fig. 18, the processes at step P28 to step P38 are the same as those at step P8 to step P18 of the initial ink supply subroutine (Fig. 17) and thus will not be elaborated upon.

At step P39, the additional ink supply quantity is calculated in accordance with the result of the image area calculations at step P38. In executing this calculation, an estimate of the quantity of ink having not been consumed by the previous printing

operation is taken into account as well. That is, the quantity of ink rolled up during the previous printing operation and estimated to be remaining on the ink rollers is subtracted from the result obtained likewise as that for the calculation of the initial ink supply (based upon the scanning of the printing plate image areas) in order to determine the additional ink supply quantity.

Following the process at step P39, are processes at steps P40 to P43, which are the same the corresponding processes performed during the initial ink supply at steps P20 to P23 (Fig. 17).

Printing (Automatic Ink Supply)

If the main control unit 60 receives a printing operation start command through the key panel 61, the program therein proceeds from step S4 to step S36 of Fig. 13. At step S36, the printing subroutine diagramed in Fig. 15 is executed.

At step S37 in Fig. 15, the main control unit 60 sends an automatic ink supply instruction to the ink control unit 50 and at step S38 sends a printing operation start instruction. Accordingly, the printing operation to the printing paper B set on the paper table 5, employing the printing plates A located on each of the plate tables 6 to 9 and the blanket cylinders 10 to 13 within the carriage 2 is begun. During the printing operation, each of the printing plates A receives dampening water and its respective color of ink from the dampening water rollers 91 and the ink rollers 14 to 17, respectively. Then, the blanket cylinders 10 to 13 transfer in turn the ink from the printing plates A onto the printing paper B. At step S39, it is determined whether or not the await interval prior to switching on the exposure lamp in the measurement unit 18 has elapsed. At step S40, it is determined whether or not the interval until measurement start by the measurement unit 18 has expired. At step S41, it is determined whether the printing operation is finished or not. At step S42, additional processes involved in the printing operation are carried out, for example, halting the travel of the carriage 2 at the home position on the frame 1.

When the await time prior to switching on the exposure lamp in the measurement unit 18 has elapsed, the program proceeds from step S39 to step S43 and sends the switch-on instruction to the ink control unit 50. When the pause until measurement start by the measurement unit 18 is over, the program proceeds from step S40 to step S44 and sends the measurement start instruction to the ink control unit 50.

Meanwhile, if the ink control unit 50 receives the automatic ink supply instruction (step S37) from the main control unit 60, the program proceeds from step P5 to step P47 of Fig. 16 and carries out

the automatic supply subroutine diagramed in Fig. 19. Therein, at step P48, the program awaits the exposure lamp switch-on instruction from the main control unit 60. Once the instruction has been received, at step P49 the exposure light source in the measurement unit 18 is lighted. At step P50, the program awaits the measurement start instruction (step S44) from the main control unit 60, and once received, the program proceeds to step P51.

At step P51, the program awaits the detection of the start measurement mark 84 on the printing paper B (Fig.12). Once the start mark 84 has been detected, the program proceeds to step P52 after a given time lag. At step P52, the photodiodes 43 within each of the color patch sensors 39 (Fig. 9) measure the density of each of the solid patches 82. Subsequently, the program proceeds to step P53 and pauses prior to switch-off of the exposure light source. The light source is switched off at step P54, then the program proceeds to step P55.

At step P55, the densities of each color, Y, M, C and BK in the image are calculated based upon the values of by the measurement of the solid patches 82 obtained at step P52, and the calculated densities data are displayed on the display 20 at step P56. At step P57, replenishment quantities of ink of each of the colors (Y, M, C and BK) are calculated based upon the image color densities determined at step P55. Because the voltages converted from light of uniform intensity reflected on each of the sensors are liable to vary due to such factors as dispersion of the intensity of the exposure light at the light-emitting portions of the optical fibers 34, and to differences in characteristics of the photodiodes 43, it is necessary to calibrate the measurement unit 18 to compensate these variable factors when the color density values are obtained from the voltages converted from the reflected light intensities. The calibration in this case differs from that performed during the aforescribed process of measurement of the image area in that the purpose of the calibration herein is to compensate for material inconsistencies among the photodiodes 43 installed in complementary color filters 44 of the same color.

In performing this calibration, the solid patches 82 printed on the printing paper B cannot be used as a reference for the calibrations because their densities differ depending on their given quantities of ink. Therefore, reference voltages for desired densities and for white are measured and recorded beforehand by using printing papers on which the solid patches are printed as reference together with a base white paper. Calibration is then carried out with reference to the reference voltages, and the result is used to calculate the effective densities from the actually measured data.

The intensity of the light reflected by the solid

5 patches 82 printed on the printing paper B vary depending on the light reflectance of the paper itself. It is therefore necessary to correct the result measured at step P52, in accordance with the value of the intensity of the light reflected from the white reference portion 83 measured by the white sensor 36, when the ink replenishment quantity is calculated. It is alternatively possible to measure the reflected light intensities at the non-image area 85 on the gripped side of the as shown in Fig. 12, by employing each of the color patch sensor units 39 in lieu of the presently-described measurement obtained from the white reference area 83 by the white reference sensor 36.

10 At step P58, it is determined whether the ink consumed during the printing operation should be replenished in accordance with outcome of the calculation at step P57. If no replenishment is necessary, the program proceeds to step P59, wherein the ink control unit 50 sends a termination of operation notice to the main control unit 60. Meanwhile, at step P58 if it is determined that ink replenishment is necessary, the program proceeds to step P60. At step P60, the ink control unit 50 sends a roller drive instruction to the main control

20 unit 60.

25 Following a printing operation, the program in the main control unit 60 awaits the roller drive instruction at step S45 and awaits the terminate operation notice at step S46 of Fig. 15. When the main control unit 60 receives the terminate operation notice before the roller drive instruction, the determination becomes "Yes" at step S46 and then the program returns to the main routine. Meanwhile, when the ink control unit 50 sends the roller drive instruction at step P60 (Fig. 19), the determination becomes "Yes" at step S45 in the main control unit 60 and then the program proceeds to step S47. At step S47, the fixed ink rollers 14a to 17a are driven synchronously with the ink rollers 14 to 17 in the carriage 2.

30 35 40 45 50 While the ink rollers 14 to 17 are being driven, step P61 is carried out in the ink control unit 50, at which the ink supply device 22 is controlled according to the result of the calculation at step P57, and each of the ink discharge portions 23 supplies ink in controlled quantities to specific locations along each of the ink rollers 14 to 17. Following the step P61 processes, the program proceeds to step P59 and sends the operation terminate notice to the main control unit 60, upon receipt of which in the main control unit 60, the determination becomes "Yes" at step S46 (Fig. 15) and then the program returns to the main routine.

55 The aforescribed operation to automatically supply ink during the printing operation may be carried out following several paper printings.

Although the present invention has been de-

scribed for the case of a four-color proofing press which prints in four colors at one step, the present invention may be applied to a monochrome proofing press which prints in one color at one step or to a two-color proofing press which prints in two colors at one step as well.

Various details of the present invention may be changed without departing from its spirit nor its scope. Furthermore, the foregoing description of the embodiments according to the present invention is provided for purpose of illustration only, and not for purpose of limiting the invention as defined by the appended claims or their equivalents.

The features disclosed in the foregoing description, in the claims and/or in the accompanying drawings may, both separately and in any combination thereof, be material for realising the invention in diverse forms thereof.

Claims

1. An ink supply apparatus installed in a proofing press which comprises a plate table (6) on which a printing plate (A) is set, a paper table (5) on which a printing paper (B) is set, a carriage which can travel on said plate table and paper table; said apparatus comprising means (18) installed in said carriage (2) for measuring reflected light intensity, means (50) for measuring color density from a density reference chart (82) printed on said printing paper (B) set on the paper table (5) through said reflected-light intensity measurement means (18) while the carriage (2) travels, and means (22) for supplying ink in said carriage (2) in accordance with measurement executed by said reference-chart density measurement means (50); said apparatus characterized in that:

40 said apparatus further comprises means (50) for measuring an image area (71) etched on the printing plate (A) set on the plate table (6) through said reflected-light intensity measurement means (18) while said carriage (2) travels; wherein said ink supply means (22) supplies ink in accordance with the measurement by said reference-chart density measurement means (50) and said image-area measurement means (50).

2. An apparatus according to claim 1, wherein said ink supply means (22) has an ink discharge unit (23) having a nozzle, and means (50) for controlling the quantity of ink discharged from said ink discharge unit (23).

3. An apparatus according to claim 1 or 2, wherein said ink supply means (22) varies the

5 ink supply amount in accordance with the image area data obtained by said image area measurement means (50), so as to supply higher volume wherein image is present to a greater extent, and lower volume wherein image is present to a lesser extent.

4. An apparatus according to any of claims 1 to 3, wherein said reflected-light intensity measurement means (18) includes sensors (43) for measuring printed each ink density of yellow (Y), magenta (M), cyan (C) and black (BK).

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 9305 9310 9315 9320 9325 9330 9335 9340 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 9445 9450 9455 9460 9465 9470 9475 9480 9485 9490 9495 9500 9505 9510 9515 9520 9525 9530 9535 9540 9545 9550 9555 9560 9565 9570 9575 9580 9585 9590 9595 9600 9605 9610 9615 9620 9625 9630 9635 9640 9645 9650 9655 9660 9665 9670 9675 9680 9685 9690 9695 9700 9705 9710 9715 9720 9725 9730 9735 9740 9745 9750 9755 9760 9765 9770 9775 9780 9785 9790 9795 9800 9805 9810 9815 9820 9825 9830 9835 9840 9845 9850 9855 9860 9865 9870 9875 9880 9885 9890 9895 9900 9905 9910 9915 9920 9925 9930 9935 9940 9945 9950 9955 9960 9965 9970 9975 9980 9985 9990 9995 9999

said other sensors zero-percent measurement and said reference zero-percent and reference one-hundred-percent measurements.

10. An apparatus according to claim 9, wherein
said image area measurement means (50) calculates said assumed one-hundred-percent measurement data (V) based upon said zero-percent data (V_o) corresponding thereto, said reference zero-percent measured data (V_{oB}) and said reference one-hundred-percent measured data (V_{1B}), according to the following equation;

$$V = (V_o / V_{oB}) \times V_{1B}.$$

5

10

15

20

25

30

35

40

45

50

55

FIG. 1

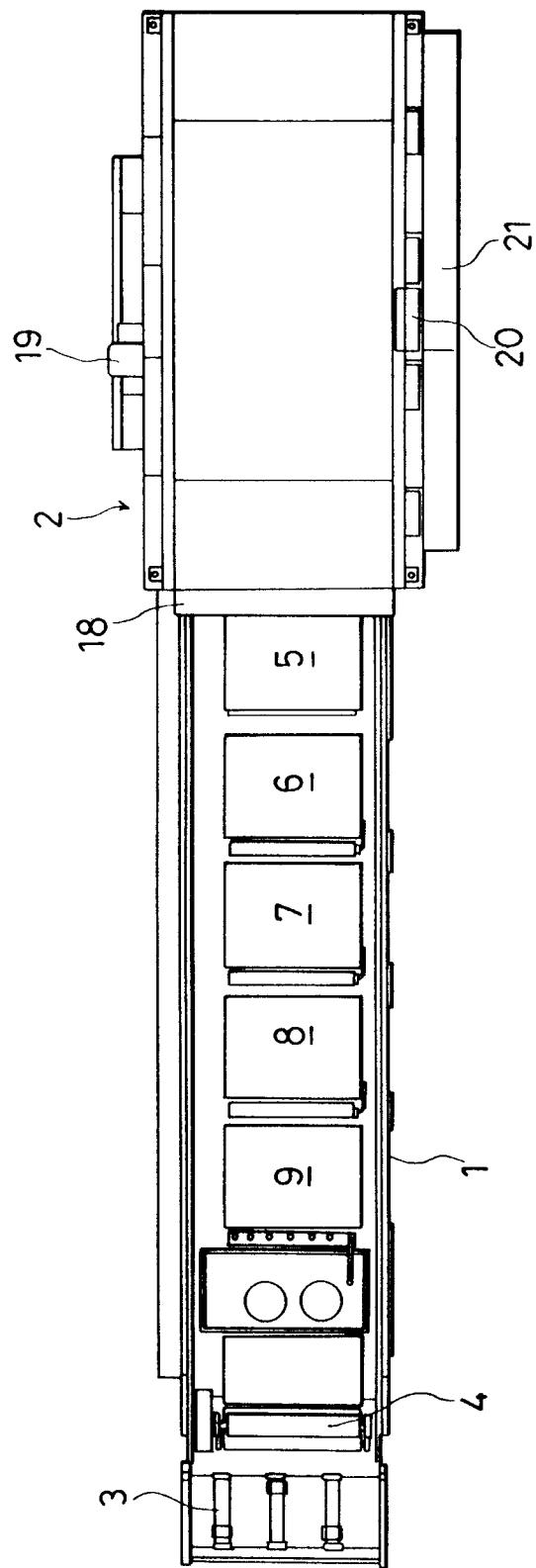


FIG. 2

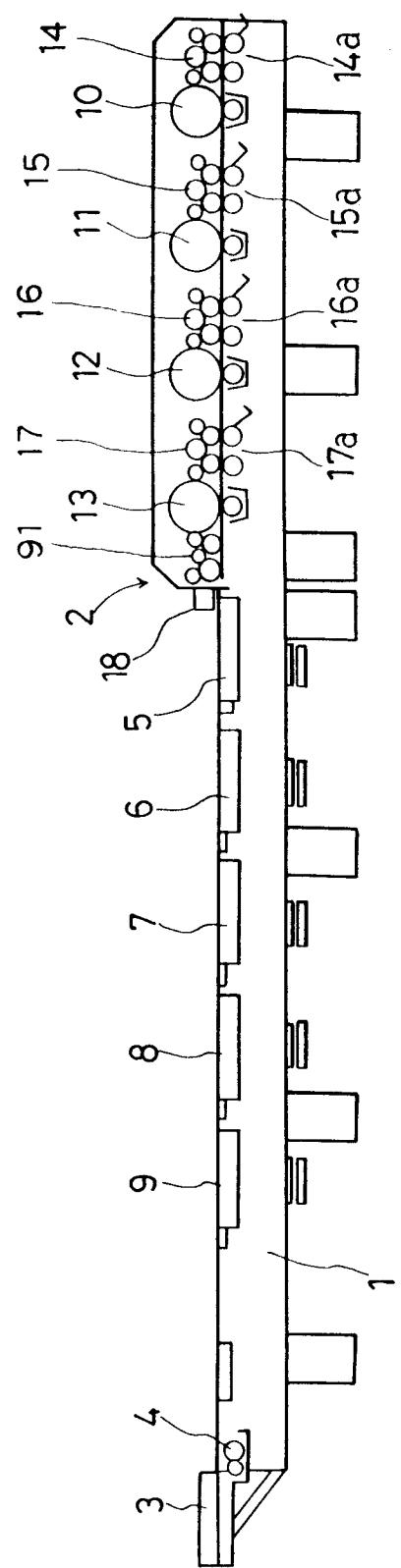


FIG. 3

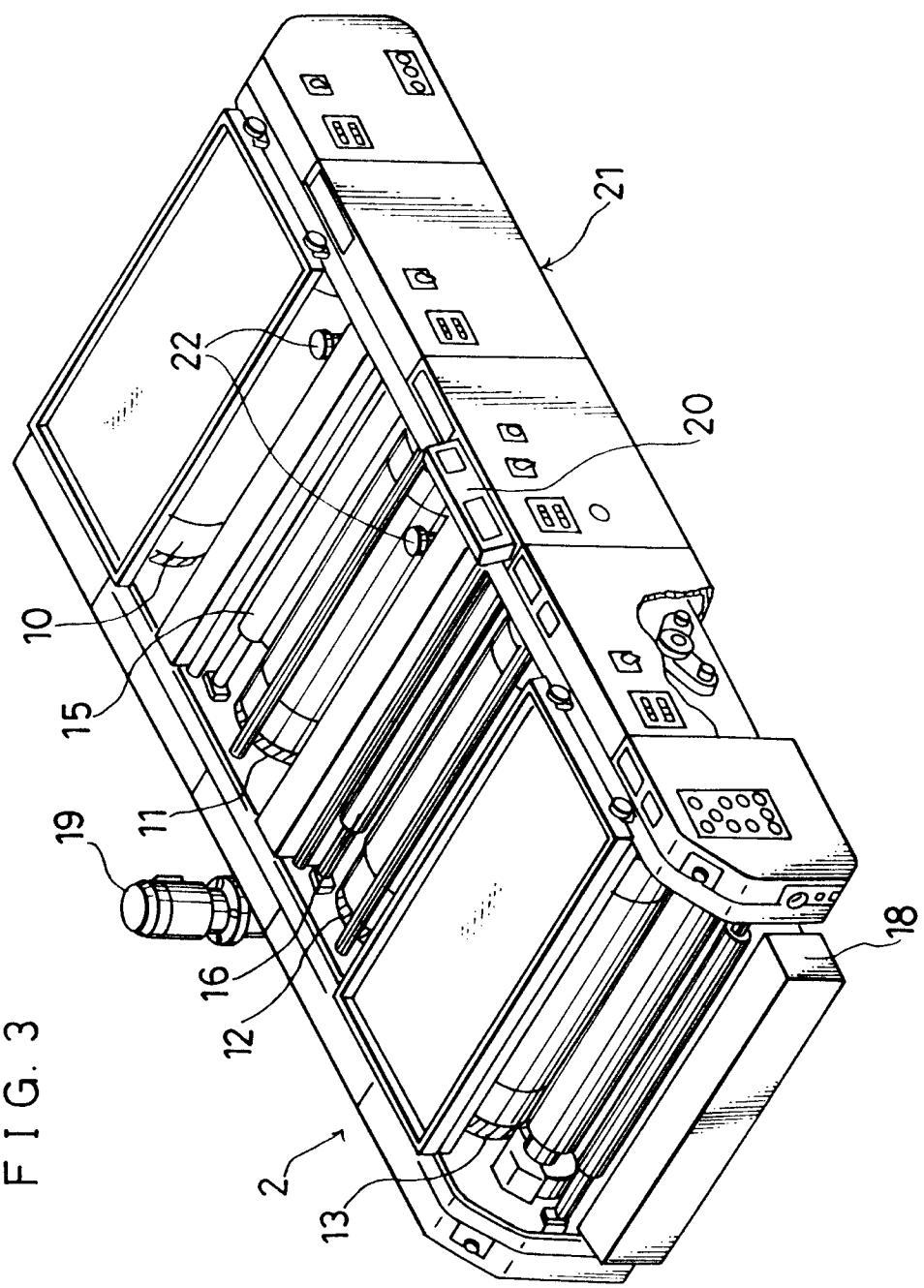


FIG. 4

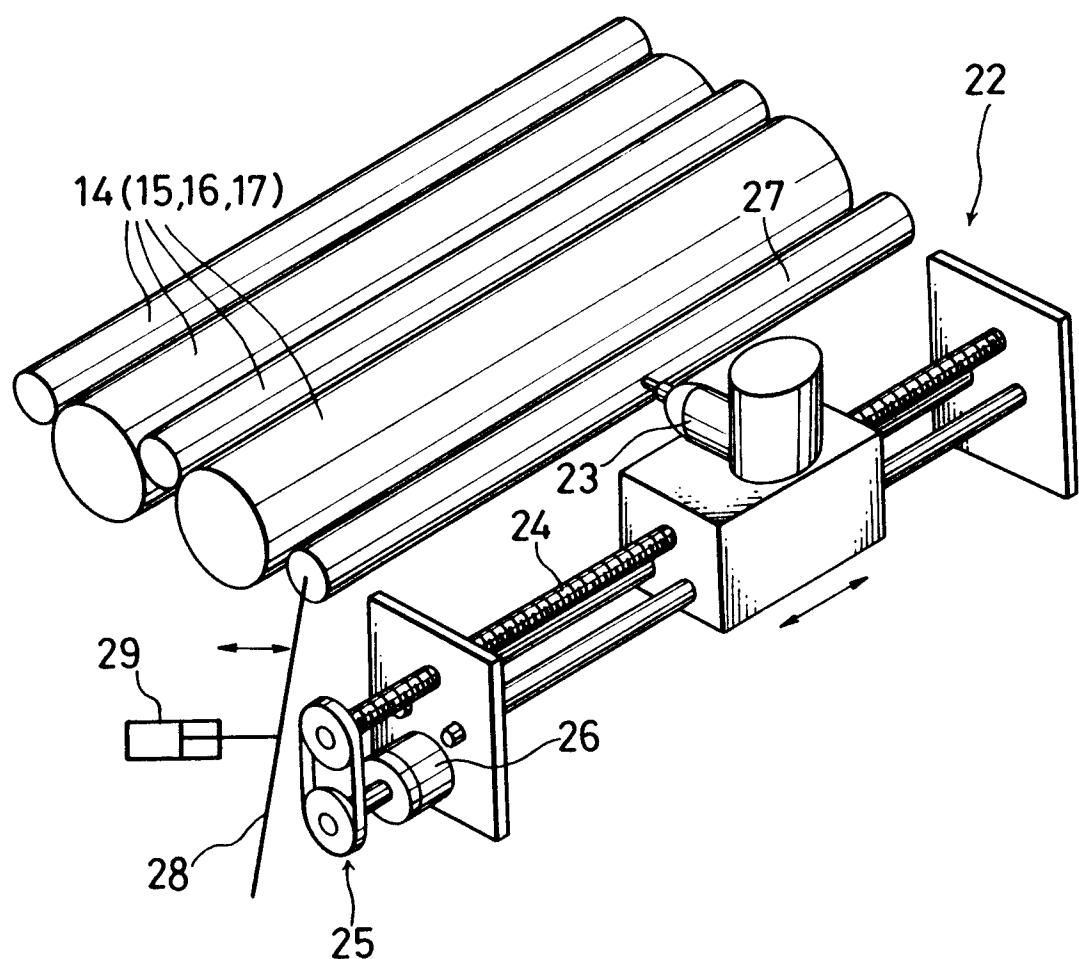


FIG. 5

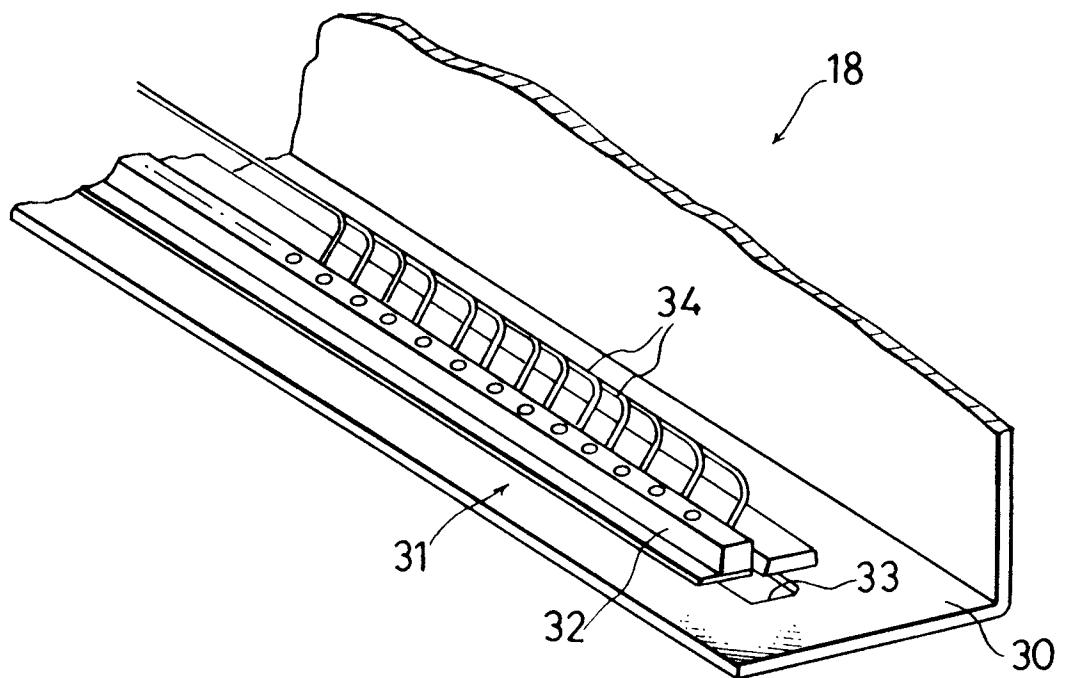


FIG. 6

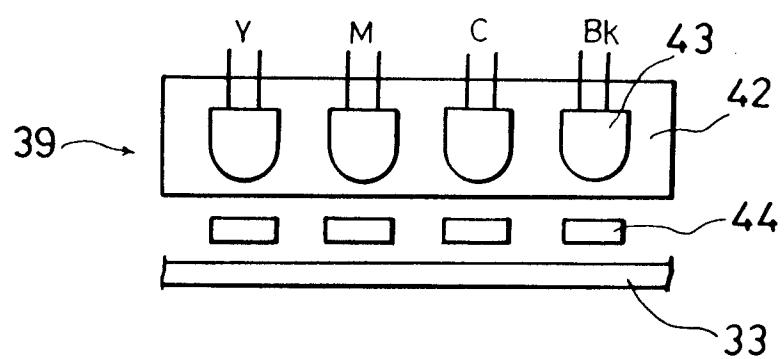


FIG. 7

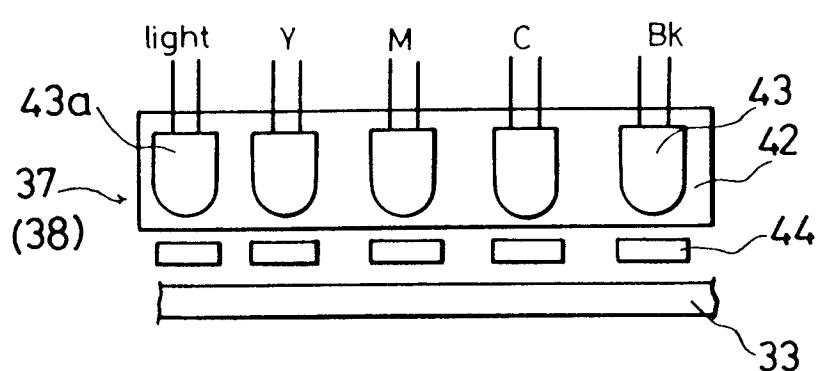


FIG. 8

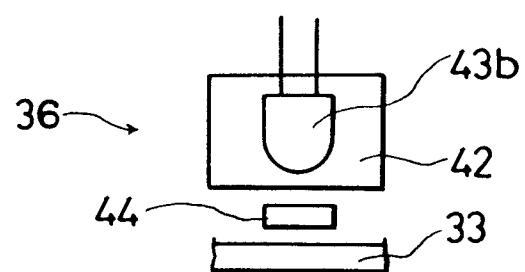


FIG. 9

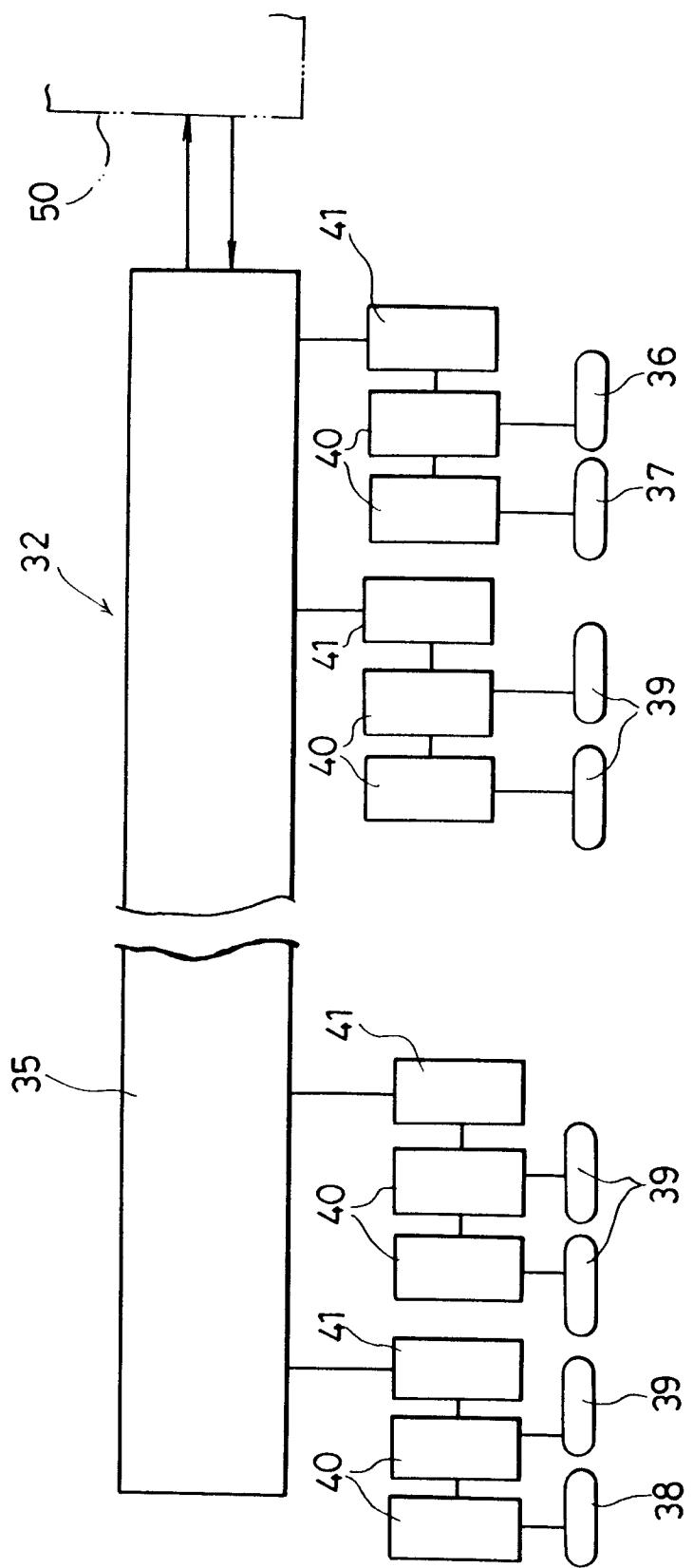


FIG. 10

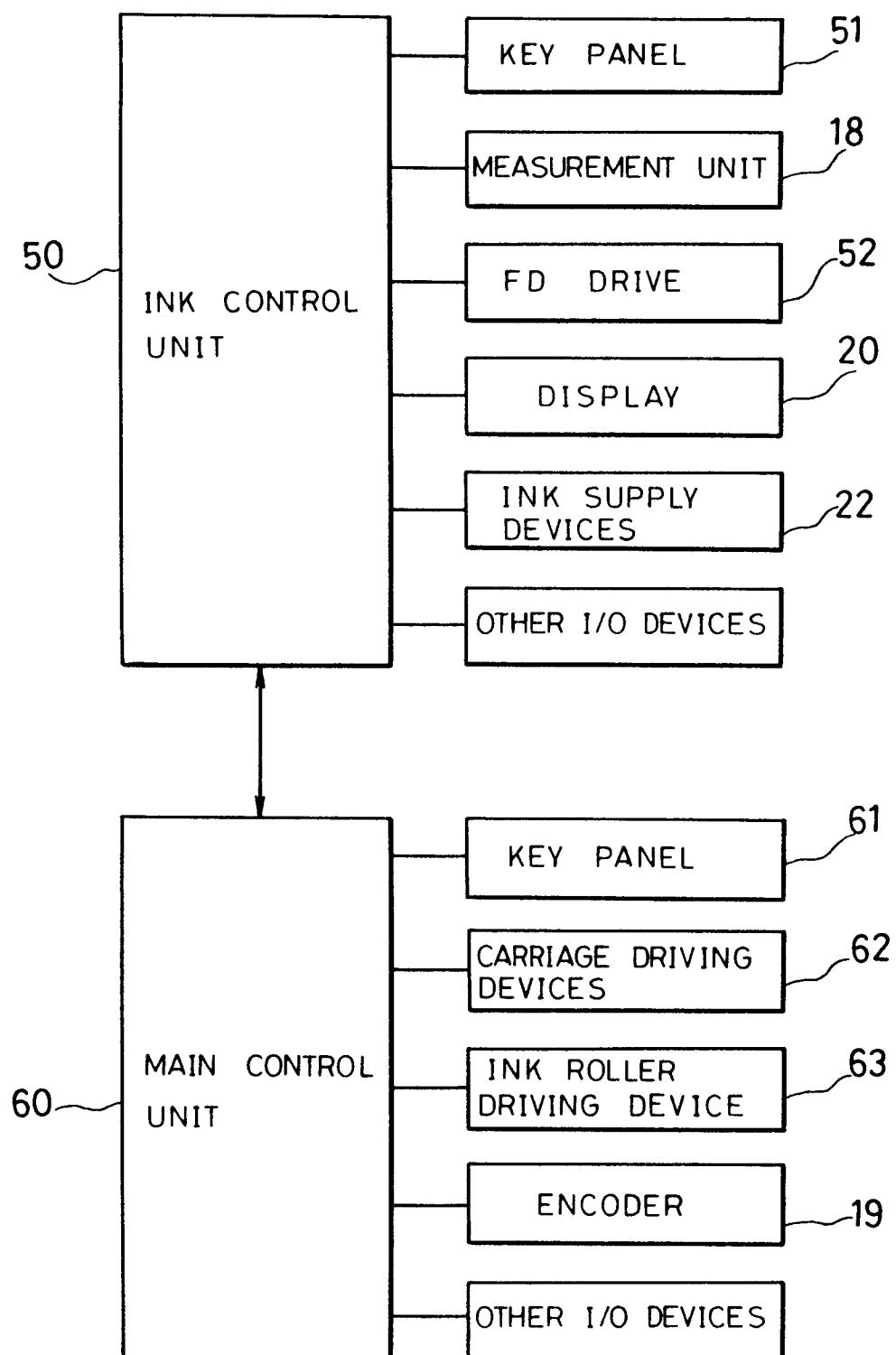


FIG. 11

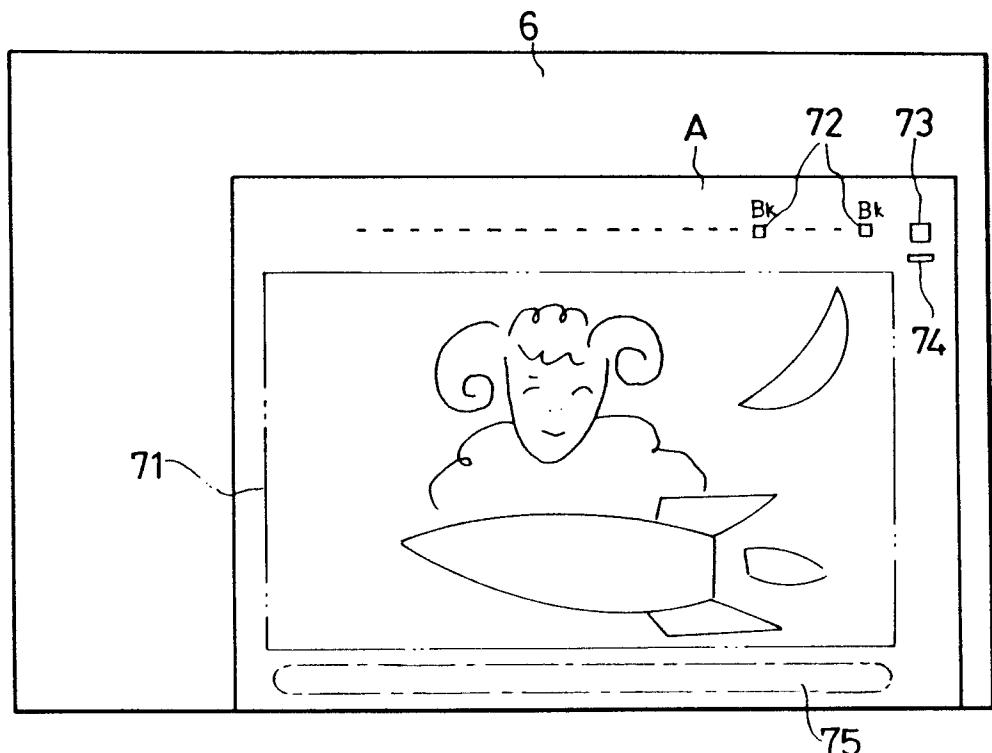


FIG. 12

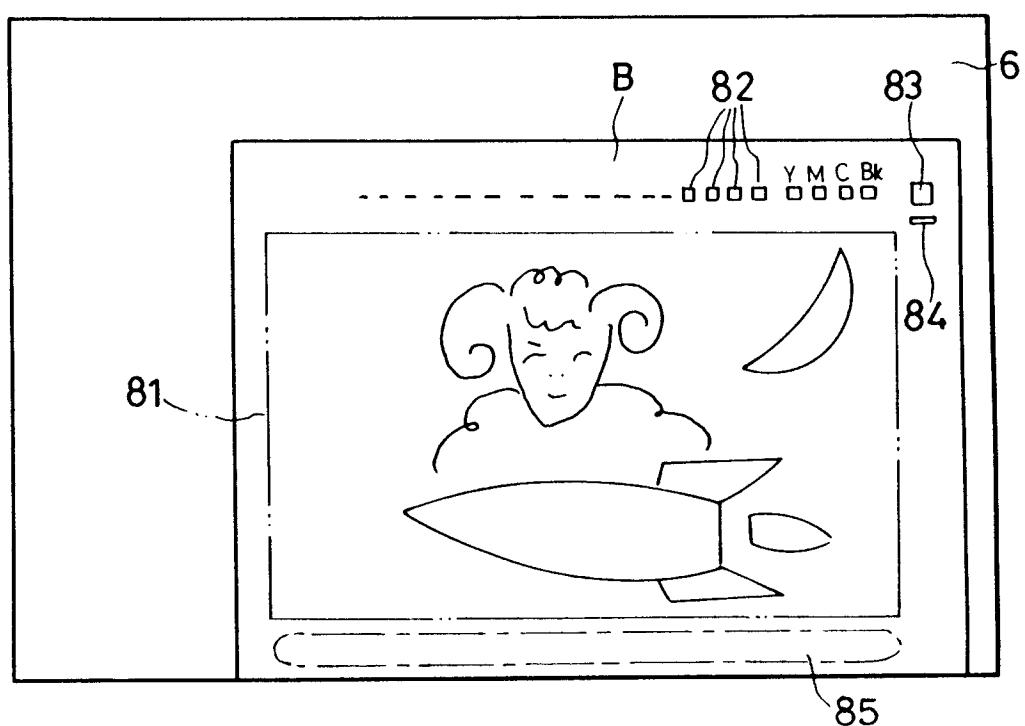


FIG. 13

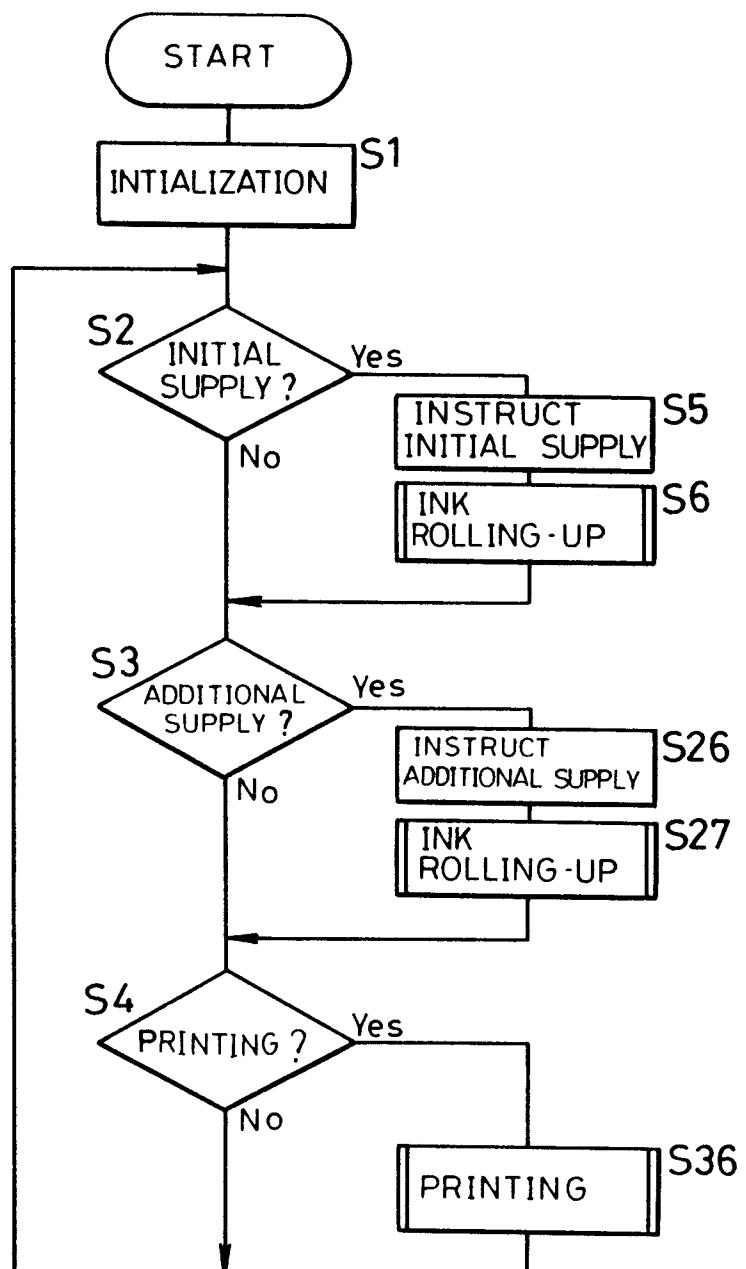


FIG. 14

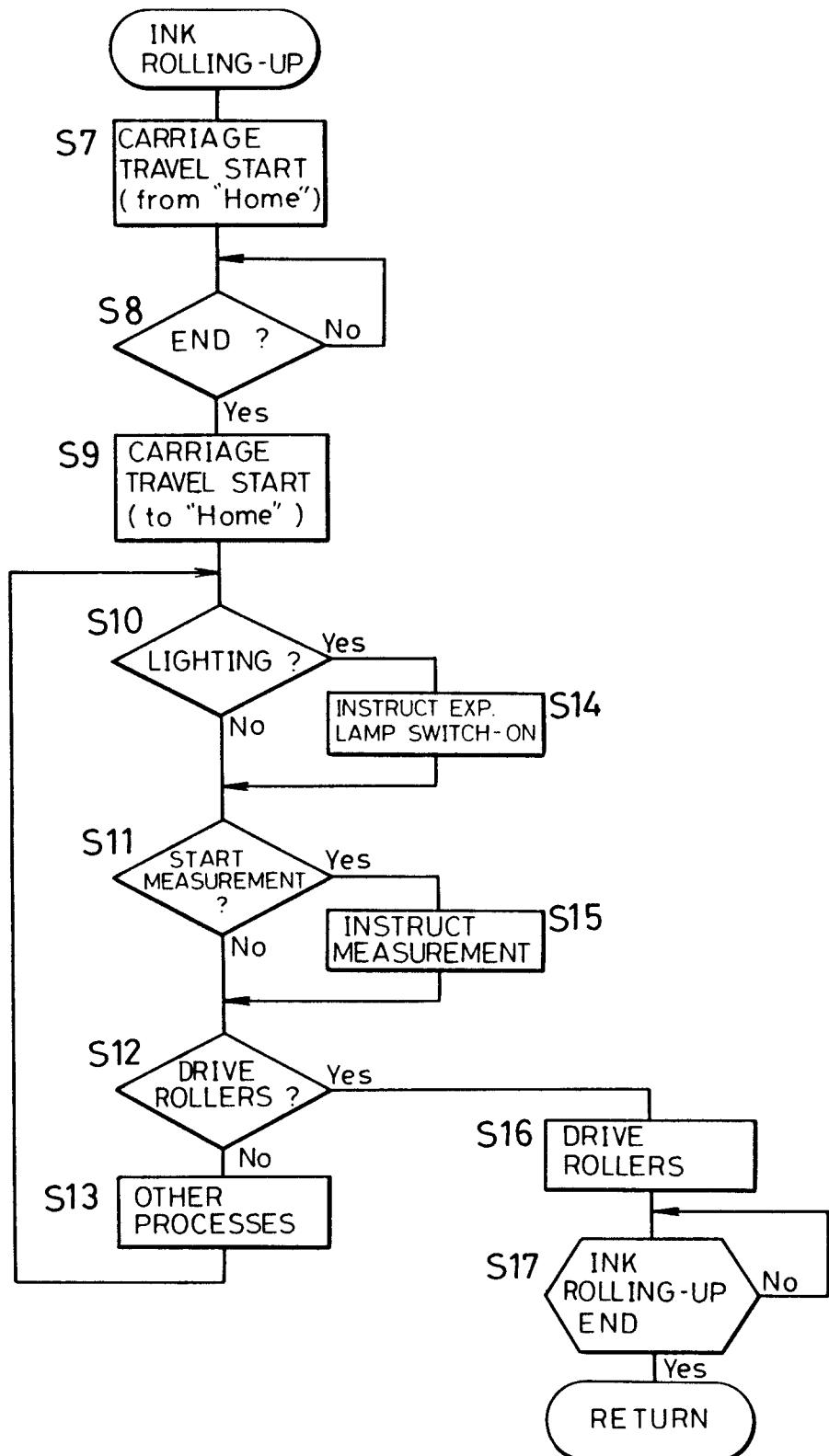


FIG. 15

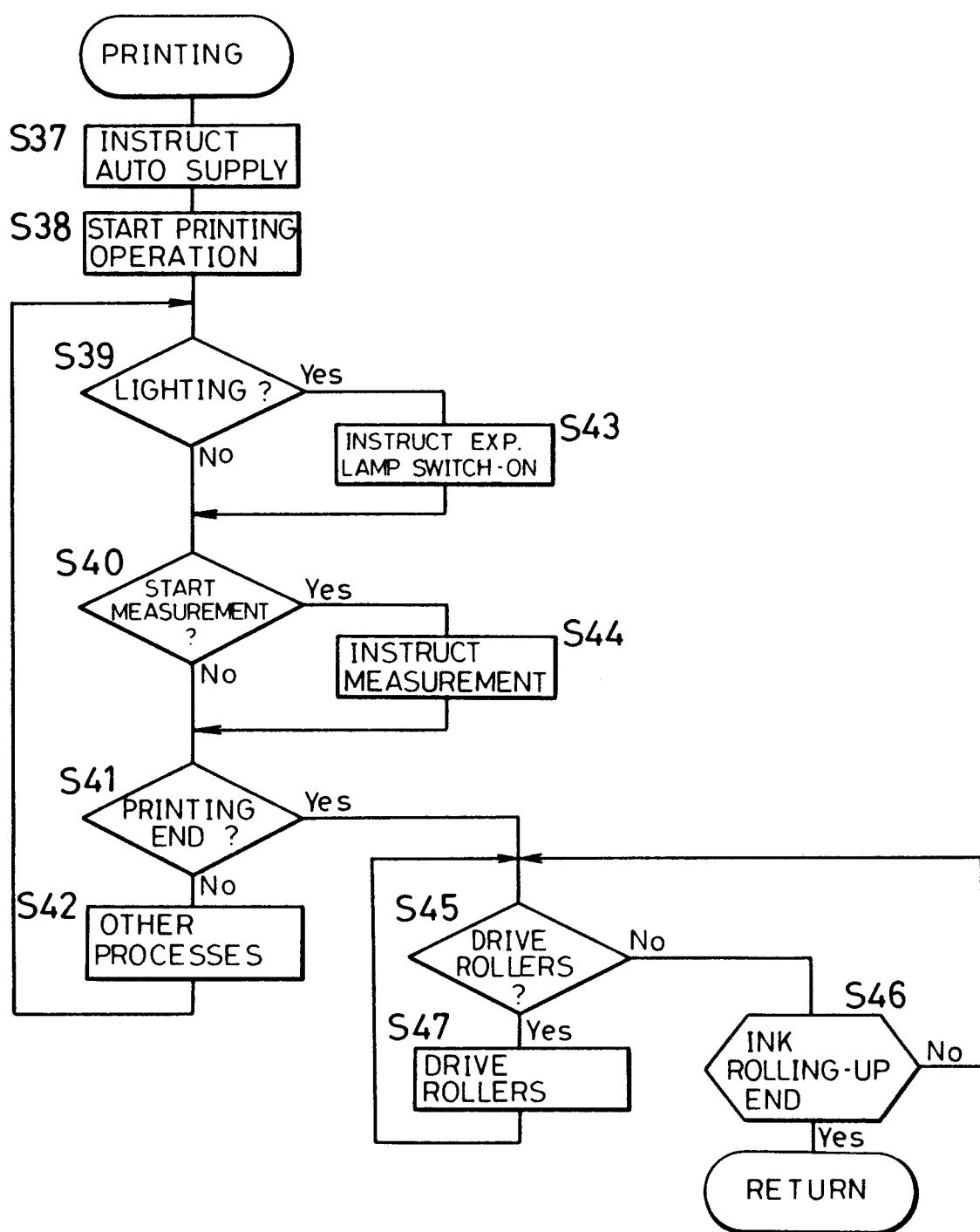


FIG. 16

FIG. 17

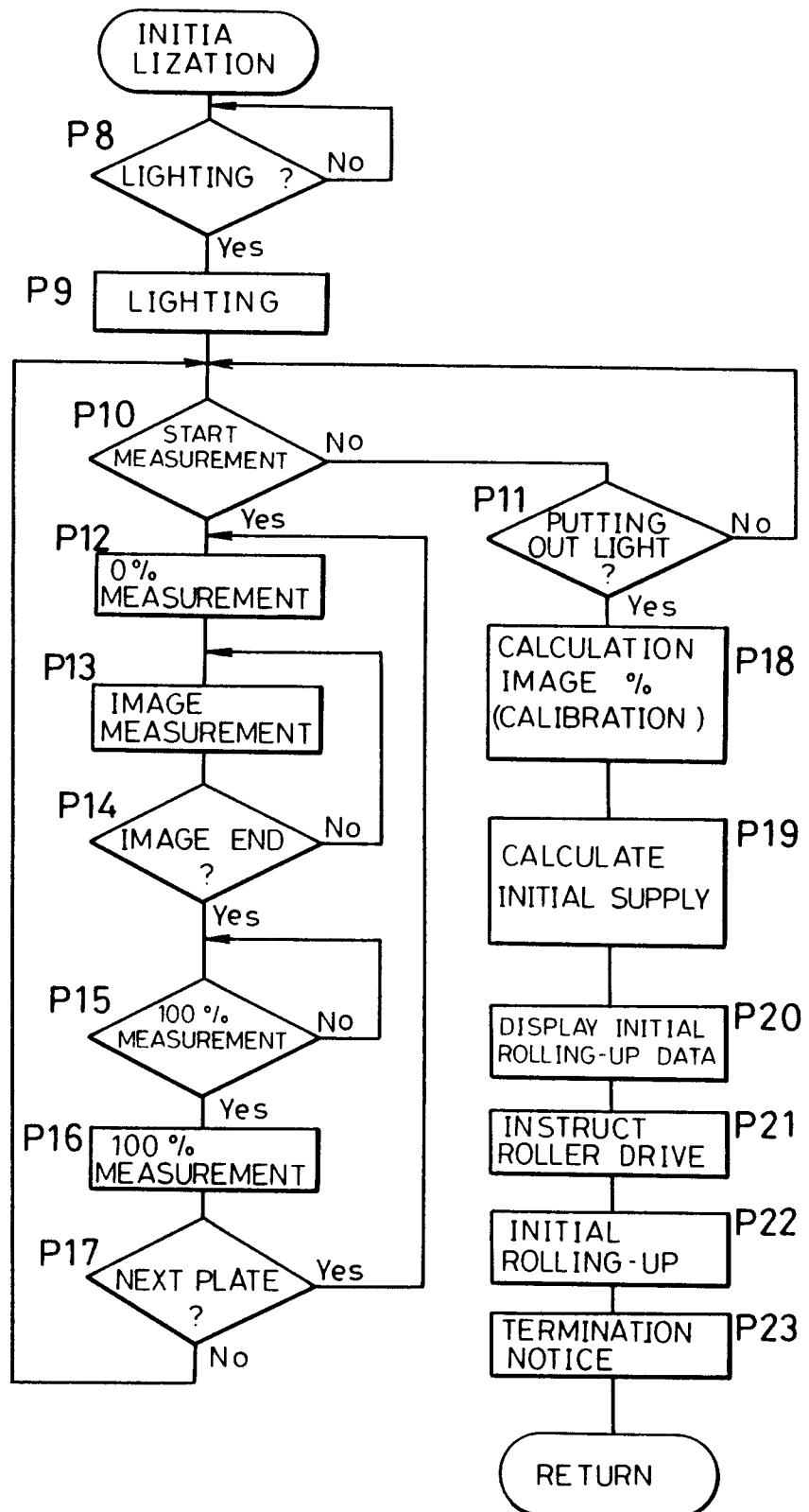


FIG. 18

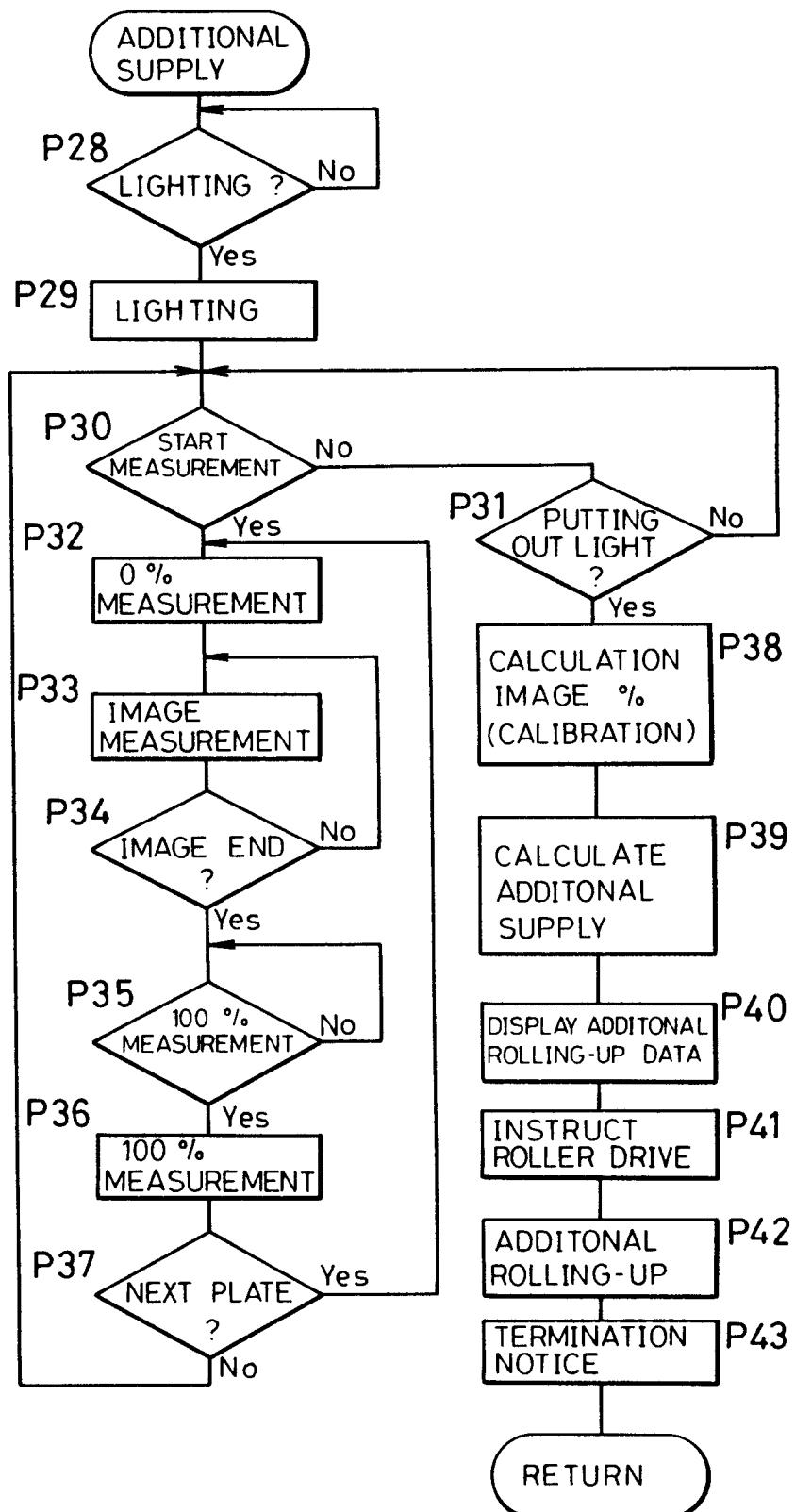
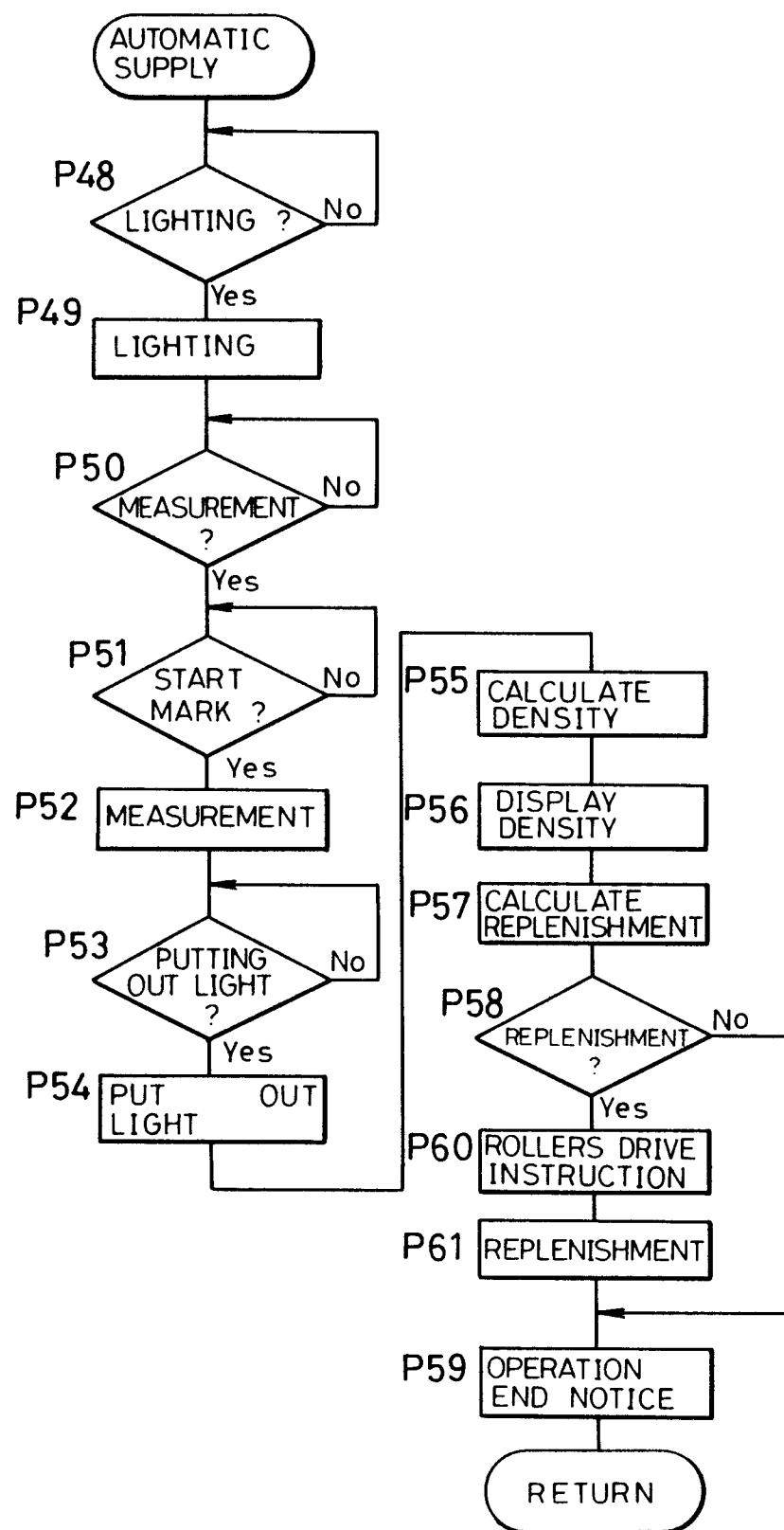



FIG. 19

European Patent
Office

EUROPEAN SEARCH REPORT

Application Number

EP 92 10 8840

DOCUMENTS CONSIDERED TO BE RELEVANT			
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.5)
D, Y	EP-A-0 295 606 (DAINIPPON SCREEN MFG. CO. LTD.) * the whole document *	1-4, 6-10	B41F33/00
A	---	5, 6	B41F31/02
Y	EP-A-0 095 606 (HEIDELBERGER DRUCKMASCHINEN AG) * the whole document *	1-4, 6-10	B41F31/04
A	---	5, 6	
Y	EP-A-0 357 986 (HEIDELBERGER DRUCKMASCHINEN AG) * column 4, line 46 - column 5, line 11; figure 5 *	4	
A	---	5	
Y	PATENT ABSTRACTS OF JAPAN vol. 15, no. 208 (M-1117)28 May 1991 & JP-A-3 057 650 (TOPPAN PRINTING CO. LTD.) 13 March 1991	7	
A	* abstract *		
A	---		
GB-A-2 099 144 (STORAGE TECHNOLOGY CORPORATION)		5	TECHNICAL FIELDS SEARCHED (Int. Cl.5)
* the whole document *			
A	---		
PATENT ABSTRACTS OF JAPAN vol. 14, no. 104 (P-1013)26 February 1990 & JP-A-1 307 875 (OMRON TATEISI ELECTRON CO.) 12 December 1989	7	B41F	
* abstract *			
A	---		
PATENT ABSTRACTS OF JAPAN vol. 10, no. 70 (M-462)(2127) 19 March 1986 & JP-A-60 214 960 (TOPPAN INSATSU K. K.) 28 October 1985			
* abstract *			

The present search report has been drawn up for all claims			
Place of search	Date of completion of the search	Examiner	
THE HAGUE	09 SEPTEMBER 1992	MADSEN P.	
CATEGORY OF CITED DOCUMENTS		T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document	
X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document			