

11) Veröffentlichungsnummer: 0 531 668 A1

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 92112211.5

(51) Int. Cl.5: **B41F** 13/00

② Anmeldetag: 17.07.92

(12)

③ Priorität: 17.08.91 DE 4127321

(43) Veröffentlichungstag der Anmeldung: 17.03.93 Patentblatt 93/11

Benannte Vertragsstaaten:
 CH DE FR GB LI

Anmelder: MAN Roland Druckmaschinen AG Christian-Pless-Strasse 6-30 W-6050 Offenbach/Main(DE)

② Erfinder: Hajek, Josef Bgm.-Ebner-Strasse 10 W-890 Friedberg(DE)

Antrieb für eine Rollen-Rotationsdruckmaschine.

© Bei einem Antrieb für eine Rollen-Rotationsdruckmaschine in Reihen- und Etagenbauweise, bei welchem jede Druckeinheit (1-6) individuell mittels zugeordneten Antriebsmotoren, Kraftabgriffseinheiten (14-19) und Wellen zur Durchführung eines Produktionsdruckes antreibbar und zu einem Verbund kuppelbar sind, ist je einem Druckwerkzylinder (20) je-

der Druckeinheit ein eigener Antriebsmotor (8-13) unmittelbar zugeordnet. Jeder Antriebsmotor ist über je eine Kraftabgriffseinheit an eine Horizontalund/oder Vertikalwelle (21-24) zur Synchronisation der in Reihe angeordneten und/oder der in Etagenbauweise angeordneten Druckeinheiten kuppelbar.

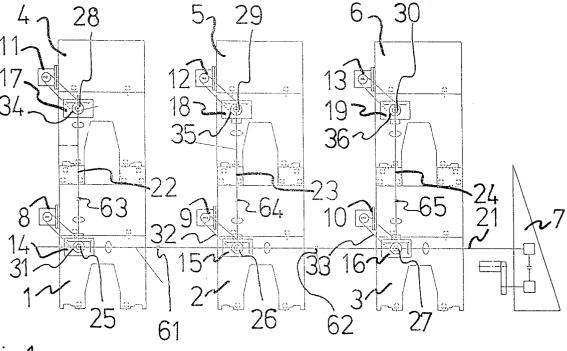


Fig.1

10

15

20

25

30

35

40

50

55

Die Erfindung betrifft einen Antrieb für eine Rollen-Rotationsdruckmaschine in Reihen- und Etagenbauweise, bei welchem jede Druckeinheit individuell mittels zugeordneten Antriebsmotoren, Kraftabgriffseinheiten und Wellen zur Durchführung eines Produktionsdruckes antreibbar und zu einem Verbund kuppelbar sind.

Bei einer gattungsbildenden Rotationnsdruckmaschine wurde bisher allen Druckeinheiten und Zusatzaggregaten eine gemeinsame horizontal liegende Hauptantriebswelle zugeordnet. Sie ist in Lagern gelagert und hat Kraftübertragungsstellen gegenüber jeder Druckeinheit. Jeder Kraftübertragungsstelle ist ein eigener Antriebsmotor zugeordnet. Kupplungen mit einer Stellung ermöglichen ein wahlweises Ein- und Ausrücken der einzelnen Druckeinheiten auf die Antriebswelle, so daß die einzelnen Druckeinheiten unabhängig voneinander antreibbar sind, um an abgeschalteten Druckeinheiten Wartungs- und Zurichtarbeiten durchführen zu können. Üblicherweise erfolgt die Kraftübertragung der Antriebsmotoren auf die Hauptantriebswelle entweder mittels Zahnräder, Zahnketten oder Riemen, und von dort über eine Vertikal- und weiteren Horizontalwellen durch Kegelräder auf die Druckeinheiten. Die Hauptantriebswelle dient gleichzeitig als Synchronisierungswelle der gekuppelten Druckeinheiten.

Zum Beispiel zeigt die DE-PS 975 145 einen Antrieb für eine Rollen-Rotationsdruckmaschine in Reihenanordnung, bei welchem die Druckeinheiten durch eigene Elektromotoren, die auf mehreren Hauptantriebswellen angeordnet sind, mittels an die jeweilige Hauptantriebswelle kuppelbaren Vertikalwellen angetrieben werden. Diese Einrichtung ist dazu gedacht, die Druckwerke einschließlich aller Hilfseinrichtungen wahlweise stillsetzen zu können, während die Farbwerke weiterlaufen. Diese Einrichtung ist für die Anwendung bei Druckmaschinen in Etagenbauweise zu aufwendig.

Die DE-PS 27 58 900 zeigt ebenfalls einen Antrieb einer Rollen-Rotationsdruckmaschine in Reihenbauweise, bei welchem jeder Druckeinheit ein eigener Antriebsmotor zugeordnet ist, der über eine Kupplung an eine horizontale Hauptantriebswelle ankuppelbar ist.

Da jedoch bei einem derartigen Wellenantrieb mit Horizontal- und Vertikalwellen, insbesondere bei Rollen-Rotationsdruckmaschinen in Etagenbauweise eine beachtliche Anzahl von Antriebsrädern, Zwischenrädern in Form von Kegelrädern und daraus resultierende Zahnspiele anfällt, ist eine Registerhaltigkeit innerhalb der gesamten Maschine aufgrund der auftretenden Passerfehler nur sehr schwer sicherzustellen.

Davon ausgehend ist es die Aufgabe der Erfindung einen Antrieb für eine Rollen-Rotationsdruckmaschine zu schaffen, bei welchem die Druckein-

heiten von Maschinen sowohl in Reihen- als auch in Etagenbauweise individuell antreibbar sind und dennoch die Anzahl der Antriebsräder und somit der Zahnspiele verringert ist.

Gelöst wird diese Aufgabe gemäß der Erfindung durch die im kennzeichnenden Teil des Patentanspruchs 1 angegebenen Merkmale.

Da die einzelnen Druckeinheiten zu beliebigen Gruppen gekuppelt werden können, sind die vielfältigsten Produktionsmöglichkeiten gegeben. Die mit eigenem Antriebsmotor und Kraftabgriffseinheit ausgestatteten Druckeinheiten bilden somit Bausteine eines modularen Systems, das mittels Horizontal - und/oder Vertikalwellen synchronisierbar ist. Mit der direkten Zuordnung der Antriebsmotoren und den integrierten Vertikalwellen bei Druckeinheiten in Etagenbauweise sind keine außerhalb der Druckeinheiten liegende Kegelradgetriebe einschließlich einer Befestigungskonsole erforderlich.

Die Erfindung wird nanchstehend anhand der Zeichnung beispielsweise erläutert. Es zeigt schematisch

Fig. 1	eine Seitenansicht einer Rollen-
	Rotationsdruckmaschine in Eta-
	genbauseise gemäß der Erfin-
	dung;
Fig. 2	eine Seitenansicht einer weite-

Fig. 2 eine Seitenansicht einer weiteren Rollen-Rotationsdruckmaschine gemäß der Erfindung;

Fig. 3 und 4 eine Seitenansicht der Rollen-Rotationsdruckmaschine gemäß Fig. 2 mit möglichen Papierführungen;

Fig. 5 eine Rollen-Rotationsdruckmaschine in Reihenbauweise gemäß der Erfindung;

Fig. 6 eine Rollen-Rotationsdruckmaschine in Reihenbauweise mit einem paarweisen Antrieb der Druckeinheiten:

Fig. 7 den Antrieb eines Druckwerkzylinders mittels eines Antriebsmotors.

Fig. 1 zeigt eine vollständige Druckmaschine mit sechs Druckeinheiten 1 bis 6, wobei jeweils zwei Druckeinheiten 1 und 4, 2 und 5, 3 und 6 übereinander in Etagenbauweise angeordnet sind und einem Falzapparat 7. Jede Druckeinheit 1 bis 6 weist einen eigenen Antriebsmotor 8 bis 13 und eine Kraftabgriffseinheit 14 bis 19 auf.

Entlang den Druckeinheiten 1, 2, 3 in der ersten Etage ist eine Horizontalwelle 21 angeordnet. Die übereinander angeordneten Druckeinheiten 1 und 4, 2 und 5, 3 und 6 sind jeweils mittels einer Vertikalwelle 22, 23, 24 verbindbar. Jeweils ein Antriebsrad 25 bis 30 für den anzutreibenden Druckwerkzylinder 20 der Druckeinheiten 1 bis 6, das sich in der jeweiligen Kraftabgriffseinheit 14 bis

10

25

35

19 befindet, wirkt über einen Antriebriemen mit dem jeweiligen Antriebsmotor 8 bis 13 zusammen. Jedes Antriebsrad 25 bis 30 ist innerhalb der jeweiligen Kraftabgriffseinheit 14 bis 19 in bekannter Weise, z.B. mittels Klauen-Kupplungen mit axialen Mitnehmern mit Schaltkupplung, wie sie im allgemeinen Maschinenbau verwendet werden, an eine Horizontal- 21 und/oder yertikalwelle 22 ankuppelbar. Jeweils ein Druckwerkzylinder 20 einer Druckeinheit 1 bis 6 ist mittels je eines Antriebsmotors 8 bis 13 über die Kraftabgriffseinheiten 14 bis 19, an die der Druckwerkzylinder 20 in bekannter Weise ankuppelbar ist, antreibbar.

Entlang den Druckeinheiten 1, 2, 3 in der ersten Etage ist eine Horizontalwelle 21 angeordnet. Die übereinander angeordneten Druckeinheiten 1 und 4, 2 und 5, 3 und 6 sind jeweils mittels einer Vertikalwelle 22, 23, 24 verbindbar. Jeweils ein Antriebsrad 25 bis 30 für den anzutreibenden Druckwerkzylinder 20 der Druckeinheiten 1 bis 6, das sich in der jeweiligen Kraftabgriffseinheit 14 bis 19 befindet, wirkt über einen Antriebriemen mit dem jeweiligen Antriebsmotor 8 bis 13 zusammen. Jedes Antriebsrad 25 bis 30 ist innerhalb der jeweiligen Kraftabgriffseinheit 14 bis 19 in bekannter Weise, z.B. mittels Klauen-Kupplungen mit axialen Mitnehmern mit Schaltkupplung, wie sie im allgemeinen Maschinenbau verwendet werden, an eine Horizontal- 21 und/oder Vertikalwelle 22 ankuppel-

Die einzelnen Druckeinheiten 1 bis 6 haben zahlreiche übliche Einrichtungen, wie Farb- und Feuchtwerk, ihr Betrieb ist bekannt und wird daher nicht beschrieben. Ihr Antrieb als auch der der anderen Druckwerkzylinder erfolgt in bekannter Weise mittels eines Zahnradzugs, der den Antrieb von dem hauptangetriebenen Druckwerkzylinder 20 ableitet.

Die Wellen 21, 22, 23, 24 haben die Funktion von Synchronwellen. Alle Wellen 21, 22, 23, 24 sind in der dargetellten Weise mittels pneumatisch oder elektromechanisch betätigbaren Kupplungen 61 bis 65 zwischen den einzelnen Druckeinheiten 1 bis 6 teilbar.

Dieser so gestaltete, synchronisierbare Antrieb gestattet eine Zurichtung und registerhaltige Positionierung jeder beliebigen Druckeinheit 1 bis 6, unabhängig vom übrigen Maschinenverbund, ohne die Synchronisationsverbindung z.B. zum Falzapparat 7 zu unterbrechen.

Fig. 2 zeigt eine Variante der Ausführungsform gemäß Fig. 1. Die Maschine wird mit einem weiteren Falzapparat 37 und einer weiteren horizontalen Synchronwelle 38 für die Druckeinheiten 4, 5, 6 in der zweiten Etage ausgestattet. Diese Horizontalwelle 38 ist in Teilstücke 39 bis 41, die jeweils eine Druckeinheit 4, 5, 6 mit ihrer benachbarten verbindet, unterteilt. Die Teilstücke 39, 40, 41 sind in den

Kraftabgriffseinheiten 17, 18, 19, die als Kegelradgetriebe ausgebildet sind, in bekannter Weise miteinander verbindbar. Die Horizontalwelle 38 ist nochmals zwischen den Druckeinheiten 4, 5, 6 mittels pneumatisch oder elektromechanisch betätigbarer Kupplungen 66, 67 teilbar und weist an diesen Stellen Zwischengetriebe 42, 43 in Form von Kegelradgetrieben auf, die die Aufgabe haben, den Drehsinn innerhalb eines Teilstückes 39, 40 der Welle 38 zu ändern.

Diese weitergebildete Ausführung des erfindungsgemäßen Antriebs ermöglicht ein Vertikalsplitting, also eine diagonale Papierführung zwischen den Druckeinheiten 1 bis 6 der Druckmaschine in Etagenbauweise gleichzeitig zu den beiden Falzapparaten 7, 37 hin, wie es in Fig. 3 und 4 gezeigt ist. In Fig. 3 läuft eine erste Papierbahn 68 zur Druckeinheit 1, von dort zum Falzapparat 37. Eine zweite Papierbahn läuft zur gleichen Zeit vertikal zur Druckeinheit 4, von dort zum Falzapparat 7. Weitere Papierbahnen 70, 71 laufen in üblicher Weise vertikal von der Druckeinheit 2 über die Druckeinheit 5 bzw. von der Druckeinheit 3 über die Druckeinheit 6 zum Falzapparat 7.

Einen ganz anderen Produktionsverlauf zeigt Fig. 4. Die erste Papierbahn 68 läuft jetzt vertikal von der Druckeinheit 1 über die Druckeinheit 4 zum Falzapparat 37. Die zweite Papierbahn 69 läuft nun über die Druckeinheit 5 zum Falzapparat 37. Die Papierbahn 70 läuft diagonal von der Druckeinheit 2 über die Druckeinheit 6 zum Falzapparat 7, während die Papierbahn 71 vertikal von der Druckeinheit 3 über die Druckeinheit 6 zum Falzapparat 7 läuft.

Bei einem derartigen Produktionsverlauf ist eine Änderung des Drehsinns der Teilstücke 39 bzw. 40 der Synchronisierungswelle 38 mittels der Zwischengetriebe 42 bzw. 43 erforderlich.

Es ist selbstredend, daß mit einem erfindungsgemäßen Antrieb für eine Rollen-Rotationsdruckmaschine in der Etagenbauweise auch eine Maschine in Reihenbauweise wie in Fig. 5 gezeigt ist, ausführbar ist. Vier Druckeinheiten 44 bis 47 und ein Falzapparat 48 sind mittels je eines Antriebsmotors 49 bis 52 und je einer Kraftabgriffseinheit 53 bis 56, über die die Antriebsmotoren 49 bis 52 auf den jeweiligen Druckwerkzylinder 20 wirken, über eine Horizontalwelle 57 in der schon beschriebenen Weise zu einem Maschinenverband kuppelbar. Der angetriebene Druckwerkzylinder 20 kann der Plattenzylinder sowohl als auch der Gummituchzylinder sein.

Fig. 6 zeigt, daß außer dem Einzelantrieb auch ein paarweiser Antrieb der Druckeinheiten 44 bis 47 denkbar ist. Nur die Druckeinheiten 45 und 47 weisen jeweils einen eigenen Antriebsmotor 50 und 52 auf, bei denen eine ausreichende Kapazität vorgesehen ist, um mehrere Druckeinheiten 44, 45

55

5

10

15

20

25

30

35

40

45

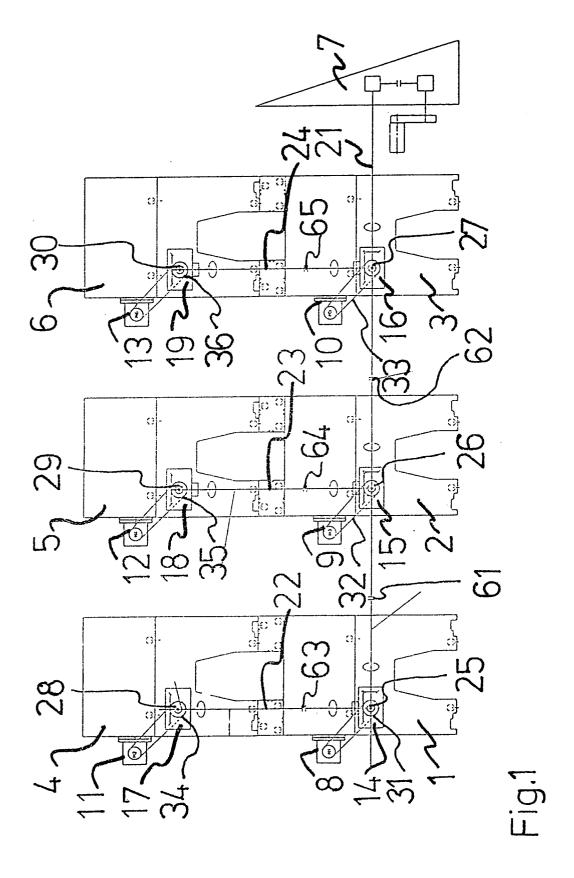
50

55

und 46, 47 gleichzeitig anzutreiben.

Fig. 7 zeigt stellvertretend für alle Druckeinheiten 1 bis 6 einen Antriebsmotor, z.B. 8, der mittels eines Antriebriemens 31 auf das Antriebsrad 25 eines Druckwerkzylinders 20 wirkt, wobei die Kraft-übertragung des Antriebsrads 25 mittels eines auf einer gemeinsamen Welle sitzenden Zahnrades, das mit einem auf der Welle 59 des Druckwerkzylinders 20 sitzenden Zahnrades 60 in Eingriff steht, erfolgt.

Jede Druckeinheit 1 bis 6 ist über eine pneumatische oder elektromagnetische Eindeutigkeitskupplung 72 über eine der Synchronwellen 21 bis 24, 38 zu einem Maschinenverband manuell oder automatisch mittels Positioniereinrichtungen 73, 74 in bekannter Weise registerhaltig kuppelbar. Die Kupplung 72 kann auch als Überlastschutz dienen.


Mittels der direkten Zuordnung der Antriebsmotoren 8 bis 13 zu den Druckeinheiten 1 bis 6 und den integrierten Vertikalwellen 22, 23, 24 bei einer Rollen-Rotationsdruckmaschine in Etagenbauweise sind keine außerhalb der Druckeinheiten 1 bis 6 liegenden Kegelradgetriebe und Zwischenräder erforderlich, somit wurde eine erhebliche Verringerung von Passerfehlern erreicht.

Patentansprüche

- 1. Antrieb für eine Rollen-Rotationsdruckmaschine in Reihen- und Etagenbauweise, bei welchem jede Druckeinheit individuell mittels zugeordneten Antriebsmotoren, Kraftabgriffseinheiten und Wellen zur Durchführung eines Produktionsdruckes antreibbar und zu einem Verbund kuppelbar sind, dadurch gekennzeichnet, daß je einem Druckwerkzylinder (20) jeder Druckeinheit (1 bis 6) ein eigener Antriebsmotor (8 bis 13) unmittelbar zugeorndet ist, der über je eine Kraftabgriffseinheit (14 bis 19) an eine Horizontal- (21 bzw. 38) und/oder Vertikalwelle (22, 23, 24) zur Synchronisation der in Reihe angeordneten und/oder der in Etagenbauweise angeordneten Druckeinheiten (1 bis 6) kuppelbar ist.
- 2. Antrieb nach Anspruch 1, dadurch gekennzeichnet, daß die Kraftabgriffseinheiten (14 bis 19) als Kegelradgetriebe ausgebildet sind, in der Weise, daß auf mindestens je ein kuppelbares Kegelzahnrad einer Horizontal- (21 bzw. 38) und/oder auf je ein kuppelbares Kegelzahrad einer Vertikalwelle (22, 23, 24) Kraft mittels vom jeweiligen Antriebsmotor (8 bis 13) antreibbaren Antriebszahnrades (25 bis 30) des jeweiligen Druckwerkzylinders (20) übertragbar ist.

- Antrieb nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß der Druckwerkzylinder (20), dem der jeweilige Antriebsmotor (8 bis 13) unmittelbar zugeordnet ist, der Plattenzylinder ist.
- 4. Antrieb nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet daß, der Druckwerkzylinder (20), eben der jeweilige Antriebsmotor (8 bis 13) unmittelbar zugeordnet ist, der Gummituchzylinder ist.
 - 5. Antrieb nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß sowohl die Horizontalwellen (21, 38, 57) als auch die Vertikalwellen (22, 23, 24) mittels Kupplungen (61 bis 67) teilbar sind.
- 6. Antrieb nach Anspruch 1, dadurch gekennzeichnet, daß jede Druckeinheit (1 bis 6, 44 bis 47) einen Antriebsmotor (8 bis 13, 49 bis 52) ausreichender Kapazität versehen ist, um mehrere Druckeinheiten anzutreiben.
- 7. Antrieb nach Anspruch 2, dadurch gekennzeichnet, daß die Antriebsmotoren (8 bis 13, 49 bis 52) auf die Antriebsräder (25 bis 30) der anzutreibenden Druckwerkzylinder (20) mittels jeweils eines Antriebriemens (31 bis 36) wirkt.

4

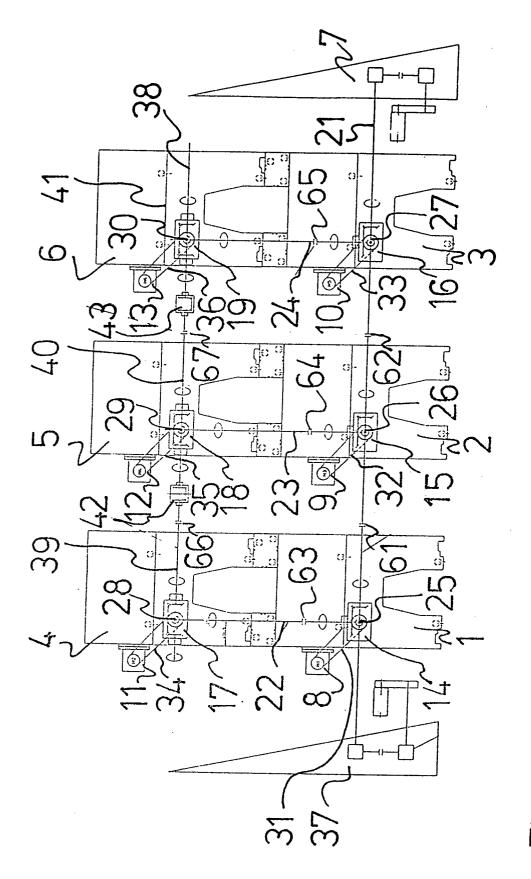
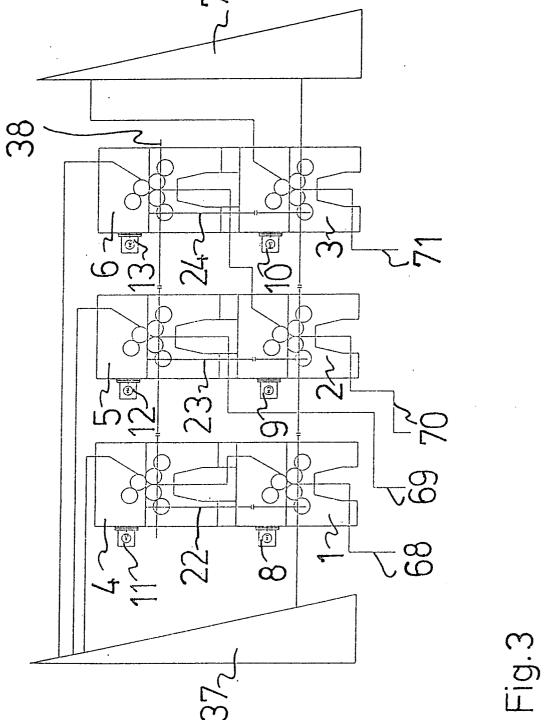
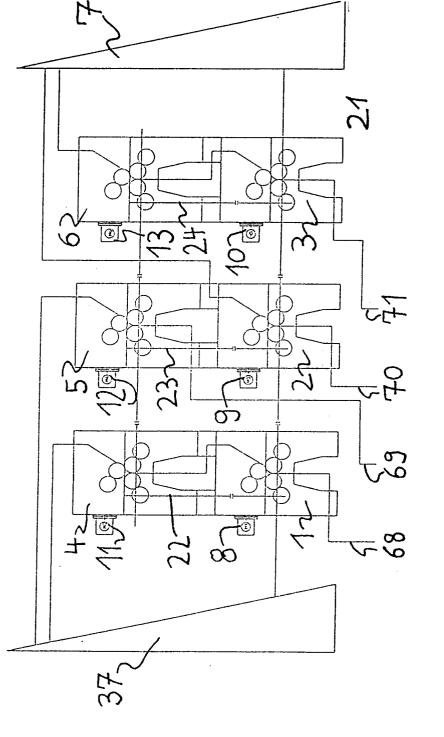




Fig.2

T.O.

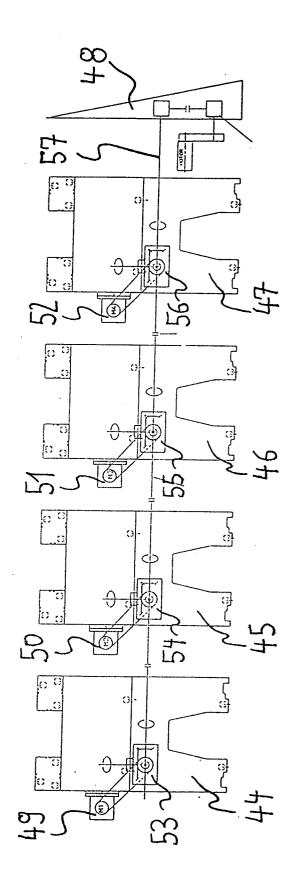
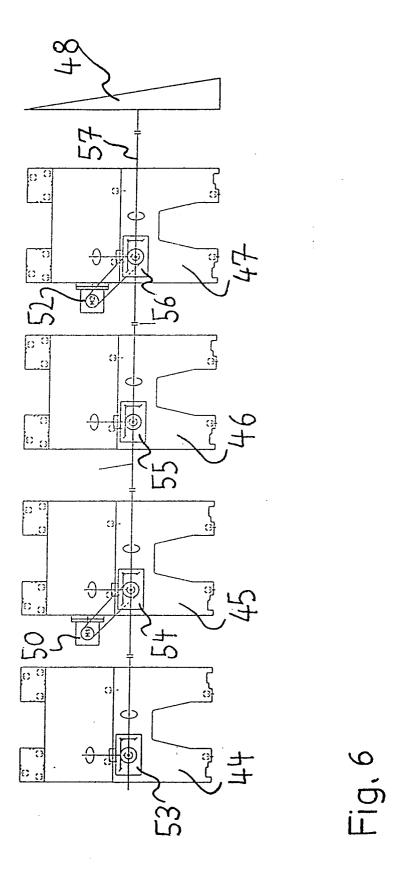
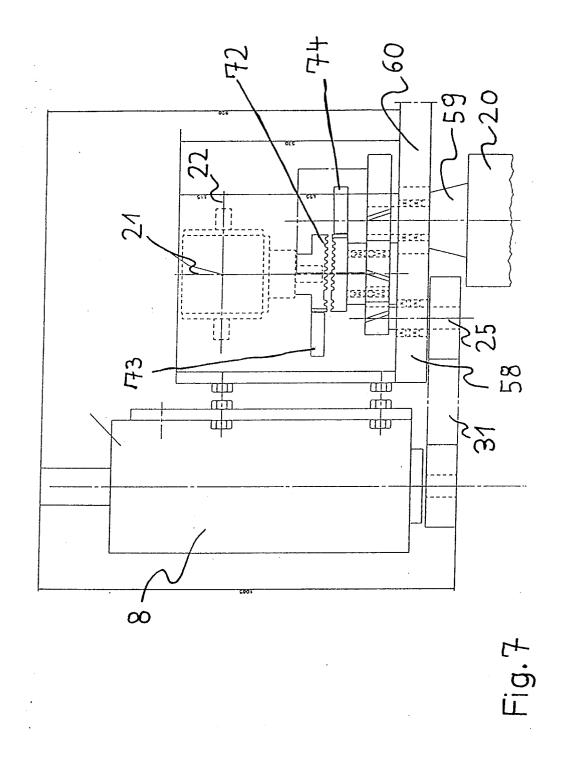




Fig. 5

ΕP 92 11 2211

EINSCHLÄGIGE DOKUMENTE					
Kategorie	rie Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile			KLASSIFIKATION DER ANMELDUNG (Int. Cl.5)	
X	DE-C-594 086 (VOMAC * das ganze Dokumen		1-7	B41F13/00	
X	DEUTSCHER DRUCKER Bd. 26, Nr. 30, 27 OSTFILDERN DE Seiten W5 - W15 HELMUT SUSENBETH 'N werden immer komple Automatisierunds-Sy * Abbildung 1 *	Rotationsleitstände exere Steuerungs- und	1		
X	US-A-2 053 979 (I. * das ganze Dokumer		1-7		
A	US-A-2 979 646 (W. * das ganze Dokumer		1-7		
A	US-A-2 423 028 (A. * das ganze Dokumer		1-7		
A	US-A-3 221 651 (E. * das ganze Dokumer	TAGLIASACCHI)	1-7	RECHERCHIERTE SACHGEBIETE (Int. Cl.5) B41F	
A	FR-A-787 464 (R. HC * das ganze Dokumer		1-7		
A	DE-C-618 892 (VOMAG * das ganze Dokumer		1-7		
Der vo		de für alle Patentansprüche erstellt			
r	Recherchement	Abechlufdatum der Recherche 16 DE7EMDED 1002		MEULEMANS J.P.	
Ĺ	DEN HAAG	16 DEZEMBER 1992	-	MEULEMANS J.P.	

KATEGORIE DER GENANNTEN DOKUMENTE

- X: von besonderer Bedeutung allein betrachtet
 Y: von besonderer Bedeutung in Verbindung mit einer anderen Verbffentlichung derselben Kategorie
 A: technologischer Hintergrund
 O: nichtschriftliche Offenbarung
 P: Zwischenliteratur

- T: der Erfindung zugrunde liegende Theorien oder Grundsätze E: älteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D: in der Anmeldung angeführtes Dokument L: aus andern Gründen angeführtes Dokument

- & : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument