

(1) Publication number:

0 539 736 A1

(2) EUROPEAN PATENT APPLICATION

(21) Application number: **92116589.0**

(51) Int. Cl.5: **F25D** 17/06

② Date of filing: 29.09.92

Priority: 04.10.91 IT MI912645

Date of publication of application:05.05.93 Bulletin 93/18

② Designated Contracting States:
DE ES FR GB

Applicant: WHIRLPOOL EUROPE B.V. Luchthavenweg 34
NL-5507 SK Veldhoven(NL)

2 Inventor: Rivis, Enzo, c/o Whirlpool Italia s.r.l.

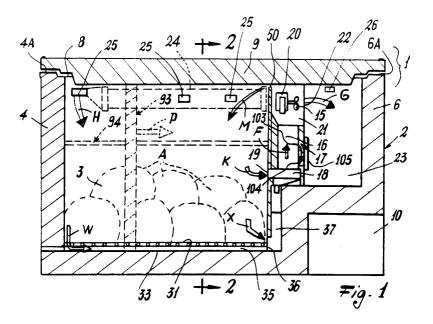
Viale G. Borghi 27

I-21025 Comerio (VA)(IT)

Inventor: Germi, Franco, c/o Whirlpool Italia

s.r.l.

Viale G. Borghi 27


I-21025 Comerio (VA)(IT)

Representative: Melio, Jan Dirk
Whirlpool Italia S.r.l., Viale Guido Borghi 27
I-21025 Comerio (VA) (IT)

- (S) Chest freezer or the like, comprising a freezing compartment in which a forced air circulation is provided.
- The prising a housing (2) containing a freezing and preservation compartment (3), bounded by side walls (4, 5, 6, 7) and having a base wall or base (33), and able to receive food items (A; A1, A2) to be preserved, at least one closure element (9) being positioned at the upper loading aperture (8) of the compartment (3), usual seal elements being asso –

ciated with said closure element (9) and/or the upper end (4A, 5A, 6A, 7A) of the walls (4, 5, 6, 7) of said housing (2).

A forced air circulation is provided within the compartment (3) to improve the preservation of the food items (A; A1, A2) and prevent frost forming on them.

15

25

40

45

50

55

This invention relates to a chest freezer or the like of the type comprising a housing containing a freezing and preservation compartment bounded by side walls and having a base wall or base, and able to receive food items to be preserved, at least one closure element being positioned at the upper loading aperture of said compartment, usual seal elements being associated with said closure element and/or the upper end of the walls of said housing. Freezers of the aforesaid type have been known for some time. The food items are placed in them generally one on another within the freezing compartment so as to occupy as much as possible of the entire space of said compartment.

Although on the one hand this allows a con-siderable degree of loading of the freezer, on the other hand it results in at least partial obstruction of all passages between the food items and hence the impossibility of even a minimum level of air cir-culation between them. Consequently, frost forms on the food items, the formed ice possibly "welding" a food item to the adjacent one, with obvious drawbacks.

In addition the ice which forms in the freezing compartment can make it difficult to extract the food items from the freezing compartment and can affect their proper preservation.

An object of the present invention is therefore to provide a freezer of the stated type in which ice does not form between the food items and between these latter and the walls bounding the freezing compartment.

A further object is to provide a freezer of the stated type in which the formation of frost on the food items can be prevented.

A further object is to provide a freezer of the stated type in which the food items can be stored in the best possible manner without limiting the capacity of the freezing compartment.

A further object is to provide a freezer of the stated type which is of simple construction, reliable and of simple use.

A further object is to provide a freezer in which at least small quantities of food can be frozen rapidly.

A further object is to provide a freezer in which the freezing compartment can be reduced in size in order to use only a part of its useful volume when the quantity of food items to be frozen is small, hence reducing the operating cost of the freezer.

These and further objects which will be ap – parent to the expert of the art are attained by a freezer of the stated type,

characterised by providing a forced air circulation within the freezing compartment, said freezer being provided for this purpose with means for directing cold air into feed ducts provided within the freezer housing, said ducts opening at the surface of the walls bounding the freezing compartment to enable the forced air to flow into this latter, there being provided at least one return duct through which the forced air returns to the means for its circulation.

The present invention will be more apparent from the accompanying drawing, which is provided by way of non – limiting example and in which:

Figure 1 is a cross-section through a freezer constructed in accordance with the invention;

Figure 2 is a section on the line 2-2 of Figure 1.

Figure 3 is an enlarged detail of a different embodiment of the freezer of Figure 1;

Figure 4 is a cross-section through a further embodiment of the invention;

Figure 5 is an enlarged view of a part of the freezer of Figure 4;

Figure 6 is a section on the line 6-6 of Figure 4; and

Figure 7 is an enlarged detailed view of the freezer of Figure 1.

In Figures 1 to 3, a chest freezer is indicated overall by the reference numeral 1 and comprises a housing 2 containing a freezing and preservation compartment 3 bounded by side walls 4, 5, 6, 7; these latter define a loading aperture on which there is a usual closure element 9. The closure element 9 and/or the free ends 4A. 5A, 6A and 7A of said side walls 4, 5, 6 and 7 comprise usual seal elements or gaskets (not shown) for ensuring the necessary air – tightness within the compartment 3.

The housing 2 also comprises a seat 10 for a usual motor – compressor unit (not shown) forming part of the usual refrigeration circuit of the freezer 1, said circuit comprising an evaporator unit 11.

According to the invention, a forced air cir-culation is provided within the freezing compart-ment 3. This enables the food items A contained in said compartment to be better preserved and pre-vents the formation of frost thereon.

To achieve this, a fan 15 is provided in the compartment 3 to draw air from a duct 16 con – tained within a wall 17 bounding said compartment 3 on one side and on which the evaporator unit 11 is present. The duct 16 opens into a channel 18 which opens into an outlet 19 provided in said wall, said outlet connecting the channel 18 to said compartment 3.

The fan 15 is positioned, together with its motor 20, in a seat 21 which opens on one side 22 into a cavity 23 separated from the compartment 3 by the wall 17.

The cavity 23 can also act as a fast freezing compartment, and can be closed by its own upper closure element (not shown) analogous to said element 9, which can be separated from it. The extent of communication between the seat 21 and

the cavity 23 can be varied by any known valve means, if this cavity is not to be used for fast freezing.

3

The fast freezing cavity or compartment 23 communicates with the compartment 3 via feed ducts 24 provided within the freezer housing 2 (for example embedded in or associated with it) and opening via outlets or apertures 25 and 26 re-spectively into the compartment 3 and into the fast freezing compartment 23 at the upper ends of their bounding walls.

Specifically, at least the outlets or apertures 25 can be of the always open type (such as those of Figures 1 and 2) or can be throttled (manually or automatically by known actuators) by a panel 28 slidable on fixed guides 29 and positioned at a respective aperture 25; alternatively, the freezer 1 can comprise both throttling apertures 25 and al—ways open apertures (as in Figure 3).

To enable the air to circulate below the food items A contained in the compartment 3, this latter comprises a grille 31 in correspondence with its base wall or base 33.

This grille supports the food items A and cre-ates between them and the base 33 a corridor or channel 35 into which the forced air circulating within the compartment 3 can enter; this channel communicates via an aperture 36 with a duct 37 formed within the housing 2 and communicating with said channel 18. The duct 37 also communicates with the compartment 3, advantageously via the aperture 36.

The described freezer is used in the following manner.

When operated, the fan 15 draws air from the duct 16 (arrow F, Figure 1) which cools in flowing around the evaporator unit 10. The cold air is directed by the fan 15 into the fast freezing com – partment 23 (arrow G, Figure 1), the cold air passing from here into the channels 24 via the apertures 26.

From the channels 24 the air passes through the apertures 25 and into the compartment 3 (arrow H, Figure 1). A direct connection 50 can be pro-vided between the compartment 23 and the compartment 3 at the seat 21 for the fan 15 to enable cold air to flow from the fast freezing compartment to the compartment 3.

The cold forced air which thus enters the compartment 3 strikes the food items A contained in it and tends to fall to the base 33 of the compartment.

Part of this air is drawn through the channel 18 by the fan 15 (arrow K, Figure 1) whereas a further part reaches the base 33 of the freezing compart -

At this base, a portion of this air passes (arrow W, Figure 1) into the corridor 35 present below the

grille 31, to pass from the aperture 35 to the duct 37, and hence, still drawn by the fan 15, to the channel 18 where it joins the air already passing therethrough.

A further portion of the air present in proximity to the base 33 of the compartment 3 passes (arrow X, Figure 1) directly into the duct 37 and then rises to the channel 18.

The air present therein is then drawn into the duct 16 to hence resume circulation within the freezer.

Advantageously, if only a small quantity of food items are contained in the freezer 1 for freezing, and if the freezer is provided at least with some apertures 25 which can be throttled, these latter are closed (or only some of them are closed) by the respective movable panels 28.

These, because of the usual gaskets carried by them, prevent cold air not required for preserving the food items contained in the compartment 3 escaping from the closed apertures 25. This op—timizes the performance of the freezer 1 on the basis of the quantity of food items to be frozen and enables its energy consumption to be reduced, with consequent reduction in its operating costs.

Advantageously a movable panel 93 is pro-vided to vary the volume of the compartment 3 according to the load present in it. The panel 93 can be of the type longitudinally slidable (arrow P, Figure 1) on guides 94 provided on the walls 5 and 7 of the freezer housing 2 or of the type com-pletely removable from and insertable (arrow L, Figure 3) into transverse guides 95 providable at discrete points on said walls.

Consequently, when the quantity of food items A to be preserved is reduced, some apertures 25 can be closed and the compartment 3 reduced in size (continuously or discretely) by the panel 93 (provided with seal gaskets cooperating with the walls 5 and 7 of the compartment 3). Forced air circulation is maintained in this reduced compartment portion, the food items A being placed in this portion.

This results in a considerable energy saving and operating cost for the freezer.

Air circulation within the compartment 3 is achieved in an optimum manner via the apertures 25 positioned (with respect to the figures) above the channel 18 and the recirculation duct 37 (these being in a central position and at the base 33 of the compartment respectively) such that the air contacts all food items A at every level within said compartment.

Moreover, because of the compartment 23 the food items can be frozen in a very short time, after which said food items are transferred to the compartment 3 for long-term preservation.

50

55

15

25

40

It should be noted that when the panel 93 on the wall 17 is closed, together with the apertures 25 (as already described), only the fast freezing compartment 23 is used. In this case, to achieve air circulation between said compartment and the seat 21 there is provided within the wall 17 a duct 103 opening into the compartment 23 and into the duct 16 respectively.

In the case under examination, when the panel 93 is in contact with the wall 17, the outlet 19 is closed by this wall.

On that mouth 104 of the duct 103 facing the compartment 23 there is advantageously positioned a movable plate 105 which closes said mouth when the panel is not in the aforesaid position, ie is distant from the wall 17.

The plate 105 can be moved along guides (not shown) on the wall 17 either manually by the user or automatically (for example by a rotary move – ment about an axis parallel to said wall) by a lever mechanism 106.

Specifically (see Figure 7 in which parts corresponding to those of the previously described figures are indicated by the same reference numerals) the lever mechanism 106 comprises a member or arm 107 movable along guides 108 against a spring 109.

The arm 107 comprises an end 110 arranged to cooperate with the panel 93 when this is lying on the wall 17. This arm carries a pin 113 which cooperates with a bar 114 pivoted at one end 115 to a fixed part 116 of the freezer housing 2. The other end 119 of said bar is fixed to the flap 105.

When the panel 93 reaches the wall 17 it urges the arm 107 against the spring 109 (arrow C, Figure 7). This causes the bar 114 to rotate via its pin 113 about the pivot 115 to thus rotate the flap 105, which moves from a position in which it is parallel to the wall, ie in which it closes the mouth 104, to the position of Figure 7 perpendicular to the wall 17. In this manner it opens the duct 103 to achieve air flow from the compartment 23 to the duct 16.

To create ducts or channels for air circulation between the various layers of food items contained one above another in the compartment 3, there are provided therein support grilles comprising two spaced – apart support regions, on which the superposed food items lie.

This arrangement is shown in Figures 4 to 6. In these figures, parts corresponding to those of the already described figures are indicated by the same reference numerals.

In Figure 4, two superposed layers A1 and A2 of food items are separated by a channel 60 formed between superposed parallel shelves 61 and 62 of grilles 63 (only one of which is shown in Figure 4). The food items A2 are arranged on a

first shelf 61, and the food items A1 arranged on the grille 31 touching the second shelf 62.

6

Each grille 63 present in the compartment 3 is associated with a side wall (for example the wall 4 in Figure 5) and can be removably arranged par – allel to the grille 31 positioned on the base 33.

Each grille comprises lateral elements 65 and 66 superposed in pairs and supporting crosspieces 68 and 69 on which the food items A2 lie and against which the food items A1 touch respectively.

The lateral elements 65 and 66 are bent at the opposing ends 63A, 63B of the grid 63 and are arranged to slide in support brackets 70 associated with the side wall 4 of the compartment 3.

The lateral elements 66 comprise projections 71 which cooperate with the brackets 70 and act as a stop in arranging the respective grille 63 parallel to the support wall 4.

Each grille can be arranged either as in Figure 4, ie retracted onto the side wall with which it is associated, or can be arranged parallel to the grille 31 by extracting it (arrow Y, Figure 5) from the brackets 70.

The first arrangement gives access to the food items A1, whereas the second allows the food items A2 to be introduced into the compartment 3 to create between these and the underlying food items the channel 60 which allows the air leaving the apertures 65 to undergo forced circulation through the two layers of food items. In addition, with the second arrangement the grille 63 rests on lateral supports 75 associated with the walls 5 and 7 of the housing 2 of the freezer 1.

Hence in the example shown in Figures 4 to 6, part of the forced cold air entering the compart – ment 3 via the apertures 25 provided in the com – partment side walls is drawn into the duct 18 after passing through the channel of each grille 63 po – sitioned parallel to the grille 31.

Again in this case, described with reference to Figures 4 to 6, there is improved preservation of the food items contained in the freezer, frost is prevented from forming on the food items, and ice is prevented from forming between food items and parts of the freezer such as the walls and grilles.

In both the embodiments shown in the accompanying figures, a suitable sensor (of known type) connected to any known control circuit incorporating said motor-compressor unit will allow automatic defrosting of the compartment 3.

Claims

 A chest freezer or the like of the type comprising a housing containing a freezing and preservation compartment bounded by side walls and having a base wall or base, and able to receive food items to be preserved, at least

55

25

35

40

45

50

55

one closure element being positioned at the upper loading aperture of said compartment, usual seal elements being associated with said closure element and/or the upper end of the walls of said housing, characterised by providing a forced air circulation within the freez ing compartment (3), said freezer (1) being provided for this purpose with means (15) for directing cold air into feed ducts (24) provided within the freezer housing, said ducts (24) opening at the surface of the walls (4, 5, 6, 7) bounding the freezing compartment (3) to enable the forced air to flow into this latter, there being provided at least one return duct (18) through which the forced air returns to the means (15) for its circulation.

- 2. A freezer as claimed in claim 1, characterised in that the means for circulating air within the freezing and preservation compartment (3) are at least one fan (15) positioned in a seat (21) provided in a wall (17) of the freezer housing (2), said seat (21) communicating with a channel (16) provided within said wall (17), on which the usual evaporator unit (10) of the refrigeration circuit of the freezer (1) is located, said channel (16) being connected to the air return duct (18).
- 3. A freezer as claimed in claim 2, characterised in that the seat (21) for the fan (15) opens into a further compartment (23) provided within the housing (2) of the freezer (1), said compart ment allowing fast freezing of the food items contained in it, said compartment (23) com municating with the freezing compartment (3) at least via the feed ducts (24).
- 4. A freezer as claimed in claim 3, characterised in that the fast freezing compartment (23) is provided with its own closure element.
- 5. A freezer as claimed in claim 2, characterised in that the fast freezing compartment (23) is separated from the preservation compartment (3) by the wall (17) on which the evaporator unit (10) is located, in said wall there being advantageously provided a intercommunication passage (50) between the two compartments.
- 6. A freezer as claimed in claim 1, characterised in that the return duct (18) opens at an inter – mediate position on the surface of the wall (17) supporting the evaporator unit (10).
- 7. A freezer as claimed in claim 1, characterised by comprising a plurality of return ducts opening, at mutually different levels, at the

surface of the walls (4, 5, 6, 7, 17) bounding the preservation compartment (3) and/or at the surface of the wall supporting the evaporator unit (10).

- 8. A freezer as claimed in claims 2 and 7, characterised by comprising on the wall (17) housing the fan (15) two outlets (19, 36) of return ducts (18, 37) located respectively in an intermediate position on said wall and at the base (33) of the preservation compartment (3), said ducts communicating with the channel (16) connected to the seat (21) for the fan (15).
- 9. A freezer as claimed in claim 8, characterised in that in proximity to the base (33) of the preservation compartment (3) there is provided a grille (31) arranged to space the food items (A, A1) from said base and to create between this latter and said food items a duct (35) connected to the outlet (36) of the return duct (37) opening at said base (33).
- 10. A freezer as claimed in claim 1, characterised in that the outlets (25, 26) of the delivery ducts (24) open at the upper ends of the walls (4, 5, 6, 7) bounding the preservation compartment (3), said outlets opening into the preservation compartment (3) and into the fast freezing compartment (23).
 - 11. A freezer as claimed in claim 10, characterised in that at least part of the outlets (25) of the feed ducts (24) can be throttled by panels (28) slidable on fixed guides (29) and provided with seal elements.
 - **12.** A freezer as claimed in claim 1, characterised by comprising at least one movable panel (93) for reducing the volume of the preservation compartment (3).
- 13. A freezer as claimed in claim 12, characterised in that the movable panel (93) slides longitu dinally within the preservation compartment (3) along suitable guides (94) provided on two opposing side walls (5, 7) of said compart ment, said panel continuously reducing the volume of said compartment (3) and compris ing usual seal members.
- 14. A freezer as claimed in claim 12, characterised in that the movable panel can be inserted transversely into the preservation compartment (3) in discrete positions along guides (95) provided along opposing side walls (5, 7) of said compartment.

15. A freezer as claimed in claim 1, characterised by comprising at least one element (63) for supporting food items (A2) placed in the preservation compartment (3) above other food items (A1) placed on the base (33) of said compartment, said supporting element (63) comprising two superposed shelves (61, 62) defining an interspace or channel (60) within which the forced air can flow, said shelves being defined by transverse elements (68, 69) supported by superposed longitudinal elements (65, 66) fixed together, said support element being removably inserted into said compartment (3) and resting on support members (75) rigid with side walls (5, 7) of said compartment (3).

5

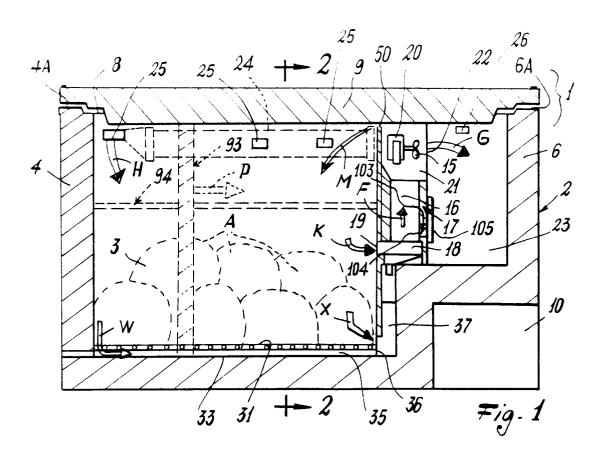
10

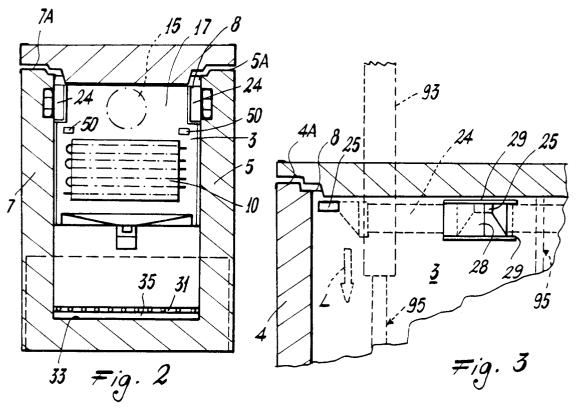
15

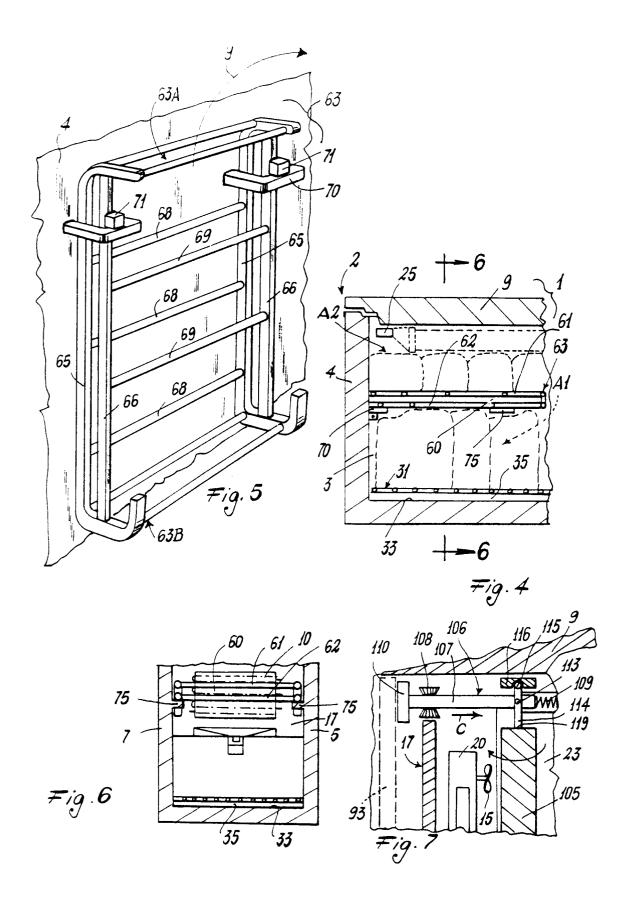
20

25

30


35


40


45

50

55

EUROPEAN SEARCH REPORT

Application Number ΕP

92 11 6589

ategory	Citation of document with in of relevant pas		Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.5)
(figures *	- column 4, line 53;	1-3,7	F25D17/06
	* column 5, line 64	- column 6, line 33 *	10	
	CH-A-345 025 (WHIRLPOOL CO.) * page 2, line 16 - page 2, line 63; figures *		1-3,5,10	
	US-A-2 322 882 (RASE * page 2, left colur left column, line 12	nn, line 1 - page 2,	1-3,5	
	DE-A-2 320 208 (LINI * page 5 - page 7;		1,2	
	US-A-2 437 414 (ARCH* column 1, line 47 figures * * column 3, line 40		1,12,13	TECHNICAL FIELDS SEARCHED (Int. Cl.5)
	The present search report has be			Thomas
1	Place of search THE HAGUE	Date of completion of the search 07 DECEMBER 1992		Examiner NEUMANN E .
X : part Y : part doc A : tech	CATEGORY OF CITED DOCUMEN ticularly relevant if taken alone ticularly relevant if combined with ano ument of the same category inological background i-written disclosure	E : earliér patent d after the filing D : document cited L : document cited	ocument, but publi date in the application	shed on, or

EPO FORM 1503 03.82 (PO401)