BACKGROUND OF THE INVENTION
1. Field of the Invention
[0001] The present invention relates to a device for coating a photosensitive film on a
printing plate shaped in a roll (hereinafter called a "plate roll") and more specifically
to a device wherein a pretreatment, a photosensitive film coating treatment and a
protective film coating treatment are successively performed on the plate roll by
a single device.
2. Prior Art
[0002] Generally, in a plate making process for a plate roll, steps of BALLARD COPPER plating,
huffing, pretreatment, photosensitive film coating, protective film coating, argon
ion laser exposure, development, etching, resist stripping, and chrome plating are
successively performed in the order listed.
[0003] In this processes, the protective film coating is performed for the following reasons:
since the photosensitive film uses an ultra-high-sensitivity photosensitive agent
which can be exposed by means of an argon ion laser, the photosensitive film is susceptible
to oxidation in a short period of time after it is coated. If the photosensitive film
is oxidized, the film loses its photosensitivity. Furthermore, if the photosensitive
film is exposed in the open air, the oxygen in the air hinders the photosensitive
performance of the photosensitive agent.
[0004] As is mentioned above, the plate making process is comprised of several different
steps, and these steps are performed by devices which are lined up independently.
[0005] In other words, to make a plate roll, several devices are required. Therefore, the
conventional devices occupy large spaces, and the cost of the devices used for plate
making are high. Furthermore, handling of the product between the various devices
requires considerable time and labor. Moreover, since the pretreatment is conventionally
performed by hand, it is desirable that the pretreatment is integrated with the photosensitive
film coating device.
SUMMARY OF THE INVENTION
[0006] Accordingly, the object of the present invention is to provide a photosensitive film
coating device for plate rolls, in which a pretreatment, a photosensitive film coating
treatment and a protective film coating treatment are successively performed on the
plate roll by means of a single device.
[0007] As a means to solve the above described problems, the present invention provides
a photosensitive film coating device for plate rolls, which is characterized by the
fact that:
a plate roll is held and rotated by a roll chucking means that is comprised of
a spindle chuck, a tail chuck, and motors, and the plate roll is treated by a multi-treatment
means comprised of a pretreatment means, a photosensitive film coating means and a
protective film coating means which are respectively provided on three separate table
devices that can be raised and lowered relative to the plate roll.
[0008] The three separate table devices are installed on a common table which is provided
on a flame of the photosensitive film coating device so as to be slid along the axis
of the plate roll, wherein:
the pretreatment means includes a cleaning means, a rinsing means, and a moisture
removal means, and consecutively cleans the plate roll, rinses the plate roll, and
then removes moisture from the plate roll;
the photosensitive film coating means consists of a photosensitive film coating
roll and a photosensitive liquid tank, and applies photosensitive liquid on the plate
roll following the pretreatment operation performed by the pretreatment means, and
the protective film coating means consists of a protective film coating roll and
a protective liquid tank, and applies protective liquid on the plate roll following
the photosensitive liquid coating operation performed by the photosensitive film coating
means.
[0009] In the photosensitive film coating device described above:
the plate roll is first horizontally held by the chuck means and rotated at a predetermined
speed,
the separate table including the pretreatment means is raised so that the first
brush of the pretreatment means makes contact with the surface of the plate roll,
and
the common table then slides along the axis of the plate roll.
[0010] As a result, the second brush and the sponge roll consecutively come into contact
with the surface of the plate roll. The cleaning, the rinsing and the moisture removing
are thus performed successively.
[0011] After the pretreatment is thus finished, the separate table including the pretreatment
means is lowered, and the common table is reversely slid so that the common table
reaches at the initial position of the photosensitive film coating process.
[0012] Next, the separate table including the photosensitive film coating means is raised
to the plate roll so that the photosensitive film coating roll contacts the surface
of the plate roll, and the common table is slid in the axial direction of the plate
roll.
[0013] As a result, a photosensitive film is applied on the surface of the plate roll. After
the photosensitive film coating is finished, the separate table including the photosensitive
film coating means is lowered, and the common table is reversely slid so that the
common table reaches the initial position of the protective film coating process.
[0014] Next, the separate table, including the protective film coating, is raised to the
plate roll so that the protective film coating roll contacts the surface of the plate
roll, and the common table is slid along the axis of the plate roll.
[0015] As a result, a protective film is applied on the surface of the plate roll. After
the protective film coating process is finished, the separate table including the
protective film coating means is lowered, and the common table is reversely slid so
that the common table reaches the initial position of the pretreatment process.
[0016] As is mentioned above, three different steps of the plate making process are performed
by a single device. Thus, the plate roll making device of the present invention does
not occupy large spaces. Furthermore, handling of the products between the devices
can be decreased, so that the plate roll is made at a low price.
BRIEF DESCRIPTION OF THE DRAWINGS
[0017]
Figure 1 is a schematic front view which illustrates one embodiment of the photosensitive
film coating device for plate rolls of the present invention, especially showing a
pretreatment process;
Figure 2 is a schematic front view thereof, showing the photosensitive film coating
process;
Figure 3 is a schematic front view thereof, showing the protective film coating process;
Figure 4 is an enlarged front view of the essential parts illustrating the pretreatment
process;
Figure 5 is an enlarged front view of the essential parts illustrating the photosensitive
film coating process; and
Figure 6 is an enlarged front view of the essential parts illustrating the protective
film coating process.
DETAILED DESCRIPTION OF THE INVENTION
[0018] Below, an embodiment of the present invention will be described with reference to
the attached drawings.
[0019] First, a constitution of the device will be described:
As is shown in Figures 1 through 3, the photosensitive film coating device for
plate rolls includes; (i) a plate roll chucking and rotating means A (hereinafter
referred to as a "chucking means A") that holds a plate roll R at both ends in a horizontal
position and causes the plate roll R to rotate at a predetermined speed, (ii) a multi-surface-treatment
means B (hereinafter referred to as a "treatment means B") that is located beneath
the chucking means A and alternately performs a pretreatment, a photosensitive film
coating treatment, and a protective film coating treatment on the plate roll R, and
(iii) a drain pan C which is located beneath the treatment means B. These three basic
elements are installed in a frame F consisting of a floor plate, left and right side
plates and a front plate.
[0020] The chucking means A consists of a spindle chuck 2 which is rotatably driven by a
first motor 1, and an X table device 3 which is composed of a second motor 3a, an
X table 3b, and a tail chuck 3c. The tail chuck 3c is rotatably provided on the X
table 3b, and the X table 3b is slid on the X table device 3 by means of the second
motor 3a.
[0021] The thus comprised chucking means A holds both ends of the plate roll R in a horizontal
position and rotates the plate roll R at a predetermined speed. For example, the circumferential
speed of the plate roll R is set at 0.3 mm/sec.
[0022] The treatment means B consists of three separate table devices 11, 12, and 13. The
three separate tables are installed on a common table 10, and alternately raised and
lowered in the perpendicular direction. The common table 10 installed beneath the
plate roll R is capable of making a reciprocating motion in the direction of the length
of the plate roll.
[0023] On the three separate table devices 11, 12, and 13, a pretreatment means 20, a photosensitive
film coating means 30, and a protective film coating means 40 are respectively installed.
[0024] A first proximity sensor k1, a second proximity sensor k2, and a third proximity
sensor k3 are respectively provided on the three separate table devices 11, 12, and
13 so as to detect the both ends of the plate roll and a gap (g) between the sensors
and the surface of the plate roll R.
[0025] The common table 10 is L-shaped, and a linear guide (not shown) is installed on the
back surface of the vertical part of the common table 10. The linear guide is engaged
with and guided by a horizontal guide 14. A nut runner (not shown), that is also installed
on the back surface of the vertical part of the common table 10, is engaged with a
screw shaft 15 rotatably driven by a third motor 16 so that the common table 10 is
caused to move back and forth.
[0026] The third motor 16 is driven to move the common table 10 forward (i.e., move to the
left in the drawings) after each of the first, second, and third proximity sensors
detect the gap (g) between each of the sensors and one end (i.e., the spindle-chuck
end) of the plate roll R.
[0027] The third motor is stopped when the common table device 10 moves a predetermined
distance in the forward direction after the other end (i.e., the tail-chuck end) of
the plate roll is detected by each of the first, second, and third proximity sensors.
[0028] Then, after a predetermined period of time has elapsed, the third motor reversely
rotates so that the common table device 10 is caused to move a predetermined return
stroke.
[0029] As is shown in Fig. 4, the first separate table device 11 is comprised of a table
11a, a rod 11b, a tube-form guide 11c that is provided on the common table 10, a nut
11e that is fastened to the table 11a, a screw shaft 11d engaged with the nut 11e,
and a fourth motor 11f that is provided on the under surface of the common table 10.
[0030] The rod 11b, which is vertically installed on the under surface of the table 11a,
passes through the tube-form guide 11c. The screw shaft 11d, which is supported on
the common table 10, is rotatably driven by the fourth motor 11f.
[0031] With such a structure, the table 11a is moved upward and downward by the fourth motor
11f.
[0032] The pretreatment means 20 consists of (i) a cleaning means 21 which cleans the plate
roll R, (ii) a brush-type water rinsing means 22 (hereinafter referred to as a "rinsing
means") which performs a water rinsing operation following the cleaning operation,
and (iii) a sponge plate roll contact-type moisture removal means 23 (hereinafter
referred to as a "moisture removal means") which removes moisture from the plate roll
R after the water rinsing operation. These three means 21, 22 and 23 are installed
on the table 11a of the first separate table device 11.
[0033] The cleaning means 21 performs a cleaning operation by bringing a first brush roll
21b, which is immersed in a cleaning agent (neutral detergent) in a first mini-tank
21a, into contact with the plate roll R while the brush roll 21b is rotated by a seventh
motor 21c installed on the table 11a.
[0034] The cleaning agent in the first mini-tank 21a is replenished when the amount drops
below a predetermined level or when the cleaning capacity of the cleaning agent decreases.
A valve-equipped drain outlet 21d is installed in the first mini-tank 21a for replacement
of the cleaning agent.
[0035] The rinsing means 22 performs a water rinsing operation by causing a second brush
roll 22b being rotated by the seventh motor 21c and having bristles washed by washing
water contained in a second mini-tank 22a to contact the portion of the plate roll
R that has been subjected to the cleaning operation. Tap water is used for washing
the second brush roll 22b that is introduced into a hot water production tank 22c
installed on the common table 10; wherein the tap water is heated to a predetermined
temperature. The thus heated water is pumped upwardly by a pump 22d via a hose and
sprayed onto the bristles of the second brush roll 22b by a shower nozzle 22e. The
water in the second mini-tank 22a is discharged via a drain outlet 22f and flows downward
into the drain pan C.
[0036] The moisture removal means 23 is comprised of a sponge roll 23a, a hollow shaft 23a',
a rotary joint tube 23b, a hose 23c, a bracket 23d, and a moisture removal device
24 which is, for example, an air suction means. The sponge roll 23a is provided on
the outer circumference of the hollow shaft 23a' that is supported by the bracket
23d at both ends. The open end of the hollow shaft 23a' is connected to the moisture
removal device 24 installed on the under surface of the common table 10. The hollow
shaft 23a' has an opening on the circumference of the hollow shaft so that air is
sucked into the hollow part of the hollow shaft 23a' from outer circumference of the
sponge roll 23a by means of the moisture removal device 24.
[0037] The sponge roll 23a is brought into contact with the portion of the plate roll R
that has been subjected to the water rinsing operation.
[0038] As a result of this contact, the sponge roll 23a is caused to undergo a passive rotation.
The moisture adhering to the plate roll R is sucked into the interior of the sponge
roll 23a along with air by the suction action of the moisture removal device 24. The
moisture thus captured by the moisture removal device 24 flows down into the drain
pan C.
[0039] As is shown in Fig. 5, the second separate table device 12 includes a table 12a,
rods 12b, a screw shaft 12c, a nut 12d, and a fifth motor 12e.
[0040] The table 12a, which is guided by the rods 12b vertically provided on the common
table 10, is supported by the screw shaft 12c by means of the nut 12d. The screw shaft
12c is rotatably driven by the fifth motor 12e installed on the under surface of the
common table so that the table 12a is raised and lowered.
[0041] The photosensitive film coating means 30 consists of a third mini-tank 30a which
is provided on the table 12a by means of springs 30c, a photosensitive film coating
roll 30b which is installed inside the third mini-tank 30a, and an eighth motor 30d
which is provided on the outside of the third mini-tank 30a.
[0042] A circulation system of the photosensitive film coating means is composed of a pump
30e, an auxiliary tank 30f, and a filter 30g. Photosensitive liquid stored in the
third mini-tank is circulated for several minutes, for example, approximately 10 minutes,
before the photosensitive film coating treatment so that the photosensitive liquid
is agitated and air bubbles contained in the liquid are eliminated by letting the
air bubbles float upwardly.
[0043] Accordingly, the photosensitive liquid is maintained in a uniform state. This circulation
of the photosensitive liquid is not performed during the coating operation.
[0044] The third mini-tank 30a has a lid 30h which can seal the opening of the third mini-tank
30a. When the coating operation is initiated, the lid 30h is automatically opened,
and when the coating operation is completed, the lid 30h is automatically closed.
[0045] The photosensitive film coating roll 30b is caused to rotate in contact with the
plate roll R so that (i) the axial direction of the photosensitive film coating roll
30b crosses the axial direction of the plate roll R, and (ii) the photosensitive liquid
carried on the surface of the photosensitive film coating roll 30b faces the direction
of the advancement of the common table 10.
[0046] Accordingly, the photosensitive film is coated in the form of a spiral, and the adjacent
tracks of the spiral are caused to overlap by 70 to 90%, so that a rubbed-in coating
is completely performed. In this way, the generation of pinholes where the photosensitive
film is not coated is completely avoided. Thus, a photosensitive film with a uniform
thickness is coated in a continuous manner along the entire length of the plate roll
R.
[0047] The photosensitive film coating roll 30b, which is made by foaming a resin such as
polyvinyl alcohol, etc, is driven at a predetermined speed, for example, 60rpm. The
size of the photosensitive film coating roll is, for example, 130mm in diameter and
35mm in the length. In such a condition, the transit speed of the common table 10
in a horizontal direction is determined so that a finished width is, for example,
approximately 7mm per rotation of the plate roll.
[0048] Fig. 6 shows the third separate table device 13 that is comprised of a table 13a,
the rods 13b, a screw shaft 13c, a nut 13d, and a sixth motor 13e.
[0049] The table 12a, which is guided by the rods 13b vertically provided on the common
table 10, is supported by the screw shaft 13c by means of the nut 13d. The screw shaft
13c is rotatably driven by the sixth motor 13e installed on the under surface of the
common table, so that the table 13a is raised and lowered.
[0050] The protective film coating means 40 consists of a fourth mini-tank 40a (constructed
with an over flow structure), a protective film coating roll 40b, springs 40c, and
a ninth motor 40d.
[0051] The fourth mini-tank 40a, which is provided on the table 13a via the springs 40c,
is supported along the rods 13b of the third separate table. The protective film coating
roll 40b installed in the fourth mini-tank 40a is driven by the ninth motor 40d provided
outside of the fourth mini-tank 40a.
[0052] A circulation system of the photosensitive film coating means 40 is composed of a
pump 40e and a filter 40f.
[0053] The photosensitive protective film liquid (hereinafter referred to as "protective
liquid"), which is stored in the fourth mini-tank 40a and its over-flow tank, is circulated
for several minutes before the protective film coating treatment till the end of this
treatment. Accordingly, the protective liquid is agitated and kept in a uniform state.
[0054] The protective liquid is a transparent macromolecules agent such as polyvinyl alcohol,
etc., which shows an oxygen-blocking effect when stiffened.
[0055] The protective film is used so as to maintain an original sensitivity of the photosensitive
film.
[0056] The fourth mini-tank 40a has a lid 40g which can seal the opening of the fourth mini-tank
40a. When the coating operation is initiated, the lid 40g is automatically opened,
and when the coating operation is completed, the lid 40g is automatically closed.
[0057] The protective film coating roll 40b is caused to rotate in contact with the plate
roll R such that (i) the axial direction of the protective film coating roll 40b crosses
the axial direction of the plate roll R, and (ii) the carrying of the protective liquid
on the protective film coating roll 40b occurs on the forward side of the roll 40b
with respect to the direction of the advancement of the common table 10.
[0058] Accordingly, a transparent protective film is coated in the form of a spiral, and
the adjacent tracks of the spiral overlap by 70 to 90%, so that a rubbed-in coating
is thoroughly accomplished. In this way, the generation of pinholes where the protective
film is not coated is completely avoided, and a protective film with a uniform thickness
is applied in a continuous manner along the entire length of the plate roll R.
[0059] The protective film coating roll 40b, which is also made by foaming a resin such
as polyvinyl alcohol, etc, is driven at a predetermined speed, for example, 60rpm.
The size of the protective film coating roll is, for example, 130mm in diameter and
35mm in the length. In such a condition, the transit speed of the common table 10
in a horizontal direction is determined so that a finished width is, for example,
approximately 7mm per rotation of the plate roll R.
[0060] Next, the operation of the embodiment of the photosensitive film coating device for
plate rolls, that are to be made into printing plates, provided by the present invention
will be described:
The plate roll R is positioned horizontally between the spindle chuck 2 and the
tail chuck 3. When a "chucking start" button (not shown) is pressed, the second motor
3a is driven, and the plate roll R is held at both ends by the spindle chuck 2 and
tail chuck 3.
[0061] When the "operation start" button (not shown) is pressed, the pretreatment, photosensitive
film coating treatment and protective film coating treatment are automatically performed
in that order.
[0062] First, the pretreatment is initiated as shown in Figure 1. The detail is shown in
Fig. 4. The first motor 1 is driven and the plate roll R is rotated. The rotation
of the plate roll R is continued throughout the entire operation and for approximately
an additional 10 minutes following the completion of the protective film coating treatment
which is last.
[0063] Prior to the initiation of the pretreatment, the first brush roll 21b is set at the
initial position that corresponds to one end of the plate roll R. The seventh motor
21c is driven so that the first brush roll 21b and second brush roll 22b are caused
to rotate, and the air suction action of the moisture removal device 24 is started.
[0064] Then, the fourth motor 11f is driven so that the table 11a is elevated and the first
brush roll 21b appropriately contacts the surface of the end of the plate roll R.
[0065] When the first brush roll 21b contacts the surface of the plate roll R, the first
proximity sensor k1 detects the gap between the sensor k1 and the surface of the plate
roll R, and the fourth motor is stopped by the signal from the first proximity sensor
k1.
[0066] Then the third motor 16 is driven by the signal from the first proximity sensor k1
so that the common table device 10 is moved toward the other end of the plate roll
R. Thus, the second brush roll 22b rotates in contact with the plate roll R following
the first brush roll 21b, and the sponge plate roll 23a rotates in contact with the
plate roll R following the second brush roll 22b.
[0067] The first brush roll 21b and the second brush roll 22b rotate against the plate roll
R, while the sponge plate roll 23a rotates passively with the plate roll R. The first
brush roll 21b applies the cleaning agent in the first mini-tank 21a to the surface
of the plate roll R in a spiral pattern without any remaining gaps, so that the entire
surface of the plate roll R is subjected to a continuous cleaning process. Any cleaning
agent scattered in this process is retrieved inside the first mini-tank 21a through
the top opening.
[0068] Using water, the second brush roll 22b rinses the cleaning agent away from the portion
of the plate roll R that has been subjected to the cleaning operation.
[0069] During this rinsing operation, the bristles of the second brush roll 22b are washed
by the washing water stored in the second mini-tank 22a. Any water scattered in this
process is recovered in the second mini-tank 22a through the top opening.
[0070] The sponge plate roll 23a performs a moisture removal operation via an air suction
by the moisture removal means 24 on the portion of the plate roll R that has been
subjected to the water rinsing operation.
[0071] The common table device 10 moves to the right (in the drawings), and when the first
proximity sensor k1 passes the other end of the plate roll R, the first proximity
sensor k1 detects the other end of the plate roll R. The third motor 16 continues
to rotate for a predetermined number of revolutions after the end of the plate roll
is detected and until the sponge roll 23a reaches the other end of the plate roll
R. The pretreatment is thus completed.
[0072] Next, the seventh motor 21c and the moisture removal device 24 are stopped, the pretreatment
means 20 is moved back to the initial position by the reverse rotation of the fourth
motor 11f, and the third motor 16 reversely rotates until the photosensitive film
coating roll 30b reaches a position corresponding to the end of the plate roll R.
[0073] Next, the photosensitive film coating treatment is initiated as shown in Figure 2.
The detail is shown in Figure. 5.
[0074] The pump 30e is driven for several minutes from the initiation of the pretreatment
to an intermediate point of the pretreatment process so that the photosensitive liquid
is circulated through out the circulation system, after which the liquid is left as
is for several minutes. As a result, air bubbles in the photosensitive liquid contained
in the third mini-tank 30a float upward and are eliminated. The photosensitive liquid
is thus maintained in a uniform state.
[0075] The lid 30h is then automatically opened, and the photosensitive film coating roll
30b is rotated by the eighth motor 30b, and the fifth motor 12e is driven to elevate
the table 12a. At the point where the photosensitive film coating roll 30b is placed
in an appropriate contact with one end of the plate roll R, the second proximity sensor
k2 detects the gap (g) between itself and the surface of the plate roll R, the fifth
motor 12e is stopped by a signal generated by the second proximity sensor k2, and
the third motor 16 is driven by the signal of the second proximity sensor k2 so that
the common table device 10 is caused to move toward the other end of the plate roll
R.
[0076] Next, the photosensitive film coating roll 30b is caused to rotate in contact with
the plate roll R such that (i) the axial direction of the photosensitive film coating
roll 30b crosses the axial direction of the plate roll R, and (ii) the carrying of
the photosensitive liquid on the photosensitive film coating roll 30b occurs on the
forward side of the plate roll 30b with respect to the direction of the advancement
of the plate roll 30b.
[0077] As a result, the photosensitive film is coated in the form of a spiral, and adjacent
tracks of this spiral are caused to overlap by 70 to 90%, so that a rubbed-in coating
is thoroughly coated.
[0078] Accordingly, the generation of pinholes where the photosensitive film is not applied
is completely avoided, and a photosensitive film with a uniform thickness is coated
in a continuous manner along the entire length of the plate roll R.
[0079] The common table device 10 moves to the right in the drawings, and when the second
proximity sensor k2 passes the other end of the plate roll R, the sensor k2 detects
the other end of the plate roll R. The third motor 16 makes a predetermined number
of revolutions after the end of the plate roll is detected, and when the photosensitive
film coating roll 30b reaches the other end of the plate roll R, the third motor 16
is stopped.
[0080] Subsequently, the eighth motor 30d is stopped, and the photosensitive film coating
means 30 is moved back to the initial position by the reverse rotation of the fifth
motor 12e. After the lid is automatically closed, the third motor 16 reversely rotates
until the protective film coating roll 40b reaches a position corresponding to the
end of the plate roll R.
[0081] The photosensitive film coating treatment is thus completed.
[0082] Following the completion of the photosensitive film coating treatment, the photosensitive
film dries for approximately 10 minutes. After this drying time, the protective film
coating treatment is initiated as shown in Figure 3. The detail is shown in Figure
6.
[0083] The plate roll R is kept rotating between the completion of the photosensitive film
coating treatment and the initiation of the protective film coating treatment, so
that there is no bias in the thickness of the photosensitive film.
[0084] A few minutes prior to the completion of the photosensitive film coating treatment,
the pump 40e of the protective film coating means 40 is driven so that the protective
liquid is circulated through out the circulation system.
[0085] In this way, the protective liquid in the fourth mini-tank 40a is maintained in a
uniform state. The lid 40g is automatically opened, and the ninth motor 40d is driven
so that the protective film coating roll 40b is caused to rotate.
[0086] Furthermore, the sixth motor 13e is driven to raise the table 13a. At the point where
the protective film coating roll 40b is placed in an appropriate contact with one
end of the plate roll R, the third proximity sensor k3 detects the gap (g) between
itself and the surface of the plate roll R, and the sixth motor 13e is stopped by
a signal generated by the third proximity sensor k3.
[0087] As a result of this signal, the third motor 16 is driven so that the common table
device 10 is caused to move toward the other end of the plate roll R. A protective
film is thus coated on the plate roll R. In this case, the protective film coating
roll 40b is caused to rotate in contact with the plate roll R such that (i) the axial
direction of the protective film coating roll 40b crosses the axial direction of the
plate roll R, and (ii) the carrying of the protective liquid on the protective film
coating roll 40b occurs on the forward side of coating roll 40b with respect to the
direction of the advancement of the roll 40b.
[0088] As a result, the protective film is coated in the form of a spiral, and adjacent
tracks of this spiral are caused to overlap, so that a rubbed-in coating is thoroughly
coated.
[0089] Accordingly, the generation of pinholes where no coating is applied is completely
avoided, and a protective film with a uniform thickness is applied in a continuous
manner along the entire length of the plate roll R.
[0090] The common table device 10 moves to the right in the drawings, and when the third
proximity sensor k3 passes the other end of the plate roll R, the third proximity
sensor k3 detects the other end of the plate roll R. The third motor 16 makes a predetermined
number of revolutions after the end of the plate roll is detected. When the protective
coating roll 40b reaches the other end of the plate roll R, the third motor 16 is
stopped, and the protective film coating means 40 is moved back to the initial position
by the reverse rotation of the sixth motor 13e. After the lid is automatically closed,
the third motor 16 reversely rotates until the first brush roll 21b of the cleaning
means 21 of the pretreatment means 20 reaches at a position corresponding to the end
of the plate roll R.
[0091] As seen in the above, the pretreatment, the photosensitive film coating treatment
and the protective film coating treatment are performed in a completely automatic
manner.
[0092] The plate roll R is rotated for approximately 10 minutes following the completion
of the protective film coating treatment, so that no bias is generated in the thickness
of the protective film.
[0093] Approximately 10 minutes after the protective film is dried, the plate roll R is
released from the chucks and subjected to a laser exposure.
[0094] In the present invention, since a pretreatment, a photosensitive film coating, and
a protective film coating are performed by a single device, the device does not occupy
a large space, and the price of the device is lower than conventional devices.
[0095] In addition, the plate roll is successively "scanned" by the three means, i.e., the
pretreatment means, the photosensitive film coating means, and the protective film
coating means. Therefore, the device can make plate rolls which are coated by the
photosensitive film and the protective film with a uniform thickness.
[0096] Furthermore, according to the present invention, it is not necessary to replace the
plate roll each time the pretreatment, the photosensitive film coating and the protective
film coating are performed, so that it takes little handling time and labor.
1. A photosensitive film coating device for plate rolls that are to be made into printing
plates characterized in that said photosensitive film coating device comprises a plate
roll chucking and rotating means which chucks the plate roll at both ends in a horizontal
position and rotates said plate roll at prescribed rpm, and a multi-surface treatment
means which alternately performs a pretreatment, a photosensitive film coating treatment
and a protective film coating treatment, wherein,
said multi-surface treatment means has three separate table devices which can be
alternately raised and lowered, said means being installed on a single common table
device which is positioned beneath said plate roll and is capable of making a reciprocating
motion in the direction of the length of the plate roll surface, and on said three
separate table devices being respectively provided with a pretreatment means, a photosensitive
film coating means and a protective film coating means, in which:
said pretreatment means consists of:
a cleaning means which performs a cleaning operation by causing a first brush roll
which is immersed in a cleaning agent contained in a first mini-tank to contact the
plate roll;
a brush type water rinsing means which performs a water rinsing operation by causing
a second brush roll, that has bristles washed by washing water inside a second mini-tank,
to contact the portion of the plate roll that has been subjected to the cleaning operation;
and
a sponge plate roll contact-type moisture removal means which performs a moisture
removal operation by causing a sponge plate roll, which is connected to an air suction
means so that air suction can be created from the surface of said sponge plate roll
toward the interior of said sponge plate roll, to contact the portion of the plate
roll that has been subjected to the water rinsing operation;
said photosensitive film coating means coating a photosensitive film on said plate
roll by causing a photosensitive film coating roll immersed in a photosensitive liquid
contained in a third mini-tank to rotate in contact with the plate roll such that
the axial direction of said photosensitive film coating roll crosses the axial direction
of the plate roll that is to be made into a printing plate as seen in a plan view
and that a carrying of said photosensitive liquid on the photosensitive film coating
roll occurs on the forward side of said coating roll with respect to the direction
of advance of said coating roll; and
said protective film coating means applies a protective film on said plate roll
by causing a protective film coating roll immersed in a transparent photosensitive
film protective liquid contained in a fourth mini-tank to rotate in contact with the
plate roll such that the axial direction of the protective film coating roll crosses
the axial direction of the plate roll when viewed from top, and that a carrying of
the photosensitive film protective liquid on the protective film coating roll occurs
on the forward side of said coating roll with respect to the direction of advancement
of said coating roll.
2. A photosensitive film coating device for a plate roll comprising:
a roll chucking means comprised of a spindle chuck, a tail chuck and motors, said
chuking means holding and rotating said plate roll, and
a multi-treatment means comprised of a pretreatment means, a photosensitive film
coating means and a protective film coating means which are respectively provided
on three separate table devices that can be raised and lowered relative to said plate
roll, wherein,
said pretreatment means comprises a cleaning means, a rinsing means and a moisture
removal means, said pretreatment means consecutively cleaning said plate roll, rinsing
said plate roll and then removing a moisture from said plate roll,
said photosensitive film coating means consists of a photosensitive film coating
roll and a photosensitive liquid tank, said coating means coating photosensitive liquid
on said plate roll following a pretreatment operation performed by said pretreatment
means, and
said protective film coating means consists of a protective film coating roll and
a protective liquid tank, said coating means coating protective liquid on said plate
roll following a photosensitive liquid coating operation performed by said photosensitive
film coating means.
3. A photosensitive film coating device, according to claim 2, wherein said spindle chuck
is connected to one of said motors, and said tail chuck is rotatably provided on an
X table which is installed on a X table device so as to be slid by the other of said
motors so that said plate roll is horizontally held between said spindle chuck and
said tail chuck and rotated at a predetermined speed.
4. A photosensitive film coating device, according to claim 2, wherein said cleaning
means is comprised of a first mini-tank in which a cleaning agent is stored and a
first brush immersed in said cleaning agent so that a cleaning of said plate roll
is performed by causing said first brush to contact said plate roll.
5. A photosensitive film coating device, according to claim 2, wherein said rinsing means
is comprised of a second mini-tank in which a rinsing water is stored and a second
brush immersed in said rinsing water so that a rinsing of said plate roll is performed
by causing said second brush to contact said plate roll.
6. A photosensitive film coating device, according to claim 2, wherein said moisture
removal means is comprised of a sponge roll, a hollow shaft and a moisture removal
device, said sponge roll being connected to said moisture removal device by means
of said hollow shaft so that a moisture removing of said plate roll is performed by
causing said sponge roll to contact said plate roll.
7. A photosensitive film coating device, according to claim 2, wherein said photosensitive
film coating roll is contacted and rotated with said plate roll such that axial direction
of said photosensitive film coating roll crosses axial direction of said plate roll,
and a carrying of said photosensitive liquid on said photosensitive film coating roll
occurs on a forward side of said photosensitive film coating roll with respect to
the direction of advancement of said photosensitive film coating roll.
8. A photosensitive film coating device, according to claim 2, wherein said protective
film coating roll is contacted and rotated with said plate roll such that axial direction
of said protective film coating roll crosses axial direction of said plate roll, and
a carrying of said protective liquid on said protective film coating roll occurs on
a forward side of said protective film coating roll with respect to the direction
of advancement of said protective film coating roll.