

(11) Numéro de publication : 0 559 513 A1

(12)

DEMANDE DE BREVET EUROPEEN

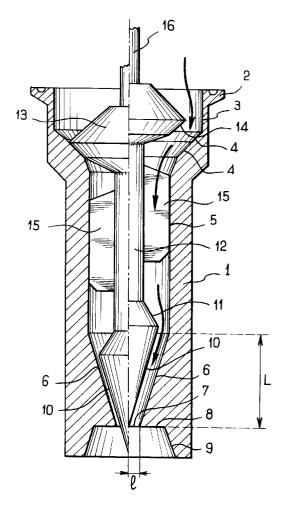
(21) Numéro de dépôt : 93400416.9

22) Date de dépôt : 18.02.93

61 Int. Cl.⁵: **B65B 39/00**

(30) Priorité: 03.03.92 FR 9202523

(43) Date de publication de la demande : 08.09.93 Bulletin 93/36


84 Etats contractants désignés : BE CH DE ES GB IT LI NL

① Demandeur : SERAC FRANCE Route de Mamers F-72400 La Ferte Bernard (FR) (72) Inventeur: Achard, Jean-Luc 2 Place de la Commune F-38130 Echirolles (FR) Inventeur: Picaud, Gabriel Les Etoiles CO6 F-38330 Montbonnot (FR) Inventeur: Sabiron, Gérard 2 rue du Pressoir F-61260 Le Theil (FR)

(74) Mandataire : Fruchard, Guy et al CABINET BOETTCHER 23, rue la Boétie F-75008 Paris (FR)

(54) Bec de remplissage.

Il comporte un corps tubulaire (1) ayant au moins une partie de paroi interne conique (6) adjacente à un orifice inférieur (7) du bec de remplissage, et un organe de calibrage ayant au moins une partie de calibrage conique (10) disposée en regard de la partie de paroi interne conique (6) du corps tubulaire et délimitant avec celui-ci un espace annulaire de section décroissante jusqu'à l'orifice inférieur (7) du bec de remplissage, cet espace annulaire ayant une longueur L au moins égale à environ huit fois la largeur 1 de l'espace annulaire prise selon une direction radiale au niveau de l'orifice inférieur (7).

<u> FIG_1</u>

5

10

15

20

25

30

35

45

50

55

La présente invention concerne un bec de remplissage et plus particulièrement un bec de remplissage pour une machine à dosage pondéral.

On sait que l'un des problèmes du dosage pondéral réside dans le débit des becs de remplissage. En effet, si l'ouverture du bec est très faible, le débit à travers le bec est lui-même très faible et le remplissage est très lent. Si au contraire on prévoit des becs de remplissage ayant une grande ouverture et donc un débit important, la cadence de chaque bec est augmentée mais des phénomènes défavorables apparaissent. En particulier un jet à fort débit s'écoule généralement selon un régime turbulent qui tend à provoquer un moussage du produit. La formation de mousse est elle-même un inconvénient important car les récipients sont généralement dimensionnés pour avoir un faible volume libre au-dessus du produit lorsque le récipient est plein et la formation de mousse provoque donc généralement un débordement en fin de remplissage.

Afin de faire revenir le jet en régime laminaire au moment de sa sortie du bec de remplissage, on connaît des becs de remplissage équipés d'une grille au voisinage de l'orifice inférieur du bec de remplissage. Toutefois, dans le cas de produits contenant des particules d'une dimension importante par rapport aux mailles de la grille, par exemple de la pulpe dans le cas du conditionnement de jus de fruit, les particules obturent progressivement les mailles de la grille jusqu'à ce que celle-ci soit totalement bouchée et nécessite une intervention d'un opérateur. De plus, dans le cas d'une grille, le jet sortant du bec de remplissage n'a qu'une faible stabilité et l'impact du jet sur la surface du liquide contenu dans le récipient détruit généralement cette stabilité et tend à nouveau à provoquer la formation de mousse.

Un but de l'invention est de proposer un bec de remplissage ayant une structure permettant d'obtenir un jet particulièrement stable à la sortie du bec de remplissage et minimiser ainsi la formation de mousse dans le récipient.

En vue de la réalisation de ce but, on propose selon l'invention un bec de remplissage comportant un corps tubulaire ayant au moins une partie de paroi interne conique adjacente à un orifice inférieur du bec de remplissage, et un organe de calibrage ayant au moins une partie de calibrage conique disposée en regard de la partie de paroi interne conique du corps tubulaire et délimitant avec celle-ci un espace annulaire de section décroissante jusqu'à l'orifice inférieur du bec, cet espace annulaire ayant une longueur au moins égale à environ huit fois la largeur de l'espace annulaire prise selon une direction radiale au niveau de l'orifice inférieur.

Ainsi, avant sa sortie du bec de remplissage, le produit à conditionner est soumis à une accélération qui ramène le jet de produit à un régime laminaire très stable quelles que soient les perturbations auxquelles

le produit est soumis en amont du bec de remplissage, et le produit s'écoule selon une veine annulaire ne comportant aucun obstacle de sorte que le dispositif selon l'invention peut être utilisé pour conditionner des liquides contenant des particules en particulier des jus de fruit contenant de la pulpe.

Selon une version avantageuse de l'invention, l'organe de calibrage est mobile axialement à l'intérieur du corps tubulaire. Ainsi le déplacement de l'organe de calibrage permet de régler le débit du bec de remplissage tout en conservant les propriétés d'accélération du produit au voisinage de l'orifice inférieur du bec de remplissage.

D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description qui suit de modes de réalisation particuliers non limitatifs de l'invention en liaison avec les figures ci-jointes parmi lesquelles :

- la figure 1 est une vue en coupe axiale d'un premier mode de réalisation du bec de remplissage selon l'invention,
- la figure 2 est une vue en coupe axiale d'un second mode de réalisation du bec de remplissage selon l'invention.

Sur les deux figures, l'organe de calibrage est mobile axialement et a été représenté dans une position de fermeture du bec de remplissage sur la moitié gauche de la figure et dans une position d'ouverture du bec de remplissage sur la moitié droite de la figure.

En référence à la figure 1, le bec de remplissage selon l'invention comporte un corps tubulaire 1 équipé à son extrémité supérieure d'un collet 2 destiné à le raccorder à un tube d'alimentation en produit à conditionner. La paroi interne du corps tubulaire comporte une première partie cylindrique 3 adjacente à l'extrémité supérieure du corps tubulaire suivie d'une série de parties coniques 4 qui convergent vers l'extrémité inférieure du bec de remplissage, puis une partie cylindrique 5 suivie d'une partie conique 6 dont l'extrémité inférieure coïncide avec l'orifice inférieur 7 du bec de remplissage. Au niveau de l'orifice inférieur 7, la paroi interne du bec de remplissage comporte un décrochement 8 suivi d'une partie conique divergente 9.

A l'intérieur du corps tubulaire 1, le bec de remplissage comporte un organe de calibrage comportant une partie inférieure conique 10 convergente vers le bas et s'étendant en regard de la partie conique 6 de la paroi interne du corps tubulaire 1. Dans le mode de réalisation particulier illustré, la partie conique 10 a une conicité égale à la partie conique 6 de sorte que les faces en regard de la partie conique 10 et de la partie conique 6 sont parallèles. Au-dessus de la partie conique 10, c'est-à-dire en amont de celle-ci par référence à un sens d'écoulement du produit dans le bec de remplissage, l'organe de calibrage comporte une partie conique 11 divergente vers le bas et dont l'extrémité supérieure est reliée par une

5

10

15

20

25

30

35

40

45

50

tige de liaison 12 à un clapet de fermeture 13 comportant une partie de surface externe 14 ayant une conicité identique à l'une des parties coniques 4 de la paroi interne du corps tubulaire 1 de façon à assurer une fermeture étanche du bec de remplissage lorsque le clapet de fermeture 13 est appliqué sur la partie conique correspondante 4. La tige de liaison 12 comporte des ailettes de centrage 15 s'étendant radialement dans la partie cylindrique 5 de la paroi interne du corps tubulaire 1. Les ailettes de centrage 15 sont montées pour coulisser dans la partie cylindrique 5. A son extrémité supérieure, le clapet de fermeture 13 est relié à une tige de commande 16 associée à un mécanisme non représenté pour régler la position axiale de l'organe de calibrage dans le bec de remplissage.

Ainsi qu'il a été indiqué ci-dessus, la moitié gauche de la figure 1 illustre le premier mode de réalisation de l'invention dans une position de fermeture. Le clapet de fermeture 13 est alors en appui sur le siège de clapet 4 tandis que la partie conique 10 est faiblement espacée de la partie conique 6 en regard. De préférence, l'espacement entre les parties coniques 6 et 10 est suffisamment faible pour éviter que le produit contenu dans le corps tubulaire 1 en dessous du clapet de fermeture 13 ne s'écoule lorsque le clapet de fermeture 13 est appliqué sur son siège. Dans cette position, l'extrémité inférieure de la partie conique 10 dépasse de l'orifice inférieur 7 et est protégée par la partie de paroi du corps tubulaire 1 correspondant à la partie conique divergente 9.

La moitié droite de la figure illustre le bec de remplissage avec l'organe de calibrage dans une position d'ouverture sensiblement maximale pour laquelle l'extrémité inférieure de la partie conique 10 coïncide avec l'orifice inférieur 7. Bien que les parties de surface coniques en regard 6 et 10 soient de même conicité et soient donc parallèles l'une à l'autre, la conicité de ces parties de surface assure une décroissance de la section de passage entre ces parties de surface, prise selon des plans perpendiculaires à l'axe longitudinal du corps tubulaire 1. Dans la position d'ouverture maximale illustrée sur la figure, l'extrémité supérieure de la partie conique 10 est à un niveau supérieur à l'extrémité supérieure de la partie conique 6 de sorte que la longueur L selon laquelle l'espace annulaire compris entre les parties de surface 6 et 10 est décroissant coïncide avec la hauteur de la partie conique 6.

On remarquera que dans le cas où l'organe de calibrage est dans une position intermédiaire entre la position illustrée sur la moitié droite de la figure et la position illustrée sur la moitié gauche de la figure avec l'extrémité supérieure de la partie conique 10 en dessous de l'extrémité supérieure de la partie conique 6, l'espace annulaire entre l'organe de calibrage et la paroi interne du corps tubulaire 1 est alors décroissante depuis l'extrémité supérieure de la partie conique 11 jusqu'à l'orifice inférieur 7. On remarquera également que dans ce mode de réalisation la partie conique 10 de l'organe de calibrage peut avoir une conicité légèrement supérieure à la conicité de la partie de paroi 6 en regard du moment que la différence des conicités entre la partie de paroi 10 et la partie de paroi 6 est suffisante pour que la section de l'espace annulaire entre les parties de parois coniques 6 et 10 soit décroissante sur une longueur L au moins égale à huit fois la largeur l de l'espace annulaire prise selon une direction radiale au niveau de l'orifice inférieur 7. Cette valeur est satisfaisante pour la plupart des produits mais elle n'est pas absolument critique et peut être légèrement adaptée en fonction du produit à conditionner.

Dans ces conditions on a constaté que le jet sortant de l'orifice inférieur 7 du bec de remplissage est particulièrement stable, ce qui se traduit par une surface externe très lisse du jet sortant du bec de remplissage.

La figure 2 illustre un second mode de réalisation de l'invention pour lequel les parties ayant une fonction identique à celle de la figure 1 ont été référencées avec les mêmes références numériques.

Dans ce second mode de réalisation, le corps tubulaire 1 est prévu pour être monté directement dans un orifice d'une paroi inférieure d'une cuve d'alimentation et, à cet effet, le collet de montage 2 est disposé dans la partie inférieure du corps tubulaire 1 qui comporte cette fois des ouvertures d'alimentation 17 à travers lesquelles le produit à conditionner s'écoule radialement avant de s'écouler axialement dans l'espace annulaire compris entre la partie de surface conique 10 de l'organe de calibrage et la paroi interne en regard du corps tubulaire 1. La surface de guidage interne 5 du corps tubulaire 1 s'étend au-dessus des ouvertures d'alimentation 17 et l'organe de calibrage comporte une partie de liaison cylindrique 11 qui se raccorde directement à la partie conique inférieure 10

Dans ce mode de réalisation, la partie de surface conique 6 de la surface interne du corps tubulaire 1 est divisée en une partie de surface supérieure 6.1 ayant une conicité supérieure à la conicité de la partie de surface conique 10, et une partie inférieure 6.2 dont la conicité est égale à la conicité de la partie de surface conique 10 de l'organe de calibrage. Le bord inférieur de la partie conique 6.1 est légèrement espacé de l'orifice inférieur 7 de sorte que la partie conique 6.2 constitue un siège pour la partie conique 10 de l'organe de calibrage et, lorsque celui-ci est en position basse illustrée sur la partie gauche de la figure 2, la partie de surface conique 10 de l'organe de calibrage fait fonction de clapet de fermeture. La section de l'espace annulaire entre la partie de surface conique 10 de l'organe de calibrage et la partie de surface conique 6 est ainsi décroissante depuis les orifices d'alimentation 17 jusqu'à l'orifice inférieur 7 du bec de

5

10

15

20

25

30

35

40

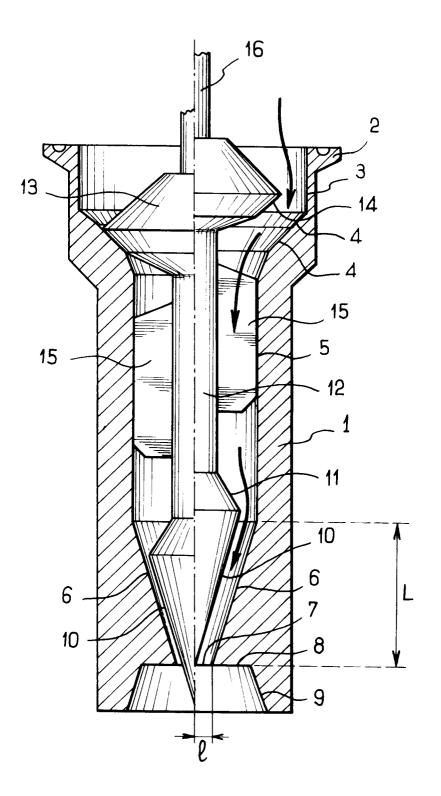
45

50

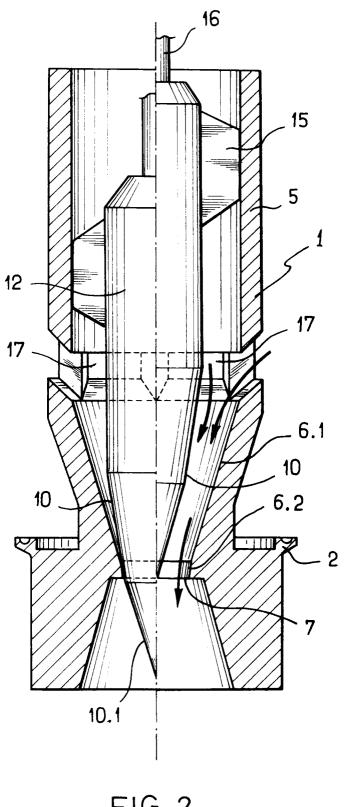
remplissage et l'on obtient donc comme précédemment une accélération du produit favorable à la stabilité du jet sortant du bec de remplissage.

Dans ce mode de réalisation la portion inférieure 10.1 de la partie de calibrage conique 10 s'étendant au-delà de l'orifice inférieur 7 pour une position fermée du bec de remplissage a une conicité supérieure à une portion immédiatement en amont par référence à un sens d'écoulement de produit dans le bec de remplissage. On a observé que l'on minimisait ainsi le risque de formation d'une goutte lors de la fermeture du bec de remplissage. Il est souhaitable que la conicité de la portion inférieure de la partie de surface conique soit aussi forte que possible mais il faut veiller à ce que pour une position ouverte du bec de remplissage la section de l'espace annulaire compris entre les surfaces 6 et 10 reste décroissante. Ceci limite donc en pratique la conicité de la portion inférieure de la partie de calibrage conique 10.

Bien entendu l'invention n'est pas limitée aux modes de réalisation décrits et on peut y apporter des variantes de réalisation sans sortir du cadre de l'invention. En particulier, dans les deux modes de réalisation illustrés, on peut utiliser des organes de centrage différents des ailettes 15, par exemple en associant l'organe de calibrage à un corps cylindrique coulissant dans le corps tubulaire 1. Dans le cas du second mode de réalisation il n'est même pas nécessaire que l'organe de guidage soit percé d'ouvertures puisque le produit à conditionner pénètre dans le corps tubulaire 1 en dessous de l'organe de guidage. De même, dans le second mode de réalisation, on peut prévoir une partie de surface conique 6 ayant une conicité unique sur toute sa hauteur, cette conicité étant alors égale à la conicité de la partie de surface conique 10 afin d'assurer une fermeture du bec de remplissage lorsque l'organe de calibrage est en position basse.


Revendications

- 1. Bec de remplissage comportant un corps tubulaire (1) ayant au moins une partie de paroi interne conique (10) adjacente à un orifice inférieur (7) du bec de remplissage caractérisé en ce qu'il comporte un organe de calibrage ayant au moins une partie de calibrage conique (10) disposée en regard de la partie de paroi interne conique (6) du corps tubulaire et délimitant avec celui-ci un espace annulaire de section décroissante jusqu'à l'orifice inférieur (7) du bec de remplissage, cet espace annulaire ayant une longueur (L) au moins égale à environ huit fois la largeur (I) de l'espace annulaire prise selon une direction radiale au niveau de l'orifice inférieur (7).
- 2. Bec de remplissage selon la revendication 1 caractérisé en ce que l'organe de calibrage est mo-


bile axialement à l'intérieur du corps tubulaire (1).

- 3. Bec de remplissage selon la revendication 2 caractérisé en ce que l'organe de calibrage est associé à un clapet de fermeture (13) disposé en amont de l'organe de calibrage en référence à un sens d'écoulement de produit dans le bec de remplissage.
- 4. Bec de remplissage selon la revendication 2 caractérisé en ce qu'au moins au voisinage de l'orifice inférieur (7), la partie de paroi interne conique (6.2) a une conicité égale à la partie de surface conique (10) en regard de l'organe de calibrage.
- 5. Bec de remplissage selon la revendication 4 caractérisé en ce qu'en amont de l'orifice inférieur (7) la paroi interne conique comporte une partie (6.1) ayant un bord inférieur espacé de l'orifice inférieur (7) et une conicité supérieure à la partie de surface conique en regard (10) de l'organe de calibrage.
- 6. Bec de remplissage selon la revendication 4 ou la revendication 5 caractérisé en ce qu'une portion (10.1) de la partie de calibrage conique (10) s'étendant au-delà de l'orifice inférieur (7) pour une position fermée du bec de remplissage a une conicité supérieure à une portion immédiatement en amont par référence à un sens d'écoulement de produit dans le bec de remplissage.

4

FIG_1

FIG₋2

RAPPORT DE RECHERCHE EUROPEENNE

Numero de la demande

EP 93 40 0416

tégorie	Citation du document des parti	avec indication, en cas de beso es pertinentes	Pin, Revendication concernée	CLASSEMENT DE LA DEMANDE (Int. Cl.5)
A	US-A-4 653 549 (* le document en	(AMBROSE) n entier *	1,2,4	B65B39/00
				DOMAINES TECHNIQUES RECHERCHES (Int. Cl.5)
				B65B B67C
				2070
	ésent rapport a été établi po	our toutes les revendications Date d'achèvement de l	a probasshe	Examinateur
ı	A HAYE	02 JUIN 19		CLAEYS H.C.M.
CATEGORIE DES DOCUMENTS CITES X: particulièrement pertinent à lui seul Y: particulièrement pertinent en combinaison avec un autre document de la même catégorie A: arrière-plan technologique O: divulgation non-écrite P: document intercalaire			T: théorie ou principe à la base de l'invention E: document de brevet antérieur, mais publié à la date de dépôt ou après cette date D: cité dans la demande L: cité pour d'autres raisons	