

① Veröffentlichungsnummer: 0 560 091 A1

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 93102497.0

(51) Int. Cl.5: **B21D** 3/05, B21B 1/08

② Anmeldetag: 18.02.93

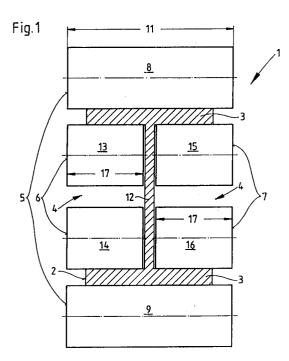
(12)

Priorität: 07.03.92 DE 4207297

(43) Veröffentlichungstag der Anmeldung: 15.09.93 Patentblatt 93/37

Benannte Vertragsstaaten:
AT DE ES FR GB IT

Anmelder: SMS SCHLOEMANN-SIEMAG
AKTIENGESELLSCHAFT
Eduard-Schloemann-Strasse 4
D-40237 Düsseldorf(DE)


Erfinder: Rohde, Wolfgang, Prof. Dr. Heerstrasse 43 W-4047 Dormagen 11(DE) Erfinder: Böhmer, Bruno
Am Stadtweiher 10
W-4006 Erkrath(DE)
Erfinder: Gärtner, Horst
Auf'm Grossenfeld 4
W-4000 Düsseldorf(DE)
Erfinder: Hollmann, Friedrich, Dr.

Münchrather Strasse 9

W-4048 Grevenbroich(DE)

Vertreter: Valentin, Ekkehard et al Patentanwälte Hemmerich, Müller, Grosse, Pollmeier, Valentin, Gihske, Hammerstrasse 2 D-57072 Siegen (DE)

- (54) Verfahren und Vorrichtung zum Richten von H-förmigen Trägerprofilen.
- (57) Mit einem Verfahren zum Richten von insbesondere schweren, H-förmigen Trägerprofilen zwischen vertikal beweglichen, ober- und unterhalb der Richtlinie angeordneten Werkzeugen läßt sich eine kontinuierliche Betriebsweise erreichen, wenn die Trägerflansche gewalzt werden. Zum Richtwalzen kann ein Richtwalzensatz (1, 101, 201) unterschiedliche Ballenlängen (11, 17) aufweisende Walzen (8, 9, 13 bis 16) besitzen, die gegen die Flansche (3) des Trägerprofils (2) angestellt sind.

15

20

25

40

Die Erfindung betrifft ein verfahren und eine Vorrichtung zum Richten von insbesondere schweren, großen, H-förmigen Trägerprofilen zwischen vertikal beweglichen, ober- und unterhalb der Richtlinie angeordneten Werkzeugen.

Schwere Profile oder Träger werden üblicherweise durch Biegen an den krummen Stellen gerichtet. Das setzt es zunächst voraus, eine vorhandene Krümmung visuell zu erfassen. Anschließend wird das Profil dann in einer geeigneten Richtmaschine zwischen drei Stempeln entgegen der Krümmung so weit gebogen, bis diese verschwindet, d.h. das Profil geradegeformt ist. Beim Betrieb der für diesen Zweck eingesetzten Richtmaschinen bestimmt das Bedienungspersonal aufgrund seiner Erfahrung den Einsatz der Stempel und den Stempelhub.

Die beschriebene Arbeitsweise beim Richten von schweren Profilen erfordert erfahrenes Bedienungspersonal, und das Richtergebnis hängt weitestgehend von den Fähigkeiten dieser Personen ab. Der Zeitaufwand für das Richten eines Profils ist somit nicht nur von dem Krümmungszustand des Profils, sondern wesentlich auch von der Erfahrung des Bedienungspersonals abhängig. Weiterhin ist es nur schlecht möglich, eine wie beschrieben betriebene Richtmaschine in einen kontinuierlichen Produktionsablauf einzubinden. Das setzt entweder einen genügend großen Zeitabstand zwischen einzelnen in die Richtmaschine zugeführten Profilen oder ein Zwischenlager voraus. Dabei ist im ersten Fall die geringe Auslastung der Richtmaschine und im zweiten Fall der zusätzlich erforderliche Lagerplatz nachteilig.

Einfacher zu bedienen sind zum Richten weiterhin bekannte Rollenrichtmaschinen, die im Gegensatz zu den Richtpressen außerdem einen kontinuierlichen Durchlaufbetrieb gewährleisten. Aufgrund der Vorgänge bei der plastischen Verformung läßt sich beim Rollenrichten eine Profilhöhenveränderung bzw. -zunahme nicht vermeiden. Bei einem H-förmigen Trägerquerschnitt, der sich aus zwei Flanschflächen und einer Stegfläche zusammensetzt, muß der Steg mit seinem im Vergleich zu beiden Flanschen wesentlich geringeren Widerstandsmoment die Richtkraft aufnehmen, die zur Verformung des gesamten Querschnitts erforderlich ist. Die Folge davon ist ein gegenüber den Flanschen höherer plastischer Spannungsanteil des Steges, der die Profilhöhenzunahme auslöst und ein Ausbeulen des Steges im Rollenbereich bewirkt. Wenn bei extremer Beanspruchung die Bruchspannung des Werkstoffes erreicht wird, kommt es zu schweren Richtfehlern im Übergang Steg-Flansch. Ein Hinweis zum Erkennen der Bruchgefahr ist die Profilhöhenzunahme, so daß ständig Stichprobenmessungen im Betrieb durchgeführt werden müssen. Besonders bei schweren Trägerprofilen mit großem Flansch-Steg-Verhältnis werden die Bedingungen für die Rollenrichtmaschinen so ungünstig, daß dafür nur noch Richtpressen zum Einsatz kommen, die aber nur eine diskontinuierliche Betriebsweise erlauben und somit die Leistungsfähigkeit der Rollenrichtmaschinen nicht erreichen.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung zu schaffen, mit denen sich die vorgenannten Nachteile vermeiden und das Richten von insbesondere schweren, großen, H-förmigen Trägerprofilen im kontinuierlichen Betrieb erreichen läßt.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß Trägerflansche gewalzt werden. Dem auf diese Weise erreichten Richtwalzen, wobei die Walzen nur Kontakt mit den Trägerflanschen bzw. mit Teilen der Trägerflansche haben, liegt die Überlegung zugrunde, Krümmungen zu beseitigen, indem die Flansche in der Dicke reduziert und damit verlängert werden.

Es wird daher vorgeschlagen, daß auf die Höhe des Trägerprofils eingestellte Richtwalzen das Trägerprofil über die äußeren Flanschflächen abstützen und rechts und links in die Kammern des Trägerprofils eingreifende Richtwalzen gegen die inneren Flanschflächen angestellt werden. Ist z.B. das Trägerprofil über den Steg gekrümmt - Bogen nach oben oder nach unten -, so wird der zu kurze Flansch mit den ihn oben oder unten umschließenden Walzen in der Dicke reduziert und verlängert. Wenn hingegen das Trägerprofil über den Flansch gekrümmt ist - Bogen nach links oder nach rechts -, so lassen sich durch Anstellen der zugehörigen Kammerwalzen die linken oder rechten oberen und unteren Flanschteile so weit längen, bis die Krümmung beseitigt ist.

Wenn von Meßmitteln gewonnene, den Krümmungszustand des Trägerprofils definierende Meßdaten einer Auswertungseinheit zugeführt werden, lassen sich aus den Meßdaten die zu verformenden Flanschbereiche, der Abwalzgrad und die Anstellung der Walzen ermitteln und damit ein vollkontinuierlicher Produktionsablauf begünstigen.

Zum Richten schwerer H-förmiger Trägerprofile kann ein Richtwalzensatz unterschiedliche Ballenlängen aufweisende Walzen besitzen, die gegen die Flansche des Trägerprofils angestellt sind. Es empfiehlt sich ein Richtwalzensatz mit mindestens drei vertikal anstellbaren Walzenpaaren, von denen ein Walzenpaar eine größere Ballenlänge ihrer Walzen als die anderen Walzenpaare aufweist und das Trägerprofil mit einer oberen und einer unteren Walze über die äußere Flanschfläche abstützt, während die Walzenpaare mit den kürzeren Ballenlängen rechts und links in den Kammern des Trägerprofils angeordnet sind und sich an die inneren Flanschflächen des Trägerprofils anlegen. Bei ei-

55

Figur 4

nem Richtwalzensatz mit drei Walzenpaaren und somit sechs Walzen stützen die außen liegenden, die größere Ballenlänge aufweisenden Walzen den Träger oben und unten ab, und die von beiden Seiten in die Kammern des Trägerprofils eingreifenden Walzenpaare mit den kleineren Ballenlängen ihrer Walzen sind zwischen der oberen und unteren langen Walze angeordnet. Die Kamerwalzen sind durch den Profilsteg, den sie auch nicht berühren, voneinander getrennt und haben nur Kontakt mit den inneren Flanschflächen bzw. mit Teilen davon. Jeweils die beiden in einer Kammer des Trägerprofils angeordneten Walzen bilden ein Walzenpaar.

Die Walzenpaare bzw. ihre Walzen lassen sich in den verschiedensten Variationen anordnen, bei großen Trägerprofilen vorzugsweise in einer Flucht übereinanderliegend. Verlangen die Kammermaße bei weniger großen Trägerprofilen eine gedrängtere Bauweise des Richtwalzensatzes bzw. der Anordnung der Richtwalzen, können die obere und die untere Walze versetzt zueinander und vertikal in einer Flucht mit jeweils den ihnen benachbarten Walzen der Walzenpaare mit den kürzeren Ballenlängen angeordnet werden.

Bei weiter verringerten Kammermaßen lassen sich die Walzen der Walzenpaare mit den kürzeren Ballenlängen einander in vertikaler Ebene überlappend anordnen und sind in diesem Fall aus der Symmetrieachse des Trägerprofils bzw. der Richtlinie gerückt.

Eine Anordnung mit einander in vertikaler Ebene überlappenden Kammerwalzen erlaubt es, daß mindestens zwei untere bzw. obere Walzen und mindestens eine obere bzw. untere Walze mit ihnen zugeordneten Walzen kurzer Ballenlänge einen Richtwalzensatz bilden.

Wenn dem Richtwalzensatz mindestens ein Krümmungssensor vorgeschaltet und vorzugsweise über eine Auswertungseinheit mit einer Walzenanstellung verbunden ist, lassen sich die jeweils zum Richten durch Dickenreduzieren der Flansche zum Einsatz zu bringenden Walzen schon vor dem Einlaufen der Krümmung entsprechend den Meßwerten einstellen.

Die Erfindung wird nachfolgend anhand von in den Zeichnungen schematisch dargestellten Ausführungsbeispielen näher erläutert. Es zeigen:

Figur 1 einen Richtwalzensatz im Einsatz bei einem rechts und links neben dem Steg große Kammermaße aufweisenden Trägerprofil, in der Längsansicht dargestellt;

Figur 2 den Richtwalzensatz gemäß Fig. 1 in der Seitenansicht;

Figur 3 in der Seitenansicht eine erste Richtwalzenanordnung mit horizontal versetzten Walzen für das Richten von kleinere Kammermaße aufweisenden Trägerprofilen, deren Kammerwalzen sich in vertikaler Ebene überlappen;

eine zweite Richtwalzenanordnung mit horizontal versetzten Walzen für das Richten von kleinere Kammermaße aufweisenden Trägerprofilen, deren Kammerwalzen sich in vertikaler Ebene überlappen; und

Figur 5 eine Richtwalzenanordnung gemäß
Fig. 2 mit vorgeschaltetem Krümmungssensor, der über eine Auswertungseinheit mit der Walzenanstellung verbunden ist.

Ein in einem nicht dargestellten Gerüst einer Richteinheit gelagerter Richtwalzensatz 1 für schwere Trägerprofile 2, die gemäß den Figuren 1, 2 und 5 zwischen den Flanschen 3 des Trägerprofils 2 großvolumige Kammern 4 aufweisen, besteht aus drei in einer Flucht übereinanderliegenden Walzenpaaren 5, 6, 7. Die obere bzw. untere Walze 8, 9 des Walzenpaares 5 weist eine größere Ballenlänge 11 auf als die rechts und links vom Profilsteg 12 in den Kammern 4 des Trägerprofils 2 angeordneten Kammerwalzen 13. 14 bzw. 15. 16 des vom Profilsteg 12 linken bzw. rechten Walzenpaares 6 bzw. 7. Die Ballenlänge 17 der Kammerwalzen 13 bis 16 ist so ausgelegt, daß diese Walzen mit geringem Abstand vor dem Profilsteg 12 enden, diesen also nicht berühren.

Zum Richten von in den Zeichnungen nicht dargestellten Krümmungen des Trägerprofils 2 mittels des drei Walzenpaare 5, 6, 7 mit sechs vertikal anstellbaren Walzen 8, 9 und 13 bis 16 aufweisenden Richtwalzensatzes 1 werden die eine größere Ballenlänge 11 besitzenden Walzen 8, 9 des Walzenpaares 5 auf die Höhe des Trägerprofils 2 eingestellt; sie stützen das Trägerprofil 2 über die äußeren Flanschflächen von oben und unten ab. Die Walzenpaare 6, 7 mit den die kürzeren Ballenlängen 17 aufweisenden Kammerwalzen 13, 14 bzw. 15, 16 greifen links und rechts in die Kammern 4 des Trägerprofils ein; sie haben nur Kontakt mit den inneren Flanschflächen des Trägerprofile 2

Wie in Fig. 5 schematisch, lediglich als black-boxes dargestellt wird, ist dem Richtwalzensatz 1 ein Krümmungssensor 18 vorgeschaltet und elektrisch mit einer an die Walzenanstellung 19 angeschlossenen Auswertungseinheit 21 verbunden. Von den Krümmungssensoren 18 gewonnene Meßdaten über den Krümmungszustand des Trägerprofils 2 gelangen in die Auswertungseinheit 21, die die zu verformenden Flanschbereiche und die Höhe des Abwalzgrades ermittelt und entsprechende Stellsignale an die Walzenanstellungen 19 gibt, die entsprechend diejenigen Kammerwalzen gegen die inneren Flanschflächen anstellt, die benötigt

45

50

55

werden, um zusammen mit der oberen und unteren Walze 8, 9 den aufgrund einer Krümmung kürzeren Flansch 3 des Trägerprofils 2 in der Dicke zu reduzieren und damit zu verlängern, bis die Krümmung beseitigt ist. Bei einem bspw. über seinen Steg 12 nach unten gekrümmten Trägerprofil 2 würde der zu kurze Flansch mit den Kammerwalzen 13 bzw. 15 - die folglich gegen die inneren Flanschflächen angestellt werden müßten - des Walzenpaares 6 bzw. 7 und der oberen Walze 8 gewalzt werden.

In den Fig. 3 und 4 sind Anordnungen von Richtwalzensätzen 101, 201 für Trägerprofile 102, 202 dargestellt, die verglichen mit dem Trägerprofil 2 gemäß den Fig. 1 und 2 weniger groß bemessen sind und entsprechend kleinere Volumen bzw. Abmessungen ihrer rechts und links des Profilsteges zwischen den Flanschen ausgebildeten Kammern 104, 204 besitzen. Damit sich das Richtwalzen auch bei diesen Trägerprofilendurchführen läßt, sind die Walzen der Richtwalzensätze 101 bzw. 201 in der Höhe gedrängter angeordnet, insbesondere liegen die Walzenpaare nicht mehr in einer Flucht übereinander. Bei der Ausführung gemäß Fig. 3 sind die obere und die untere Walze 108 bzw. 109 versetzt zueinander und vertikal in einer Flucht mit jeweils den ihnen benachbarten Kammerwalzen 113 und 114 bzw. 115 und 116 - die beiden letzteren liegen auf der anderen Seite des Profilsteges und sind in der Figur nicht ersichtlich angeordnet. Die Kammerwalzen 113 und 114 - und entsprechend die nicht ersichtlichen Kammerwalzen 115, 116 - überlappen sich zudem in vertikaler Ebene, d.h. sie sind aus der mit der Richtlinie 22 zusammenfallenden Längs-Symmetrieachse des Trägerprofils 102 heraus nach oben bzw. unten verlagert. Trotz der geringeren Bauhöhe 23 zwischen den Flanschen des Trägerprofils 102 bzw. 202 können aufgrund des sowohl horizontalen als auch vertikalen Versatzes der Walzen im Durchmesser ausreichend dicke Richtwalzen in den Kammern 104 bzw. 204 angeordnet werden.

Die in Fig. 4 dargestellte Ausführungsvariante des Richtwalzensatzes 201 unterscheidet sich von der Walzenanordnung gemäß Fig. 3 lediglich durch eine in Durchlaufrichtung 24 des Trägerprofils 202 nachgeordnete Walzengruppe, bestehend aus einer weiteren Walze mit großer Ballenlänge 11, die sich von unten an die äußere Flanschfläche des Trägerprofils 202 anlegt, sowie in beiden Kammern 204 rechts und links neben dem Profilsteg eingreifende Kammerwalzen 26, die der Walze 25 zugeordnet sind.

Das Profil 202 erfährt beim Durchlaufen der Walzengruppen abwechselnd am unteren Flansch 27 und am oberen Flansch 28 jeweils eine Strekkung. Diese Streckung wird von Walzengruppe zu Walzengruppe absolut kleiner. Hierdurch kann eine

günstige Restspannung erreicht werden. Weitere Walzengruppen 25/26 können abwechselnd am oberen Flansch 28 und unterem Flansch 27 folgen, um die Restspannung noch weiter zu verkleinern.

Bezugszeichenliste

10	1, 101, 201 2, 102, 202 3 4, 104, 204 5	Richtwalzensatz Trägerprofil Flansch Kammer Walzenpaar
	6	Walzenpaar
	7	Walzenpaar
15	8, 108, 208	Walze
	9, 109, 209	Walze
	10	Dellevikassa
	11	Ballenlänge
	12	Profilsteg
20	13, 113, 213	Kammerwalze
	14, 114, 214	Kammerwalze
	15	Kammerwalze
	16	Kammerwalze
	17	Ballenlänge
25	18	Krümmungssensor
	19	Walzenanstellung
	20	
	21	Auswertungseinheit
	22	Richtlinie
30	23	Bauhöhe
	24	Durchlaufrichtung
	25	Walze
	26	Kammerwalze
	27	unterer Flansch
35	28	oberer Flansch

Patentansprüche

 Verfahren zum Richten von insbesondere schweren, H-förmigen Trägerprofilen zwischen vertikal beweglichen, ober- und unterhalb der Richtlinie angeordneten Werkzeugen,

dadurch gekennzeichnet,

daß die Trägerflansche gewalzt werden.

2. Verfahren nach Anspruch 1,

dadurch gekennzeichnet,

daß auf die Höhe des Trägerprofils eingestellte Richtwalzen das Trägerprofil über die äußeren Flanschflächen abstützen und rechts und links in die Kammern des Trägerprofils eingreifende Richtwalzen gegen die inneren Flanschflächen angestellt werden.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet,

daß von Meßmitteln gewonnene, den Krümmungszustand des Trägerprofils definierende

40

45

50

55

15

30

35

40

45

50

Meßdaten einer Auswertungseinheit zugeführt werden.

4. Vorrichtung zum Richten von insbesondere schweren, H-förmigen Trägerprofilen zwischen vertikal beweglichen, ober- und unterhalb der Richtlinie angeordneten Werkzeugen,

dadurch gekennzeichnet,

daß ein Richtwalzensatz (1, 101, 201) unterschiedliche Ballenlängen (11, 17) aufweisende Walzen (8, 9, 13 bis 16, 108, 109, 113 bis 116, 208, 209, 213 bis 216; 25, 26) besitzt, die gegen die Flansche (3) des Trägerprofils (2, 102, 202) angestellt sind.

5. Vorrichtung nach Anspruch 4,

gekennzeichnet durch

mindestens drei vertikal anstellbare Walzenpaare (5, 6, 7), von denen ein Walzenpaar (5) eine größere Ballenlänge (11) ihrer Walzen als die anderen Walzenpaare (6, 7) aufweist und das Trägerprofil (2) mit einer oberen und einer unteren Walze (8, 9) über die äußeren Flanschflächen abstützt, während die Walzenpaare (6, 7) mit den kürzeren Ballenlängen (17) rechts und links in die Kammern (4) des Trägerprofils (2) eingreifen und sich an die inneren Flanschflächen des Trägerprofils (2) anlegen.

6. Vorrichtung nach Anspruch 4 oder 5, dadurch gekennzeichnet,

daß die Walzenpaare (5, 6 bzw. 5, 7) in einer Flucht übereinanderliegend angeordnet sind.

7. Vorrichtung nach einem oder mehreren der Ansprüche 4 bis 6,

dadurch gekennzeichnet,

daß die obere Walze (108, 208) und die untere Walze (109, 209) versetzt zueinander und vertikal in einer Flucht mit jeweils den ihnen benachbarten Walzen (113, 114 bzw. 115, 116) der Walzenpaare mit den kürzeren Ballenlängen (17) angeordnet sind.

8. Vorrichtung nach Anspruch 7,

dadurch gekennzeichnet,

daß die Walzen (113, 114 bzw. 115, 116; 213, 214 bzw. 215, 216) der Walzenpaare mit den kürzeren Ballenlängen (17) einander in vertikaler Ebene überlappend angeordnet sind.

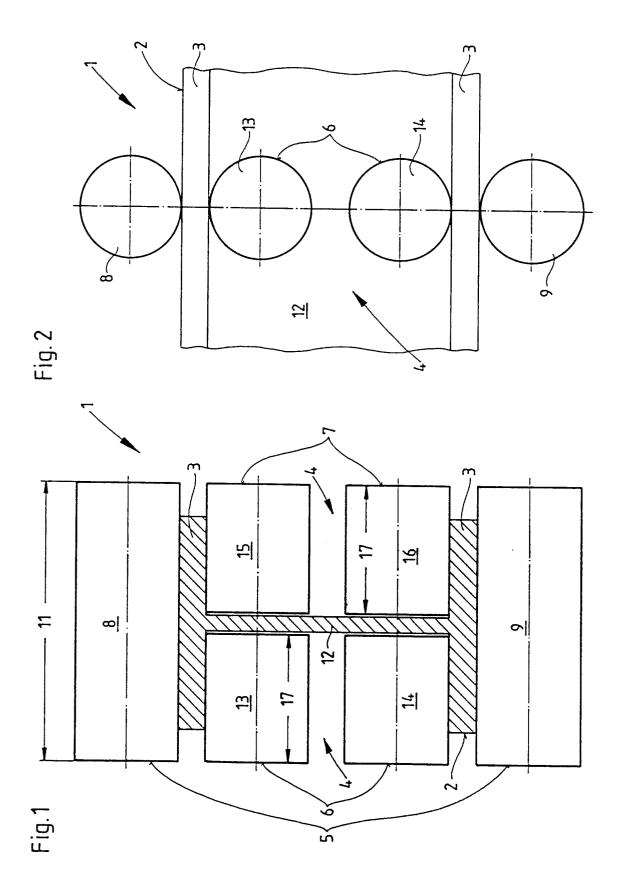
9. Vorrichtung nach Anspruch 7 oder 8,

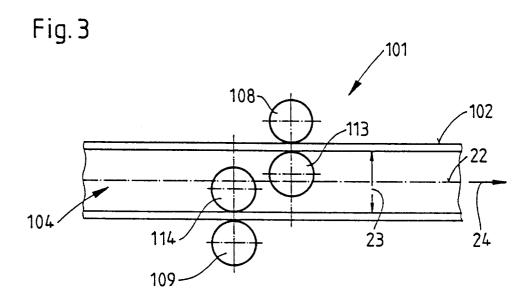
dadurch gekennzeichnet,

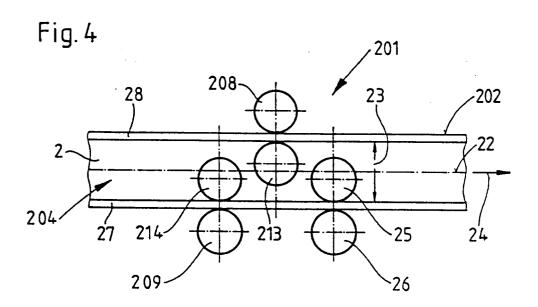
daß mindestens zwei untere bzw. obere Walzen (209, 26) und mindestens eine obere bzw. untere Walze (208) mit ihnen zugeordneten Walzen (213, 214 bzw. 215, 216, 25) kurzer

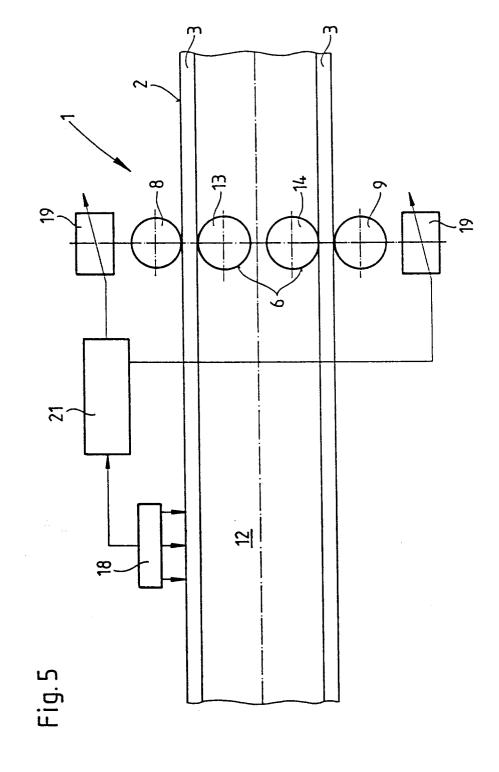
Ballenlänge einen Richtwalzensatz (201) bilden

10. Vorrichtung nach einem oder mehreren der Ansprüche 4 bis 9,


dadurch gekennzeichnet,


daß dem Richtwalzensatz (1, 101, 201) mindestens ein Krümmungssensor (18) vorgeschaltet ist.


11. Vorrichtung nach Anspruch 10,


dadurch gekennzeichnet,

daß der Krümmungssensor (18) über eine Auswertungseinheit (21) mit einer Walzenanstellung (19) verbunden ist.

	EINSCHLÄGIG			
Kategorie	Kennzeichnung des Dokum der maßgebli	ents mit Angabe, soweit erforderlich, chen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.5)
Х		361)(1774) 6. März 1985 (SUMITOMO KINZOKU KOGYO	1,2,4,6	B21D3/05 B21B1/08
Y	* Zusammenfassung *		3,5,7,9, 10,11	
Y	DE-A-3 322 777 (FRA * Anspruch 1 *	AUNHOFER-GESELLSCHAFT)	3,10,11	
Y	1988	1-755)(3239) 19. Oktober		
	& JP-A-63 140 703 () 13. Juni 1988 * Zusammenfassung *	(SUMITOMO METAL IND LTD		
Y	PATENT ABSTRACTS OF vol. 14, no. 361 (No. 1990)	JAPAN M-1006)(4304) 6. August	7,9	RECHERCHIERTE
	& JP-A-02 127 901 (SUMITO) 16. Mai 1990 * Abbildungen 4,6 * * Zusammenfassung *	•		SACHGEBIETE (Int. Cl.5 B21D B21B
			i	
:				
Der vo	orliegende Recherchenbericht wur	de für alle Patentansprüche erstellt	-	
	Recherchenort	Abschlußdatum der Recherche		Prüfer
ſ	DEN HAAG	21 JUNI 1993		GERARD O.J.

EPO FORM 1503 03.82 (P0403)

KATEGORIE DER GENANNTEN DOKUMENTE

- X: von besonderer Bedeutung allein betrachtet
 Y: von besonderer Bedeutung in Verbindung mit einer
 anderen Veröffentlichung derselben Kategorie
 A: technologischer Hintergrund
 O: nichtschriftliche Offenbarung
 P: Zwischenliteratur

- T: der Erfindung zugrunde liegende Theorien oder Grundsätze
 E: älteres Patentdokument, das jedoch erst am oder
 nach dem Anmeldedatum veröffentlicht worden ist
 D: in der Anmeldung angeführtes Dokument
 L: aus andern Gründen angeführtes Dokument

- & : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument