

① Veröffentlichungsnummer: 0 563 770 A1

EUROPÄISCHE PATENTANMELDUNG (12)

(21) Anmeldenummer: 93104834.2

(51) Int. Cl.5: **H05B** 41/29

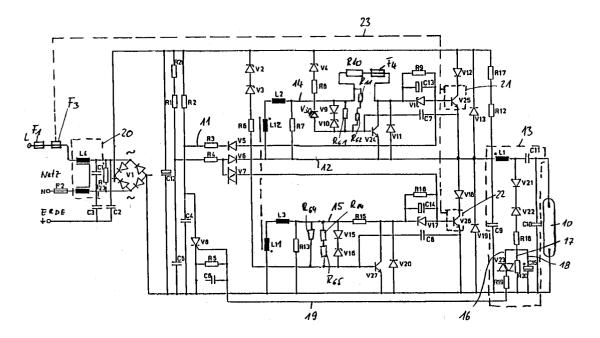
2 Anmeldetag: 24.03.93

Priorität: 30.03.92 DE 4210373

(43) Veröffentlichungstag der Anmeldung: 06.10.93 Patentblatt 93/40

84) Benannte Vertragsstaaten: **DE FR GB NL**

(71) Anmelder: ABB PATENT GmbH Kallstadter Strasse 1 D-68309 Mannheim(DE)


(72) Erfinder: Frücht, Johannes Hinter der alten Schule 1 c W-4770 Soest/Ampen(DE)

(4) Vertreter: Rupprecht, Klaus, Dipl.-Ing. et al c/o ABB Patent GmbH, Postfach 10 03 51 D-68128 Mannheim (DE)

54 Elektronisches Vorschaltgerät.

57) Ein Elektronisches Vorschaltgerät für den Betrieb mindestens einer Leuchtstofflampe explosions- oder schlagwettergechützten Leuchten, mit einem Resonanzkreis, der aus einer als Begrenzungsdrossel ausgebildeten Induktivität und einer parallel zur Leuchtstofflampe liegenden Kapazität gebildet ist, der abwechselnd zwei steuerbare Schalter ansteuert, so daß nach Anstoßen der Schwingung des Resonanzkreises dieser selbsttätig weiter-

schwingt, wodurch die an der Kapazität anstehende Resonanzspannung die Lampe zündet, mit einer im Resonanzkreis angeordneten, in Reihe zur Leuchtstofflampe und zur Kapazität geschalteten weiteren Kapazität, wobei die weitere Kapazität (C11) in Form eines sicheren Kondensators ausgebildet ist, und daß das Vorschaltgerät in seiner Gesamtheit mit Gießharz vergossen ist.

15

20

40

Die Erfindung betrifft ein elektronisches Vorschaltgerät nach dem Oberbegriff des Anspruches 1

Ein derartiges elektronisches Vorschaltgerät ist aus der EP 0 257 600 B1 bekannt geworden; dieses Vorschaltgerät ist speziell für die Schutzart "m" nach EN 50028 konzipiert worden. Die dort realisierte und beschriebene Schaltung kann sowohl bei einem Einfach-Vorschaltgerät für eine Leuchtstofflampe als auch bei einem Doppel-Vorschaltgerät für zwei Leuchtstofflampen eingesetzt werden.

Die Funktion dieses Gerätes ist wie folgt: Die Netzspannung durchläuft ein passives Oberwellenfilter, wird danach gleichgerichtet und mit einem Kondensator gesiebt. An dieser Gleichspannung wird entweder ein selbstschwingender Halbbrücken-Resonanzkreiswandler, wie in der EP 0 257 600 B1 beschrieben, oder es werden zwei unabhängige, selbstschwingende Halbbrücken-Resonanzkreiswandler vorgesehen, deren Schwingfrequenz größer oder gleich 20 kHz ist und die Leuchtstofflampe bzw. -lampen versorgt bzw. versorgen.

Gemäß den geltenden Explosionsschutzvorschriften müssen die Geräte zum Einsatz in explosionsgefährdeten Bereichen in einer bestimmten Zündschutzart, z. B. in einer Sandkapselung oder Vergußkapselung, ausgeführt sein. Sowohl bei einer Einstift-Leuchtstofflampe mit nur einem Einzelstift, als auch bei einer Zweistift-Leuchtstofflampe mit einer speziellen Drehfassung, welche diese beiden Stifte in der Fassung kurzschließt, ist ein Vorheizen der Elektroden nicht erlaubt und auch technisch nicht möglich. Dies liegt daran, daß vorheizbare Elektroden eine Zündguelle für entzündbare Gase wären, die zu Explosionen der umgebenden Atmosphäre beim Bruch des Glaskörpers der Leuchtstofflampe führen könnten. Das sichere Zünden wird bei derartigen Leuchten wegen der fehlenden Vorheizung durch eine höhere Startspannung ausgeglichen.

Der Resonanzschwingkreis nach der EP 0 257 600 B1 besitzt parallel zur Leuchtstofflampe einen Kondensator, und der Parallelschaltung des Kondensators mit der Leuchtstofflampe ist eine Drossel und ein Koppelkondensator (in der Patentschrift mit L1 bzw. C11 bezeichnet) vorgeschaltet; bei der Ausführung nach der EP 0 257 600 B1 muß vor der Lampe eine Lampensicherung vorgesehen sein.

Wenn nun das elektronische Vorschaltgerät vergossen werden soll, dann ist es bei einer Vergußkapselung nach EN 50028 notwendig, daß die Eingangssicherungen ein Schaltvermögen von größer oder gleich 4000 Ampere aufweisen.

Darüberhinaus ist auch notwendig, daß beispielsweise bei einer defekten Abschaltung eine unzulässige Erwärmung nicht auftreten darf.

Aufgabe der Erfindung ist es, ein elektronisches Vorschaltgerät der eingangs genannten Art zu schaffen, welches den Explosionsschutz-Vorschriften genügt und gegenüber dem Bekannten in der Funktion und Wirkungsweise und insbesondere bezüglich der Sicherheit erheblich verbessert worden ist.

Diese Aufgabe wird erfindungsgemaß gelöst durch die kennzeichnenden Merkmale des Anspruches 1.

Wenn der Koppelkondensator als sog. sicheres Bauteil gemäß EN 50028 ausgeführt ist, kann die in Reihe zur Leuchtstofflampe befindliche Lampensicherung entfallen. Damit wird eine Vereinfachung des Vorschaltgerätes erzielt.

In besonders vorteilhafter Weise wird der Koppelkondensator in Form eines sicheren Folienkondensators ausgebildet.

Eingangs ist erwähnt, daß die Eingangssicherungen ein Schaltvermögen von größer oder gleich 4000 Ampere aufweisen müssen.

Wenn nun die im Eingangsschaltkreis in Reihe zu den Eingangssicherungen befindliche Induktivität so ausgebildet ist, wie in Anspruch 3 dargestellt, dann kann die Wicklung zur Erhöhung des Leitungswiderstandes benutzt werden, so daß der maximale Strom durch die Eingangssicherungen herabgesetzt werden kann. Den Leitungswiderstand kann man auch durch einen Widerstand, der in Reihe mit der Sicherung geschaltet ist und nach der EN 50028 als sicheres Bauelement ausgelegt ist, oder durch ein anderes sicheres Bauelement begrenzen. Durch das passive Oberwellenfilter liegt in den Stromkreisen der Sicherungen jeweils ein Teil der sog. Oberwellendrossel. Diese setzt sich aus einer induktiven und einer ohmschen Komponente zusammen. Der ohmsche Anteil der Wicklungen kann ausgenutzt werden, wenn die Oberwellendrossel als sicheres Bauelement ausgeführt ist. Demgemäß wird die Oberwellendrossel "erhöhter Sicherheit" nach EN 50019 ausgebildet und dabei ist der ohmsche Anteil der Wicklungen so bemessen worden, daß die Sicherungen anstatt 4000 Ampere und mehr lediglich nur noch 35 Ampere abzuschalten haben.

In der Steuerschaltung für die Basis jedes steuerbaren Schalters befindet sich je ein Widerstand, der der Strombegrenzung des zur Basis fließenden Stromes dient. In einem Fehlerfall, wenn z. B. die Lampe defekt ist, werden wegen zu hohen Stromes zur Basis der steuerbaren Schalter diese Widerstände erwärmt. Demgemäß ist nach Anspruch 4 einem dieser Widerstände eine temperaturempfindliche Sicherung in Form eines Kaltleiters oder einer Temperatursicherung zugeordnet.

Führt dieser Widerstand einen zu hohen Strom, so führt das zu einer Erwärmung des Widerstandes, und bei einer unzulässig hohen Erwärmung

erhöht sich der Widerstandswert des Kaltleiters bzw. löst die Temperatursicherung aus und unterbricht die Ansteuerung zu den steuerbaren Schaltern, so daß der Lampenstrom abgeschaltet wird. Wenn ein Doppel-Vorschaltgerät vorgesehen ist, wird nur ein Zweig unterbrochen und der andere Zweig kann normal weiterarbeiten. Wenn ein Kaltleiter vorgesehen ist, kann nach Erneuerung der defekten Leuchtstofflampe der defekte Zweig wieder normal weiterarbeiten.

Wenn das Vorschaltgerät vergossen ist, dann ist darauf zu achten, daß beispielsweise bei einer defekten Abschaltung keine unzulässige Erwärmung auftreten darf. Dies wird dadurch vermieden, daß gemäß Patentanspruch 5 elektrisch in Reihe zu den Eingangssicherungen zwischen diesen und den Induktivitäten und thermisch-räumlich den steuerbaren Schaltern zugeordnet je ein temperaturempfindliches Sicherungselement vorgesehen ist, welches mechanisch mit den Kühlfahnen der steuerbaren Schalter verbunden ist.

Wenn nun die z. B. als Transistoren ausgebildeten steuerbaren Schalter durch einen Fehlerfall, der nicht durch die Kaltleiter/Temperatursicherungen an den Basiswiderständen geschützt ist, zu stark erwärmt werden, so löst die entsprechende, den Kühlfahnen der steuerbaren Schalter zugeordnete Temperatursicherung aus und unterbricht die Stromversorgung für das Vorschaltgerät irreversibel.

Anhand der Zeichnung, in der ein Ausführungsbeispiel der Erfindung dargestellt ist, soll die Erfindung näher erläutert und beschrieben werden.

Es zeigt die einzige Figur eine Schaltungsanordnung, bei der die Erfindung verwirklicht ist.

Mit dem elektronischen Vorschaltgerät wird eine Einstiftsockel-Leuchtstofflampe 10 betrieben.

In der Figur 1 ist links der Netzeingang mit den Netzklemmen L und N dargestellt, an denen jeweils eine Schmelzsicherung F1 und F2 angeschlossen ist, an die ein insgesamt mit der Bezugsziffer 20 bezeichnetes passives Oberwellenfilter anschließt, daß aus einer Induktivität L4 und einem Kondensator C₁ besteht. Zwischen der Schmelzsicherung F₁ und der Induktivität L4 des Oberwellenfilters 20 und in Reihe mit diesem befindet sich eine temperaturempfindliche Sicherung F3. Parallel zu diesem Kondensator C₁ befindet sich ein Widerstand R₂₃ und parallel zu dem Widerstand R23 eine Gleichrichterschaltung V₁, die als Zweiwege-Gleichrichter ausgebildet ist und eine Brückenschaltung von vier Dioden zeigt. Zwischen der Netzklemme L und Erde (gekennzeichnet durch das übliche Erdungssymbol) hinter dem Widerstand R23, und zwischen dem der Netzklemme N und Erde, vor dem Widerstand R23, befinden sich je ein Kondensator C2 und C₃.

Parallel zu der Gleichrichterschaltung V1 ist ein Elektrolytkondensator C_{12} und hierzu wiederum parallel eine Reihenschaltung aus zwei Widerständen R_{21} und R_{1} und einem Kondensator C_{5} ; hierzu ist wiederum parallel eine Reihenschaltung aus einem Widerstand R_{2} und einem Kondensator R_{4} geschaltet.

Zwischen dem Widerstand R₁ und dem Kondensator C5 ist eine Leitung 12 angeschlossen, die einen ersten Begrenzungswiderstand R4 und eine Diode V6 enthält und die mit einem Resonanzschwingkreis 13 (siehe weiter unten) verbunden ist. Zwischen dem ersten Begrenzungswiderstand R4 und der Anode der Diode V₅ schließt ein Bein eines als Diac ausgebildeten Schwellwertschalters V₇ an, dessen anderes Bein an die Basis eines ersten steuerbaren Schalters V26 angeschaltet ist. Zwischem dem Widerstand R2 und dem Kondensator C4 schließt eine Leitung 11 an, in der eine Reihenschaltung eines Widerstandes R₃ und einer Diode V₅ geschaltet und die an der Basis eines zweiten steuerbaren Schalters V25 angeschlossen ist. Die Kathode der Diode V5 schließt am Widerstand R₃ an. Hinter der Diode V₆, also kathodenseitig schließt ein Leitungszug 14 an, der unter Zwischenfügung eines zweiten Begrenzungswiderstandes R₁₀, einer Temperatursicherung F₄ und einer Zenerdiode V₁₄ ebenfalls mit deren Anorde mit der Basis des zweiten steuerbaren Schalters V25 verbunden ist. In dieser Leitung 14 befindet sich eine Hilfswicklung L₁₂ einer Begrenzungsdrossel L₁ -(siehe weiter unten) und eine Induktivität L2, die mit der Hilfswicklung L12 in Reihe geschaltet ist. Parallel zu der Reihenschaltung der Induktivität L2 und der Hilfswicklung L₁₂ befindet sich ein Widerstand R₇ und in Reihe mit der Induktivität L₁₂ der zweite Begrenzungswiderstand R₁₀. Zwischen dem Anschlußpunkt des Widerstandes R7 an dem Leitungszug 14 und dem Widerstand R₁₀ befinden sich eine Diode V9 und eine Zenerdiode V10, wobei die Anode der Diode V9 am Leitungszug 14 und deren Kathode mit der Kathode der Zenerdiode V₁₀ verbunden sind. Parallel hierzu ist ein Widerstand R₆₁ geschaltet sowie eine Reihenschaltung zweier Widerstände R₁₁ und R₆₂, wobei der Widerstand R₁₁ an dem Leitungszug 14 angeschlossen ist. Der gemeinsame Anschlußpunkt der Zenerdiode V₁₀ und der Widerstände R₆₁ und R₆₂ ist über eine Zenerdiode V₃₀ und einen Widerstand R₈ sowie einer weiteren Zenerdiode V4 mit deren Kathode an den Pluspol der Gleichrichterschaltung V₁ angeschlossen ist. Der gemeinsame Anschlußpunkt der Widerständes R61 und R62 sowie der Zenerdiode V₁₀ ist an der Basis eines Transistors V₂₄ angeschlossen, dessen Kollektor zwischen dem temperaturempfindlichen Sicherungselement F₄ und der Kathode der Zenerdiode V₁₄ an der Leitung 14 angeschlossen ist und dessen Emitter an

50

15

25

35

der Leitung 12 anschließt. Parallel zu der Kollektor-Emitterstrecke des Transistors V_{24} befindet sich eine Diode V_{11} mit deren Kathode am Kollektor. Parallel zu der Zenerdiode V_{14} ist ein Elektrolytkondensator C_{13} und parallel hierzu ein Widerstand R_9 geschaltet. Zwischen der Basis des Transistors V_{24} und dem Emitter des steuerbaren Schalters V_{25} befindet sich ein Kondensator C_7 . Parallel zu dem Kollektor des Transistors V_{25} und dem Pluspol des Gleichrichters V_1 befindet sich eine Diode V_{13} . Zwischen dem Pluspol der Gleichrichterschaltung V_1 und dem Kollektor des steuerbaren Schalters V_{25} ist eine Diode V_{12} geschaltet. Die Kathode der Diode V_{12} schließt am Kollektor des Schalters V_{25} und die der Diode V_{13} an dessen Emitter.

An den Emitter des steuerbaren Schalters V25 bzw. an die Leitung 12 schließt die Kathode einer Diode V₁₈ und der erste steuerbare Schalter V₂₆ an, dessen Emitter mit dem Minuspol der Gleichrichterschaltung V₁ verbunden ist. Die Basis des steuerbaren Schalters V26 schließt über einen Leitungszug 15 ebenfalls an den Minuspol des Gleichrichters V₁ an, wobei in diesem Leitungszug 15 eine Zenerdiode V₁₇ mit ihrer Anode an der Basis des Schalters V26, ein Widerstand R15, eine weitere Induktivität L3 und eine zweite Hilfswicklung der Begrenzungsdrossel L₁ anschließt. Parallel zur Reihenschaltung der Induktivität L3 und der zweiten Hilfswicklung L₁₁ befindet sich ein Widerstand R₁₃. An dem gemeinsamen Verbindungspunkt der Induktivität L3 und dem Widerstand L13 schließt ein Bein eines Widerstandes R₆₄ an, dessen anderes Bein über einen Widerstand R₆ und zwei Zenerdioden V2 und V3 mit deren Kathode zum Pluspol des Gleichrichters V₁ verbunden sind. Parallel zum Widerstand R64, vor dem Widerstand R15 ist eine Diode V₁₅ und eine Zenerdiode V₁₆, deren Kathoden miteinander verbunden sind, angeschlossen. Ebenfalls parallel zum Widerstand R64 liegt die Reihenschaltung zweier Widerstände R₁₄ und R₆₅, wobei R₁₄ am Leitungszug 15 angeschlossen ist; der gemeinsame Anschlußpunkt des Widerstandes R₁₄ und der Kathode der Diode V₁₆ ist auf die Basis eines Transistors V27 geschaltet; parallel zu dessen Kollektor-Emitterstrecke befindet sich eine Diode V₂₀, wobei der Kollektor zwischen dem Widerstand R₁₅ und der Zenerdiode V₁₇ an der Leitung 15 und der Emitter des Transistors V27 an dem Minuspol des Gleichrichters V₁ angeschaltet ist. Zwischen der Basis des Transistors V_{27} und dem Emitter des steuerbaren Schalters V26 ist ein Kondensator C₈ geschaltet. Der Schwellwertschalter bzw. der Diac V7 ist zwischen der Zenerdiode V₁₇ und der Basis des steuerbaren Schalters V₂₆ geschaltet und parallel zu der Zenerdiode V₁₇ befindet sich ein Elektrolytkondensator C₁₄ und parallel dazu ein Widerstand R₁₆.

Der Resonanzkreis 13 ist gebildet aus einer Kapazität C₁₀, die parallel zur Leuchtstofflampe 10 geschaltet ist, sowie der damit in Reihe liegenden Begrenzungsdrossel L₁ die in der Leitung 12 liegt; parallel zu der KollektorEmitterstrecke des steuerbaren Schalters 26 bzw. der Diode V₁₉ ist ein Kondensator C₉ geschaltet und zwischen der Kapazität C₁₀ und der Begrenzungsdrossel L₁ befindet sich ein Kondensator C₁₁. An der Verbindungsstelle der Begrenzungsdrossel L1 und des Kondensators C₁₁ schließt eine Reihenschaltung einer Diode V₂₁, einer Zenerdiode V₂₂ und eines Widerstandes R₁₈ an, dessen anderes Bein sich aufteilt in drei Leitungszüge 16, 17, 18, von denen der Leitungszug 16 einen Schwellwertschalter V23 und einen Widerstand R₁₉, der Leitungszug 17 einen Widerstand R₂₀ und der Leitungszug 18 einen Elektrolytkondensator C₁₅ aufweisen; deren andere Beine sind wieder mit dem Minuspol der Gleichrichterschaltung V₁ zusammengeschaltet. An das freie Bein des Widerstandes R₁₉ ist über eine Leitung 19 das Gate eines Thyristors V₈ geschaltet; zwischen dem Gate und der Kathode befindet sich ein Widerstand R₅ und parallel dazu ein Kondensator C₆ und die Anode ist zwischen dem Widerstand R₂ und dem Kondensator C4 angeschaltet.

Dem Widerstand R_{10} ist eine temperaturempfindliche Sicherung F_4 in Form eines Kaltleiters oder eine Thermosicherung zugeordnet. Die Sicherung F_3 ist thermisch-räumlich den steuerbaren Schaltern V_{25} und V_{26} zugeordnet, wie durch die strichlierte Linie 23 und die Kanten 21 und 22 angedeutet ist. Dabei ist die Sicherung F_3 den Kühlfahnen der steuerbaren Schlater V_{25} , V_{26} zugeordnet.

Die Wirkungsweise der beschriebenen Anordnung ist wie folgt:

An den Netzklemmen L, N liegt Netzspannung an. In dem aus der Induktivität L4 und dem Kondensator C₁ gebildeten Oberwellenfilter wird die Netzspannung gefiltert, in der Gleichrichterschaltung V₁ gleichgerichtet und durch den Kondensator C₁₂, der als Elektrolytkondensator ausgebildet ist, gesiebt. Über die Widerstände R₁ und R₂₁ lädt sich der Kondensator C5 auf. Wenn dieser etwa 32 Volt erreicht, schaltet der Diac V₇ durch und gibt einen durch den Widerstand R4 begrenzten Stromimpuls auf die Basis des als Transistor ausgebildeten steuerbaren Schalters V26, so daß dieser kurzzeitig leitend wird. Über die Widerstände R₁₇ und R₁₂ war der Kondensator vorher auf die gleichgerichtete Netzspannung aufgeladen worden. Durch das kurzzeitige Leitendwerden des Transistors V26 wird mit Hilfe der Kondensatoraufladung aus dem Kondensator C9 der Schwingkreis 13, der die Induktivität bzw. die Begrenzungsdrossel L1 und die Kapazität C₁₀ enthält, angestoßen.

50

Die Begrenzungsdrossel L_1 besitzt die Steuerwicklungen L_{11} und L_{12} , die beim Einsetzen der Resonanzkreisschwingungen so geschaltet sind, daß die Transistoren V_{26} , V_{25} abwechselnd leitend werden. Dadurch schwingt die Schaltung selbständig weiter und aufgrund der hohen Resonanzspannung an der Kapazität C_{10} wird die Leuchtstofflampe 10 gezündet. Der Lampenstrom wird von der Begrenzungsdrossel L_1 begrenzt.

Der Blindstrom aus der Begrenzungsdrossel L_1 fließt über die Dioden V_{13} , V_{19} an den Kondensator C_{12} zurück. Die Dioden V_{12} und V_{18} verhindern dabei den Inversbetrieb jeweils der Transistoren V_{25} und V_{26} . Schwingt der Resonanzkreis, dann werden weiteren Ansteuersignale unterdrückt, da der Kondensator C_5 über die Diode V_6 ständig im Takt der Schwingfrequenz entladen wird.

Im folgenden wird die Wirkungsweise der Ansteuerschaltung des Transistors V_{26} beschrieben; die Ansteuerschaltung des Transistors V_{25} ist die gleiche, so daß die hier dargestellten Wirkungen auch bei der Ansteuerschaltung des Transistors V_{26} auftreten.

Die von der Begrenzungsdrossel L₁ kommende Spannung hat einen Strom durch die Induktivität L_3 , den Widerstand R_{15} und R_{16} in die Basis des Transistors V₂₆ zur Folge. Der Spannungsabfall am Widerstand R₁₆ lädt den Kondensator C₁₄ auf, der mit der Zenerdiode V₁₇ auf einen Spannungswert begrenzt wird, der ca. bei 5,6 Volt liegt. Gleichzeitig lädt sich der Kondensator C₈ über die Widerstände R64, R15 und R14 auf. Bei Erreichen einer ausreichenden Spannungshöhe (0,7 volt) wird der Transistor V27 leitend und schaltet mit Hilfe der Kondensatorladung des Kondensators C₁₄ eine negative Spannung an die Basis des Transistors V₂₆, der in den Sperrzustand übergeht, wodurch sich die Spannungsrichtung an der Drossel L1 umkehrt, so daß die Wicklung der Begrenzungsdrossel eine positive Spannung schaltet, die in der Folge dann den anderen Transistor V25 in leitenden Zustand steuert. Die Widerstände R₁₁ und R₁₄ sind Drahtbrücken und dienen zur Leistungsanpassung des EVG's. Bei einer zu geringen Ausgangsleistung werden die Drahtbrücken durchtrennt, wodurch sich die Aufladezeit des Kondensators C8 vergrößert und die Frequenz herabgesetzt wird. Somit ergibt sich ein höherer Ausgangsstrom bzw. eine höhere Ausgangsleistung des EVG's.

Bei erstmaligem Start oder bei fehlender Leuchtstofflampe 10 steht am Kondensator C_{10} - (Resonanzkondensator) und damit auch an den Lampenanschlüssen theoretisch eine lediglich durch die Güte des Kreises gedämpfte, sehr hohe Resonanzspannung an. Aus diesem Grund wird der Steuerstrom für die Transistoren V_{26} und V_{25} aus den Hilfswicklungen L_{11} und L_{12} der Resonanzkreisdrossel bzw. Begrenzungsdrossel L_{1} entnom-

men, um die Güte des Kreises zu bedämpfen.

Weiterhin wird über die Diode V_{15} und die Diode V_{16} bei Überschreiten eines dadurch gegebenen Grenzwertes der Transistor V_{27} leitend und damit der Transistor V_{26} abgeschaltet. Dadurch wird die Zündspannung für die Leuchtstofflampe sicher auf 660 Volt effektiv begrenzt.

Bei fehlender Leuchtstofflampe lädt sich der Kondensator C₁₅ über die Diode V₂₁, die Diode V22 und den Widerstand R18 auf. Nach ungefähr drei Sekunden ist eine Spannung von 32 Volt erreicht, so daß der Diac V32 durchbricht und einen Stromimpuls fließt, der mit dem Widerstand R₁₉ in das Gate des Thyristors V₈ fließt, der dadurch durchgeschaltet wird und über den Widerstand R3 und die Diode V5 den Transistor V25 in den Sperrzustand schaltet. Hierdurch wird der Wandler abgeschaltet, wodurch eine unzulässig lange Spannungsbelastung der vom Vorschaltgerät abgehenden Leitungen vermieden wird. Der Haltestrom für den Thyristor V₈ liefert über den Widerstand R₂ die gleichgerichtete Netzspannung. Nach kurzzeitigem Unterbrechen der Klemmen L, N ist das Gerät wieder startbereit.

Beim Betrieb des Gerätes, d. h. mit brennender Leuchtstofflampe 10, wird wie beschrieben, die Spannungszeitfläche der Bregrenzungsdrossel L_1 an den Steuerwicklungen L_{11} und L_{12} mit Hilfe eines Integrationsgliedes gemessen, das aus den beiden Komponenten, dem Widerstand R_{64} und dem Kondensator C_8 , zusammengesetzt ist, gemessen. Die Folge ist, daß bei höher werdender Gleichspannung aufgrund höherer Netzspannung in Folge der Transistor V_{26} früher ausgeschaltet wird. Damit wird eine relativ stabile Schwingfrequenz des Wandlers erreicht.

Als weitere Maßnahme zur Stabilisierung des Lampen- und damit auch des Lichtstromes dienen die Zenerdioden V_2 , V_3 und der Widerstand R_6 . Bei Überschreiten der Zenerspannung fließt ein zusätzlicher Strom in den Kondensator C_8 . Dadurch wird der Transistor V_{27} eher leitend und schaltet den Transistor V_{26} frühzeitiger ab. In der Ansteuerschaltung des Transistors V_{25} übernehmen dies die Diode V_4 , V_{30} und der Widerstand R_8 . Damit ändert sich bei steigender Eingangsspannung die Schwingfrequenz, wodurch der Lampenstrom relativ stabil bleibt.

Wie eingangs erwähnt, ist die zwischen der Sicherung F_1 und der Induktivität L_4 eingeschaltete Sicherung F_3 thermisch-räumlich entsprechend der Wirklinie 23 mit den steuerbaren Schaltern V_{25} und V_{26} verbunden, so daß eine Erwärmung eines der beiden Steuerschalter V_{25} und V_{26} zum Ansprechen der Sicherung führt.

Wenn in ähnlicher Weise auch der Widerstand R₁₀ sich unzulässig erwärmt, wird über ein temperaturbegrenzendes Element, welches ebenfalls ent-

10

15

20

25

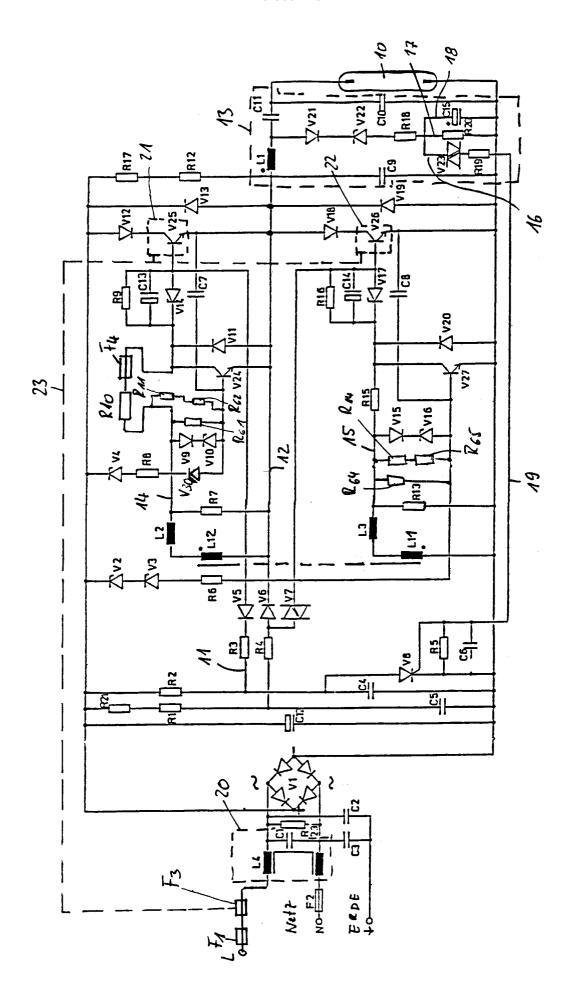
35

40

50

55

weder eine Sicherung oder ein Kaltleiter sein kann, der Basissteuerstrom reduziert bzw. abgeschaltet, damit der steuerbare Schalter V_{25} ausgeschaltet wird.


Der Kondensator C_{11} , der erfindungsgemäß als sicherer Kondensator und somit als Folienkondensator ausgebildet ist, hilft mit, den Resonanzschaltkreis 13 sicher auszubilden, so daß dort eine Sicherung, wie sie beispielsweise in dem Vorschaltgerät nach der EP 0 257 600 A1 vorhanden ist, wegfallen kann.

Patentansprüche

- 1. Elektronisches Vorschaltgerät für den Betrieb mindestens einer Leuchtstofflampe, z. B. einer TLX- oder einer Zweistiftsockel-Leuchtstofflampe mit einer speziellen Drehfassung, in explosionsoder schlagwettergechützten Leuchten, mit einem Resonanzkreis, der aus einer als Begrenzungsdrossel ausgebildeten Induktivität und einer parallel zur Leuchtstofflampe liegenden Kapazität gebildet ist, der abwechselnd zwei steuerbare Schalter ansteuert, so daß nach Anstoßen der Schwingung des Resonanzkreises dieser selbsttätig weiterschwingt, wodurch die an der Kapazität anstehende Resonanzspannung die Lampe zündet, mit einer im Resonanzkreis angeordneten, in Reihe zur Leuchtstofflampe und zur Kapazität geschalteten weiteren Kapazität, dadurch gekennzeichnet, daß die weitere Kapazität (C11) in Form eines sicheren Kondensators ausgebildet ist, und daß das Vorschaltgerät in seiner Gesamtheit mit Gießharz vergossen ist.
- Elektronisches Vorschaltgerät nach Anspruch
 dadurch gekennzeichnet, daß die weitere
 Kapazität in Form eines sicheren Folienkondensators ausgebildet ist.
- 3. Elektronisches Vorschaltgerät, nach Anspruch 1 oder 2, mit einem als passives Oberwellenfilter ausgebildeten Eingangsschaltkreis, mit je einer Eingangssicherung und je einer in Reihe dazu befindlichen Induktivität, dadurch gekennzeichnet, daß die Induktivität eine Wicklung aufweist, deren Wicklungsdraht ein Doppellackdraht ist und deren Windungen so bemessen sind, daß der durch die Windungen bestimmte ohmsche Widerstand den Eingangsstrom auf Werte unter ca. 35 Ampere begrenzt.
- 4. Vorschaltgerät nach einem der vorherigen Ansprüche, mit je einem in der Zuleitung zur Basis der steuerbaren Schalter befindlichen Widerstand, dadurch gekennzeichnet, daß in

Reihe zu einem der Widerstände ein temperaturempfindliches Sicherungselement geschaltet und ihm thermisch-räumlich zugeordnet ist.

5. Vorschaltgerät nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß elektrisch in Reihe zu den Eingangssicherungen zwischen diesen und den Induktivitäten und thermisch-räumlich den steuerbaren Schaltern zugeordnet je eine thermische Sicherung angeordnet ist.

EP 93 10 4834

EINSCHLÄGIGE DOKUMENTE				
Kategorie	Kennzeichnung des Dokume der maßgeblic	nts mit Angabe, soweit erforderlich, hen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.5)
A,D	EP-A-0 257 600 (CEA * das ganze Dokumen	G) t *	1	H05B41/29
A	EP-A-O 435 228 (ZUM * Spalte 5, Zeile 5 Abbildungen 1,4D * * Zusammenfassung *	9;		
A	US-A-4 455 509 (CRU	M ET AL.)		
A	DE-A-3 303 374 (WEI	LAND & KASPAR)		
				RECHERCHIERTE SACHGEBIETE (Int. Cl.5)
				H05B
Der vo	Recherchenort	le für alle Patentansprüche erstellt Abschlußdatum der Recherche		Prifer
		07 MAI 1993		SPEISER P.
X : vor Y : vor	KATEGORIE DER GENANNTEN I besonderer Bedeutung allein betracht besonderer Bedeutung in Verbindung eren Veröffentlichung derselben Kate beslegischer Hintergrund	E: ilteres Pate tet nach dem A g mit einer D: in der Anm gorie L: aus andern	ntdokument, das jedo nmeldedatum veröffe eldung angeführtes D Gründen angeführtes	ntlicht worden ist okument
O : nic	hnologischer Hintergrund htschriftliche Offenbarung ischenliteratur			ilie, übereinstimmendes