

① Veröffentlichungsnummer: 0 564 778 A1

EUROPÄISCHE PATENTANMELDUNG (12)

(21) Anmeldenummer: 93102028.3

(51) Int. Cl.5: **C22C** 33/02

2 Anmeldetag: 10.02.93

30) Priorität: 07.03.92 DE 4207255

(43) Veröffentlichungstag der Anmeldung: 13.10.93 Patentblatt 93/41

 Benannte Vertragsstaaten: AT DE DK ES FR GB IT

71) Anmelder: GRUNDFOS A/S Poul Due Jensens Vej 7-11 DK-8850 Bjerringbro(DK) Anmelder: FERRITSLEV JERNWAREFABRIK

Nyborgvej 27 DK-5863 Ferritslev(DK)

2 Erfinder: Mikkelsen, Niels Strathe

Bjerringholmvej 20 DK-8850 Tiele(DK) Erfinder: Jensen, Mogens

Hajstrupgade 49

DK-6100 Haderslev(DK)

(4) Vertreter: Vollmann, Heiko, Dipl.-Ing. et al Patentanwälte Wilcken & Vollmann, Musterbahn 1 **D-23552 Lübeck (DE)**

Sinterwerkstoff.

57) Das Pulver für die Herstellung des Sinterformkörpers besteht aus einem Grundwerkstoff und einem Zusatzwerkstoff, wobei der Grundwerkstoff mindestens 90 Gewichtsprozente des fertigen Pulvers ausmacht. Der Grundwerkstoff besteht aus einem austenitischen Stahl mit mindestens 12 % Chrom, 6 % Nickel, 1 % Molybdän, max. 1 % Silizium und max. 0,05 % Kohlenstoff. Der Zusatzwerkstoff weist mindestens 55 % Eisen, 10 bis 20 % Phosphor und 10 bis 20 % Molybdän auf. Dieses Pulver kann unter einem Preßdruck von 500 bis 800 MPa zu einem Preßling und nachfolgend zwischen 1.100°C und 1.200 °C zu einem Formkörper gesindertert werden, der korrosionsbeständig, schweißbar und dicht ist und im kontinuierlichen Prozeß kostengünstig gefertigt werden kann.

10

15

25

30

40

50

55

Die Erfindung betrifft einen Sinterwerkstoff, also insbesondere die Ausgangsstoffe und die Verfahrensparameter zur Herstellung dieses Werkstoffs.

Sinterwerkstoffe haben sich in den letzten Jahren für Bauteile der Massenfertigung mehr und mehr durchgesetzt. Es ist bekannt, daß Werkstücke aus Sintermaterial bei hohen Stückzahlen die Fertigungskosten im Vergleich zu konventionell hergestellten Werkstücken senken können, insbesondere durch ihre hohe Maßhaltigkeit im Vergleich zu Gußteilen oder anderen durch Kalt- oder Warmverformung erzeugten Werkstücken bei vergleichsweise geringen Werkstückkosten.

Der Einsatz von Sinterwerkstoffen bietet sich daher prinzipiell auch bei der Fertigung von in großen Stückzahlen hergestellten Pumpen, insbesondere Gehäuseteilen von Heizungsumwälzpumpen an. Eine wirtschaftliche Anwendung von Sinterwerkstoffen für den vorgenannten Zweck scheiterte jedoch bisher an den Materialanforderungen. Denn neben den üblichen Festigkeitseigenschaften muß der Werkstoff für diesen Einsatzzweck wasserdicht, korrosionsbeständig und nach Möglichkeit auch schweißbar sein. Ein solcher Sinterwerkstoff ist jedoch nicht bekannt. Zwar sind austenitische Sinterwerkstoffe als solche bekannt, diese erfüllen zwar die Anforderungen an die Korrosionsbeständigkeit, sind jedoch entweder nicht schweißbar oder nicht dicht.

Umgekehrt sind Sinterwerkstoffe ferritischer Basis bekannt, die dicht und auch schweißbar sind, sie erfüllen jedoch nicht die hier gestellten Anforderungen an die Korrosionsbeständigkeit.

Der vorliegenden Erfindung liegt daher die Aufgabe die zugrunde, einen Ausgangswerkstoff sowie ein Verfahren zur wirtschaftlichen Herstellung eines korrosionsfesten, schweißbaren und dichten Sinterformkörpers zu schaffen.

Erfindungsgemäß wird diese Aufgabe durch ein Pulver mit den in Anspruch 1 aufgeführten Merkmalen gelöst, das nach dem in Anspruch 11 angegebenen Verfahren zu einem Sinterformkörper verarbeitet wird. Die Unteransprüche 2 bis 9 sowie 11 bis 16 stellen vorteilhafte Ausgestaltungen der Zusammensetzung der Ausgangsstoffe sowie der Verfahrensparameter dar.

Der erfindungsgemäße Sinterwerkstoff ist aufgrund seines austenitischen Grundwerkstoffes in ausreichendem Maße korrosionsbeständig, er ist zudem schweißbar und auch dicht. Letztere Eigenschaft beruht im wesentlichen auf der Wahl des Zusatzwerkstoffs. Insbesondere der im Zusatzwerkstoff enthaltene Phosphor bzw. die Phosphorverbindung bildet während des Sinterns mit dem Grundwerkstoff eine flüssige Phase, die aufgrund von Kapillarwirkung die Zwischenräume des Grundwerkstoffs ausfüllt. Es können sich hierbei durchaus größere Hohlräume zwischen den Teilchen des

Grundwerkstoffs bilden, jedoch wird der Gesamtverbund dieser Teilchen durch die flüssige Phase geschlossen. Hierdurch entsteht ein vollständig dichter Werkstoff.

Es gibt zahlreiche Möglichkeiten, diese durch Phosphor und ein weiteres Element gebildete flüssige Phase zu schaffen, beispielsweise durch Nickel-, Zinn-, Chrom- oder Kupferphosphorverbindungen. Bevorzugt wird jedoch eine Phosphor-Eisen-Verbindung in den beanspruchten Mengenverhältnisse eingesetzt. Es können auch Phosphor und die weiteren Legierungselemente des Zusatzwerkstoffs einzeln zugegeben werden. Dann erfolgt während des Sinterns zunächst eine partielle Legierung des Zusatzwerkstoffs und dann das vorbeschriebene Eindringen in die Zwischenräume des Grundwerkstoffs.

Versuche haben ergeben, daß der Zusatzwerkstoff nur aus Anteilen von Eisen und Phosphor bestehen kann, d.h., daß der Zusatz von Molybdän ggf. auch entfallen kann. Insbesondere für das vorgenannte Anforderungsprofil hat es sich jedoch als besonders vorteilhaft erwiesen, dem Zusatzwerkstoff auch Molybdän in den angegebenen Mengen zuzusetzen.

Es ist seit etwa der Mitte dieses Jahrhunderts bekannt, Phosphorlegierungen, insbesondere Eisenphosphit zum Sintergrundwerkstoff hinzuzusetzen, es wird hier beispielsweise auf DE 26 48 262 C2 verwiesen. Solcher Zusatz von Phosphor, wie er im Stand der Technik beschrieben ist, erfolgt jedoch stets bei nicht austenitischen Grundwerkstoffen. Auch dort bildet der Phosphor beim Sintern die vorerwähnte flüssige Phase, mit dem wesentlichen Unterschied jedoch, daß das in der flüssigen Phase befindliche Phosphor in Abhängigkeit von der Sinterzeit diffundiert, d.h. mit dem Grundwerkstoff eine chemische Verbindung eingeht. Hierdurch werden bei kleinen Phosphorgehalten die Festigkeitseigenschaften sowie auch die Fließfähigkeit gesteigert, insbesondere die Abriebsfestigkeit; eine dichtende Wirkung, wie sie bei der vorliegenden Erfindung in vorteilhafter Weise auftritt, ist dort jedoch nicht zu beobachten, da die flüssige Phase bereits vor dem Erstarren nicht mehr existent ist.

Der durch die Erfindung geschaffene Formkörper weist neben den vorerwähnten Vorzügen wie Korrosionsbeständigkeit, Schweißbarkeit und Dichtheit weitere für die Praxis bedeutsame Vorteile auf. Hierbei ist insbesondere die hohe Dimensionsstabilität zu beobachten. Gerade bei dem aus dem Stand der Technik bekannten ferritischen Sintergrundwerkstoffen, denen als Zusatzwerkstoff eine Phosphorverbindung zugesetzt worden ist, ist ein hoher Schwund nach dem Sintern festzustellen, der beispielsweise in einer Größenordnung von 6 % bis 7 % liegt.

15

25

40

45

50

55

Der erfindungsgemäße Sinterwerkstoff bietet verfahrenstechnisch den besonderen Vorteil, daß die Sintertemperatur unter 1.200 °C, in der Regel sogar unter 1.150 °C (je höher der Phosphoranteil, desto niedriger kann die Sintertemperatur liegen) liegt, so daß das Sintern in konventionellen Durchlauföfen unter Schutzgasatmosphäre, beispielsweise Wasserstoff oder Stickstoff, erfolgen kann. Bauteile können also in einer kontinuierlichen Fertigung hergestellt werden, was zum einen kostengünstig und zum anderen vom Fertigungsablauf her günstiger ist.

Versuche haben gezeigt, daß der Zusatzwerkstoff neben Phosphor auch Molybdän aufweisen sollte, entweder in ungebundener oder in gebundener Form.

Um die Dichtheit des späteren Formkörpers sicherzustellen, sollte neben den in den Ansprüchen angegebenen Verfahrensparametern wie Preßdruck, Sinterzeit und Sintertemperatur die Korngröße ausreichend klein sein. Für den Grundwerkstoff sollte die Korngröße nicht über 150 µm liegen. Beim Zusatzwerkstoff hat sich ein mittlerer Korndurchmesser von bis zu 45 µm als brauchbar erwiesen. Besonders gute Ergebnisse sind bei einem Korndurchmesser von bis zu 30 µm erreicht worden.

Um den ersten Preßvorgang zur Herstellung des Preßlings zu optimieren, sollte dem Pulver ein Schmierstoff zugemischt werden, bevorzugt in einer Größenordnung von etwa einem Gewichtsprozent. Derartige Schmierstoffe sind in der Sintertechnik bekannt. Damit der Schmierstoff das Sintern nicht behindert, wird dieser durch ein Vorsintern bei etwa 400°C nach dem Pressen entfernt. Daran schließt sich der eigentliche Sintervorgang zwischen 1.100 °C und 1.200 °C an. Die Sintertemperatur ist im wesentlichen abhängig vom Phosphoranteil im Zusatzwerkstoff und dem Verhältnis zwischen Zusatzwerkstoff und Grundwerkstoff. Bei dem nachfolgend aufgeführten bevorzugten Ausgangsmaterial liegt die Sintertemperatur bei etwa 1.150°C bei einer Sinterzeit von etwa 40 Minuten.

Nachfolgend wird die Zusammensetzung eines bevorzugten Pulvers für die Herstellung eines Sinterkörpers, beispielsweise ein Teil eines Pumpengehäuses, angegeben:

Als Grundwerkstoff wird AISI 316 L eingesetzt, es handelt sich hierbei um einen austenitischen Stahl in Pulverform mit folgenden Legierungsanteilen (in Gewichtsprozenten):

Chrom 16 bis 18 %
Nickel 10 bis 14 %
Molybdän 2 bis 3 %
Silizium max. 1 %
Mangan max. 2 %
Kohlenstoff max. 0,03 %

Das Pulver hat einen mittleren Korndurchmesser von 80 μm.

Als Zusatzwerkstoff wird eine Mischung aus Fe_3P und reinem, ungebundenem Molybdän eingesetzt. Bezogen auf das fertige Pulver (Grundmaterial und Zusatzstoff) beträgt der Fe_3P -Anteil 6 % bis 7 % und der Molybdän-Anteil 0,5 % bis 1 %.

Sämtliche in den Patentansprüchen und der vorangegangenen Beschreibung genannten Prozentangaben sind Gewichtsprozentangaben.

Patentansprüche

 Pulver für die Herstellung eines Sinterkörpers, bestehend aus einem Grundwerkstoff und einem Zusatzwerkstoff jeweils in Pulverform und folgenden Zusammensetzungen (in Gewichtsprozenten des Pulvers):

Grundwerkstoff mindestens 90 %

- austenitischer Stahl mit folgenden Legierungselementen (in Gewichtsprozenten bezogen auf den Grundwerkstoff):
 - mindestens 12 % Chrom
 - mindestens 6 % Nickel
 - mindestens 0,5 % Molybdän
 - maximal 2 % Silizium
 - maximal 0,1 % Kohlenstoff

Zusatzwerkstoff maximal 10 %

- mit Anteilen von Eisen, Phosphor und Molybdän in folgender Zusammensetzung (in Gewichtsprozenten bezogen auf den Zusatzwerkstoff):
 - 5 bis 20 % Phosphor
 - 0 bis 25 % Molybdän
 - mindestens 55 % Eisen
- Pulver nach Anspruch 1, dadurch gekennzeichnet, daß der Grundwerkstoff eine Korngröße von bis zu 150 μm aufweist.
- 3. Pulver nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Zusatzwerkstoff einen mittleren Korndurchmesser von bis zu 45 µm, vorzugsweise von etwa 15 µm aufweist.
- 4. Pulver nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Pulver aus 93 % bis 94,5 % Grundwerkstoff und 5,5 % bis 7 % Zusatzwerkstoff besteht.
- Pulver nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Zusatzwerkstoff aus Fe₃P und ungebundenem Molybdän besteht.

- 6. Pulver nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Zusatzwerkstoff aus 78 % bis 95 % Fe₃P und 5 % bis 22 % Molybdän besteht.
- 7. Pulver nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Zusatzwerkstoff aus Fe₃P und Fe_xMo_v besteht.
- 8. Pulver nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet daß der Zusatzwerkstoff zu 74 % aus Eisen, zu 16 % aus Phosphor und zu 10 % aus Molybdän besteht.
- 9. Pulver nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das als Grundwerkstoff AISI 316 L verwendet wird.
- 10. Verfahren zur Herstellung eines korrosionsfesten, schweißbaren und dichten Formkörpers, gekennzeichnet durch folgende Verfahrensschritte:
 - a) Pressen eines Pulvers nach einem der Ansprüche 1 bis 10 unter einem Preßdruck von 500 bis 800 MPa zu einem Preßling
 - b) Sintern des Preßlings in Schutzgasatmosphäre oder Vakuum bei einer Temperatur, die über der Schmelztemperatur der durch den Zusatzwerkstoff und den Grundwerkstoff gebildeten Phase, jedoch unter der Schmelztemperatur des Grundwerkstoffs
 - c) erforderlichenfalls Kalibrieren durch Nachpressen
- 11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß der Preßdruck bei der Herstellung des Preßlings etwa 600 MPa beträgt.
- 12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Sintertemperatur im Bereich von 100°C unter oder über der Schmelztemperatur des Zusatzwerkstoffs liegt.
- 13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Sintertemperatur zwischen 1.100° C und 1.200° C liegt, vorzugsweise etwa 1.150° C beträgt.
- 14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Sinterzeit 20 bis 120 min. vorzugsweise 30 bis 45 min. beträgt.
- 15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß dem

Pulver vor dem ersten Preßvorgang bis zu 1,2 % (Gewichtsprozent) Schmiermittel zugesetzt wird.

5 sprüche, dadurch gekennzeichnet, daß der Preßling bei einer Temperatur von etwa 400° C vorgesintert wird.

15

10

20

25

35

40

45

50

55

4

16. Verfahren nach einem der vorhergehenden An-

EINSCHLÄGIGE DOKUMENTE Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, Betrifft					VI ACCIDIVATION DED
ategorie	Kennzeichnung des Dokume der maßgeblic	nts mit Angabe, sowei hen Teile	t ertorderisch,	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.5)
X	CHEMICAL ABSTRACTS, vol. 105 Columbus, Ohio, US; abstract no. 28060, KANO, MAKOTO ET AL. 'Abrasion-resistant sintered alloys' * Zusammenfassung * & JP-A-60 255 958 (NISSAN MOTOR CO., LTD.) 17. Dezember 1985			1,9-16	C22C33/02
A	FR-A-2 658 441 (MIBA SINTERMETALL A. * Ansprüche 1,5,8 *		L A.G.)	1-16	
A	EP-A-0 099 015 (ROBERT BOSCH) * Ansprüche 1,8 *			1-16	
A	DE-A-3 730 082 (MAZDA MOTOR CO) * Ansprüche 1,8 *			1-16	
					RECHERCHIERTE SACHGEBIETE (Int. Cl.5)
					C22C
Der v	orliegende Recherchenbericht wurd	le für alle Patentansn	rüche erstellt	_	
	Recharchement		ım der Recherche	1	Prithr
	DEN HAAG	26 JULI			SCHRUERS H.J.
Y : vo	KATEGORIE DER GENANNTEN I n besonderer Bedeutung allein betrach n besonderer Bedeutung in Verbindun deren Veröffentlichung derselben Kate	tet g mit einer	E : iliteres Patentic	kument, das jed sidedatum veröffe ng angeführtes I	mtlicht worden ist Ookument

& : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument

EPO FORM 1503 02.82 (P0403)

X: von besonderer Bedeutung allein betrachtet
 Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie
 A: technologischer Hintergrund
 O: nichtschriftliche Offenbarung
 P: Zwischenliteratur