

(1) Publication number: 0 567 343 A2

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 93303188.2

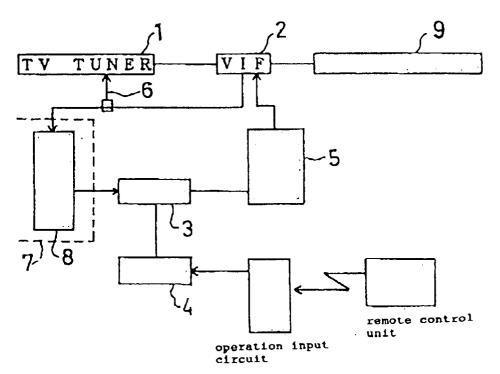
(51) Int. CI.⁵: **H04N 17/04**

(22) Date of filing: 23.04.93

(30) Priority: 24.04.92 JP 106725/92

(43) Date of publication of application : 27.10.93 Bulletin 93/43

(84) Designated Contracting States : CH DE FR GB IT LI


71) Applicant: ORION ELECTRIC CO., Ltd. 41-1 lehisa-Cho
Takefu-City, Fukui 915 (JP)

(72) Inventor: Oue, Noboru
c/o Orion Electric Co.,Ltd., 41-1 lehisa-Cho,
Takefu-City, Fukui 915 (JP)
Inventor: Nagata, Yoshitsugu
c/o Orion Electric Co., Ltd., 41-1 lehisa-Cho,
Takefu-City, Fukui 915 (JP)
Inventor: Otobe, Hiroshi
c/o Orion Electric Co., Ltd., 41-1 lehisa-Cho,
Takefu-City, Fukui 915 (JP)

(74) Representative: Nettleton, John Victor et al Abel & Imray Northumberland House 303-306 High Holborn London, WC1V 7LH (GB)

- (54) Automatic adjustment circuit for analog control unit.
- 67 An automatic adjustment circuit for an analog control unit comprising a detection circuit and a D/A control circuit, said detection circuit being connected to said analog control unit to detect gain errors in said analog control unit and to input a determination signal for the determination of the errors detected to a control microcomputer installed in the apparatus and said D/A control circuit is operated in response to receiving signal from said control microcomputer to accomplish the adjustment.

Fig. 1

EP 0 567 343 A2

BACKGROUND OF THE INVENTION

Field of the Invention

This invention relates to an automatic adjustment circuit for an analog control unit which electronically performs automatic control of gain errors which occur in an analog control unit such as a video intermediate frequency amplification circuit (VIF circuit) or a sound intermediate frequency amplification circuit (SIF circuit) provided in an electronic apparatus such as a television receiver (TV).

10 Prior Art:

5

20

25

40

In a VIF circuit of a TV set for example, an automatic gain control circuit (AGC circuit) is provided which supplies negative feedback of voltage to a TV tuner so that a detection output remains constant even where an input level received by a TV antenna varies. However, TV tuners and VIF circuits have their own gain errors and errors also occur in the AGC voltage. Conventionally, these gain errors were adjusted by changing an adjustment point of the AGC circuit by a semifixed resistor 24 provided in the VIF circuit 2 as shown in Fig. 9. Ordinarily, this adjustment was performed by adjusting semifixed resistor 24 on the TV production line either manually by a worker or mechanically using a factory automation apparatus.

However, this adjustment is one of very intricate processes to be performed on the production line, and besides the preciseness of adjustment is not fully reliable, so that said adjustment is not preferable for mass production of good products.

Said adjustment is required not only for TV VIF circuits but also for other blocks of TV such as SIF circuits, stereo circuits, character broadcast receiving circuits as well as for various types of analog control units used for other household and office appliances. Accordingly there is a great demand for a adjustment circuit which can automatically adjust errors of the analog control units in more simple and efficient manner.

SUMMARY OF THE INVENTION

It is therefore an object of the present invention to provide an automatic adjustment circuit for an analog control unit which requires no manual or mechanical adjustment on a production line for electronic appliances such as televisions receiver etc., which can perform precision adjustment in a simple manner and which can improve production efficiency.

In the present invention the adjustment of errors in an analog control unit is performed by providing a detection circuit, which detects gain errors in the analog control unit, either outside or inside a TV or other electronic appliances having the analog control unit, inputting determination signals detected by the detection circuit into a control microcomputer equipped in an electronic appliance and operating a D/A control circuit in accordance with a command from the control microcomputer.

Though there is no particular limitation regarding the control microcomputer, it is desirable that, in the case of a television receiver, for example, input/output terminals or equivalent terminals of a control microcomputer which has been employed for channel selection or brightness control etc. The command from the control microcomputer is carried out by reading out a control program written in a memory unit or device.

In the case of a television receiver, analog control units are used as shown in the following table.

In accordance with the present invention, the gain errors of the analog control unit in the electronic apparatus can be performed electronically and automatically, not manually or mechanically, so that higher precision of adjustment and higher production efficiency can be obtained. As a result, mass productivity of good products is increased. Moreover, since the adjustment is performed by a control microcomputer equipped in the apparatus, there is no need to use a complicated FA instrument, so that the simplest and most efficient adjustment can be performed.

TV Block	Adjustment section	Element
Video intermediate frequency amplification circuit (VIF)	Detection coil	Coil
	Automatic fine tuning	
	coil (AFT coil)	Coil
	Automatic gain controil VR	Semifixed resistor

55

50

EP 0 567 343 A2

		(AGC VR)	
		Channel trap coil	Coil
5		Saw matching coil	Coil
	Sound intermediate frequency amplification circuit (SIF)	Detection coil	Coil
10		SIF level control VR	Semifixed resistor
	Stereo circuit	Voltage control oscillator	Semifixed resistor
		VR (VOC VR)	
15		Separation VR	Semifixed resistor
		Balance VR	Semifixed resistor
20	Character multiplex system (Teletext)	Voltage control oscillator trimmer condenser (VOC VR)	Semifixed resistor
20	Video circuit (tandem filter)	Gain	Semifixed resistor
		Phase	Coil
05	CRT driving circuit	Cut off	Semifixed resistor
25		Drive	Semifixed resistor
	Chrominance signal demodu- lating circuit	Automatio phase control	Voltage control
30		(APC)	oscillator
		SECAM deflecting coil	Coil
		SECAM ident coil	Coil
35		SECAM bell coil	Coil
		PAL delay coil	Coil
		PAL phase VR	Semifixed resistor
40	Deflection circuit	Vertical size VR	Semifixed resistor
		Vertical position VR	Semifixed resistor
		Horizontal size coil	Coil
45		Horizontal position VR or trimmer condenser	Semifixed resistor or Trimmer con- denser
50	User-controlled supplementary adjustment circuit	Sub bright VR	Semifixed resistor
		Sub contrast VR	Semifixed resistor
		Sub color VR	Semifixed resistor
55		Sub tint VR	Semifixed resistor
	Power pource		
	Power source	+B adjust	Semifixed resistor

Clock	Clock adjustment	Trimmer condenser	
	,		

BRIEF DESCRIPTION OF THE DRAWING

Fig. 1 is a block diagram showing one embodiment of an automatic adjustment circuit in accordance with the present invention, which is applied to the VIF circuit of a television receiver.

Fig. 2 is a block diagram showing another embodiment of an automatic adjustment circuit in accordance with the present invention, which is applied to a TV video signal circuit.

- Fig. 3 is a CRT display showing a standard video position.
- Fig. 4 is a schematic view showing a hard board type of an adjustment mode switching circuit.
- Fig. 5 is a schematic view showing a key matrix type of an adjustment mode switching circuit.
- Fig. 6 is a schematic view showing a remote control type of an adjustment mode switching circuit.
- Fig. 7 is a flow chart of the automatic adjustment type.
- Fig. 8 a CRT display showing an adjustment mode.
- Fig. 9 is a VIF circuit using a conventional semifixed resistor.

DETAILED DESCRIPTION OF THE INVENTION

Fig. 1 is a block diagram showing one embodiment of an automatic adjustment circuit which is applied to a television VIF circuit.

In the drawing, 1 is a TV tuner, 2 is a VIF circuit, 3 is a control microcomputer used for channel selection, etc., 4 is a memory and 5 is a D/A control circuit. 6 is an AGC circuit. 7 is an instrument which is provided outside the TV receiver and equipped with a voltage comparison detection circuit 8 and a TV video signal processing circuit 9.

The above circuit operates as follows.

Negative feedback voltage is imposed from VIF circuit 2 to TV tuner 1 by means of AGC circuit 6 for grain control. When a gain error occurs between VIF circuit 2 and TV tuner 1, voltage comparison detection circuit 8 generates a determination signal which corresponds to a error determined by comparing an error voltage and a preset standard voltage and said determination signal is input to the control microcomputer 3. Said microcomputer 3 carries out an adjustment control program corresponding to the grain error, and sends an operation signal to D/A control circuit 5. D/A control circuit 5 operates receiving the output from the control microcomputer 3, and adjusts the gain error in VIF circuit 2. Subsequently, the adjusted data is saved in the memory 4.

Said control microcomputer 3 may be also employed to adjust errors in other circuit. For example, as shown in Fig. 3, recent television receivers display a specific indicator on the CRT screen which indicates a standard or regular position of video brightness. Video signal processing circuit 9 and brightness/contrast control circuit 10 shall be set correctly, but there may occur variations or errors. Conventionally, adjustment was made mechanically by means of semifixed resistor as in the case of the VIF circuit. The automatic adjustment circuit in accordance with the present invention can be also applied to the video signal processing circuit 9 as shown in Fig. 2.

In the drawing, 9 is a video signal processing circuit, 10 is a brightness/contrast control circuit, 11 is a D/A control circuit, 12 is a instrument, and 13 is a detection circuit. 3 is a control microcomputer same as in the previous embodiment. Detection circuit 13 detects either error voltage from brightness/contrast control circuit 10 or the brightness or contrast level from the CRT screen via a light sensor, and it generates a determination signal after making comparison of the detection value with a after making comparison of the detection value with a standard value.

The determination signal is sent to the control microcomputer 3 so as to output an operation signal to D/A control circuit 11 for the adjustment of the error. As a result the brightness/contrast control circuit 10 is adjusted in response to the operation of D/A control circuit 11. D/A control circuit 11 is directly connected to brightness/contrast control circuit 10, but brightness and contrast may be also adjusted by connecting the D/A control circuit 11 directly to the video signal processing circuit 9, as shown by the phantom line in the drawing, so as to control the gain of video signal processing circuit 9.

Additional program mode of the microcomputer can be divided into two types. One is a TV operation mode which can be operated by a user, namely TV purchaser, himself, and another is an adjustment mode which is operated by a line operator, repairman, service man etc.

In the TV operation mode, the user may adjust brightness and contrast by operating the UP/DOWN button

4

15

10

20

30

25

35

45

5

55

on the remote control unit while watching the TV screen displaying scale 15 as shown in Fig. 3 (A). In order to present the optimum video condition desired by the user when the point indicated on the scale is located in the center, a line operator adjusts the operation signal output which is applied from the control microcomputer 3 to the brightness/contrast circuit 10 so that the duty of the positive half cycle and that of the negative half cycle of the pulse modulation output waveform (PWM output) 16 of the operation signal output become identical. Then the user's operation of the UP/DOWN button on the remote control unit changes the positive/negative duty ratio of PWM output waveform 16 and consequently adjusts the brightness and contrast.

In the adjustment mode, on the other hand, as shown in fig 2, adjustment is performed by inputting the operation signal output of the microcomputer 3 directly into the brightness/contrast circuit 10.

10

25

30

35

40

45

55

A line operator adjusts the operation signal output so that the optimum video condition can be obtained when the brightness indicator is positioned at the center of the scale, as in the case of the above TV operation mode. However, D/A control circuit 11 is not used, and then even if the positive/negative duty ratio of PWM output waveform of microcomputer 3 is adjusted to be identical, the optimal video condition desired may not always be obtained due to gain errors in either video signal processing circuit 9 or brightness/contrast circuit 10, depending on the TV unit. In this case, the desired optimal video condition is established by intentionally shifting the positive(negative duty ratio of the PWM output from microcomputer 3 to brightness/constrast circuit 10. In other words, adjustment is made by setting the PWM output of microcomputer 3 to, for example, a positive/negative duty ratio of 40% to60%, depending on the degree of shift in brightness, without changing the center position of the scale shown in Fig. 3 (A). In a TV receiver thus adjusted, an excess or lack of brightness occurs at the maximum or minimum adjustment position far away from the center of the scale when the user changes the brightness using the remote control unit. But, no particular influence and trouble are experienced as far as said change is made within the range of regular adjustment.

The adjustment mode may be so arranged that the user can control it at his option. Further said mode may be also applied to adjust contrast, darkness of color and tint other than brightness.

Hereinafter, the detailed structure and operation of the automatic adjustment procedure are explained in accordance with the embodiments.

A mode changing switch of the microcomputer 3 which selects either the regular TV operation mode or adjustment mode is provided at an adjustment instrument 7 positioned outside the TV receiver and connected to a specific terminal 3a of the microcomputer 3 as shown in Fig. 4, or is provided in an additional fashion along with other key matrix switches 17 installed in the TV body as shown in Fig. 5. It may be also provided at a remote control unit 18 as shown in Fig. 6. And the adjustment mode is selected by operating said switch.

The automatic adjustment program procedure is as shown in Fig. 7. When the adjustment mode 19 is selected, input of errors into the microcomputer 3 is carried out through a detection circuit 8 or 13. Until the microcomputer 3 detects that the adjustment is completed, it continues to output the operation signal to a control circuit 5 or 11 to adjust the output of the control circuit.

When the adjustment is completed, the microcomputer 3 outputs an adjustment completion signal to a detection circuit 8 or 13, and slops the output of the operation signal to the control circuit 5 or 11. Then the adjustment data after the completion of adjustment is memorized and saved in a memory 4 or 14. Memories 4 and 14 are nonvolatile memories, so that the memorized adjustment data is saved even after the TV is forwarded

In order to make it easy for the person performing the adjustment, it is desirable to have the adjustment operation displayed on CRT 23 in the following order as shown in Figs. 8 (A), (B) and (C):

Adjustment menu 20 (Fig. 8 (A))--Selection of AUTO/MANUAL operation 21 (Fig. 8 (B))--Completion of adjustment 22 (Fig. 8(C))--Adjustment mode 20.

Said display on CRT may be replaced by the indications using lamps.

In Fig. 8 (B) there is a display reading "MANUAL". This is a manual program mode function which is programmed into the microcomputer 3 in advance and is used to make readjustment after the product is delivered to the user. Automatic adjustment is so performed that the microcomputer's functions of detection and control are made automatically, but in the manual adjustment the automatic adjustment program functions of microcomputer 3 are discontinued and the adjustment may be performed manually. Mode selection switch may be prepared. During manual adjustment, adjustment is carried out by increasing or decreasing the output level of control circuits 5 or 11 using the remote control unit or the key operation on the TV unit. This option provides the benefit that readjustment and servicing may be easily performed anywhere.

Incidentally, this invention is not limited to the above embodiments. In particular, in the above embodiments, detection circuit 8 or 13 is provided at instrument 7 or 12 outside the apparatus and gain errors are input from outside the apparatus to control computer 3 inside the apparatus. However, this detection circuit 8 or 13 may also be mounted inside the apparatus so that the automatic adjustment can be made at the apparatus side. It is also possible to provide the circuit on both the instrument and inside the apparatus. Moreover, need-

EP 0 567 343 A2

less to say, while the above embodiments are directed for a TV receiver, the invention can be also applied to other types of electronic equipment which need similar adjustment.

Claims

- An automatic adjustment circuit for an analog control unit used in an electronic apparatus comprising a
 detection circuit connected to said analog control unit to detect gain errors in said analog control unit and
 to input a determination signal for the determination of the errors detected to a control microcomputer
 installed in the apparatus and a D/A control circuit operated in response to receiving signal from said control microcomputer to adjust the analog control unit.
- 2. An automatic adjustment circuit for an analog control unit claimed in Claim 1, wherein said detection circuit is provided at an instrument provided outside the apparatus.

Fig. 1

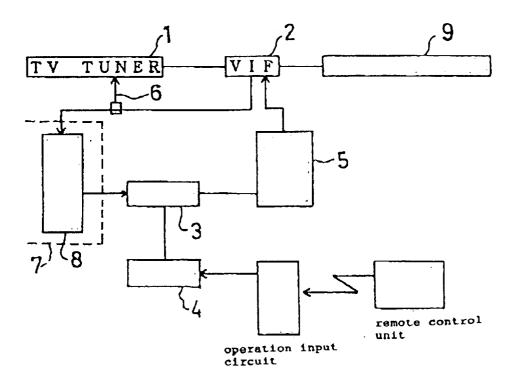


Fig. 2

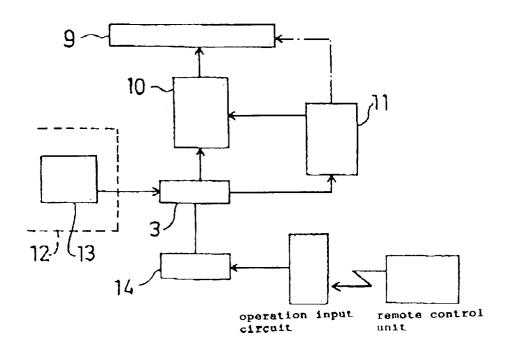


Fig. 3

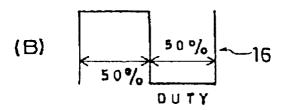


Fig. 4

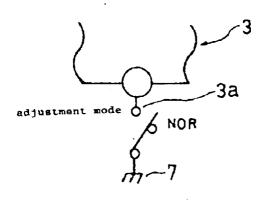


Fig. 5

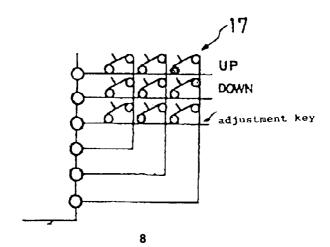


Fig. 6

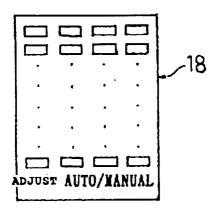


Fig. 7

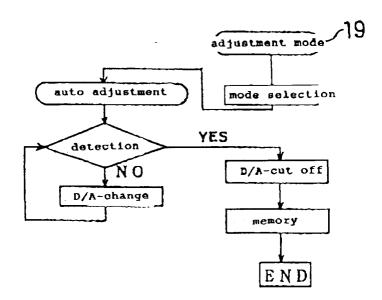


Fig. 8

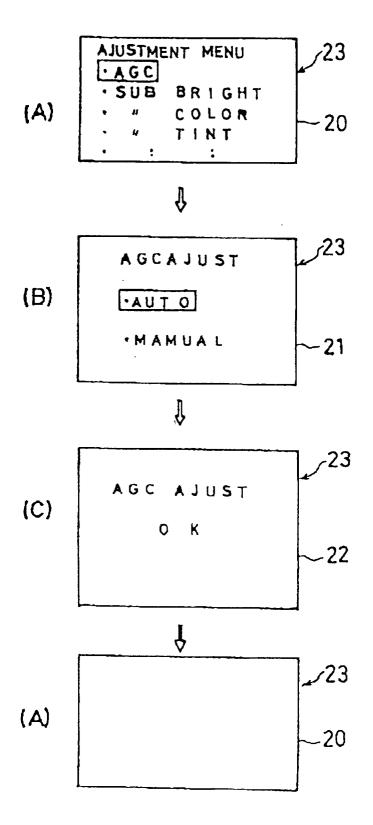
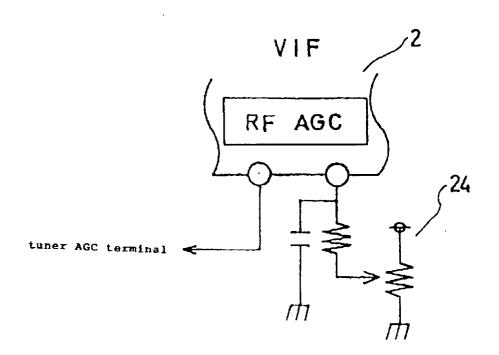



Fig. 9

