(19)
(11) EP 0 578 189 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
12.01.1994  Patentblatt  1994/02

(21) Anmeldenummer: 93110757.7

(22) Anmeldetag:  06.07.1993
(51) Internationale Patentklassifikation (IPC)5G08B 17/103
(84) Benannte Vertragsstaaten:
AT BE CH DE DK ES FR GB IT LI LU NL SE

(30) Priorität: 08.07.1992 CH 2157/92

(71) Anmelder: CERBERUS AG
CH-8708 Männedorf (CH)

(72) Erfinder:
  • Ryser, Peter
    CH-8712 Stäfa (CH)
  • Werner, Jürg
    CH-8909 Zwillikon (CH)


(56) Entgegenhaltungen: : 
   
       


    (54) Optischer Rauchmelder


    (57) Zur Erhöhung der Fehlalarmsicherheit von optischen Rauchmeldern nach dem Extinktionsprinzip mit zwei Strahlungsquellen (S1, S2) und zwei Strahlungsempfängern (D1, D2) werden eine Messstrecke (T1) und eine Vergleichsstrecke (U) in einem integrierten optischen Chip angeordnet, wobei die Vergleichsstrecke (U) in Form von Wellenleitern (U) in einer Glasplatte (G) angeordnet sind und das Licht von der Strahlungsquelle (S1) zu der Messstrecke (T1) und von der Messstrecke (T1) zu dem Strahlungsempfänger (D1) durch in der Glasplatte (G) ausgebildete Wellenleiter (U) geleitet wird. Zur Verbesserung der Empfindlichkeit bei mindestens gleichem Auflösungsvermögen senden die beiden Strahlungsquellen (S1, S2) Licht unterschiedlicher Modulation aus, und der optischen Brückenschaltung ist eine elektrische Zeitmultiplex-Brücke vorgeschaltet, welche die Modulationssignale abwechselnd gerade (Zustand b) und dann überkreuzt (Zustand c) durchlässt, und die Auswerteschaltung enthält spezielle Schaltelemente, welche die Frequenzgänge Ri(fj) aus dem Endresultat eliminieren.




    Beschreibung


    [0001] Die Erfindung betrifft einen optischen Rauchmelder gemäß dem Oberbegriff des Patentanspruchs 1. Rauchmelder dieser Art sind allgemein bekannt. Sie werden insbesondere als automatische Brandmelder zur Früherkennung von Branden eingesetzt.

    [0002] Unter der Vielzahl der auf dem Markt befindlichen Typen von automatischen Brandmeldern nehmen die Rauchmelder eine besondere Stellung ein, da sie am besten geeignet sind, Brände in einem derart frühen Zeitpunkt zu erkennen, daß Gegenmaßnahmen noch erfolgreich eingeleitet werden können.

    [0003] Man unterscheidet im wesentlichen zwei Arten von Rauchmeldern: Ionisationsrauchmelder und optische Rauchmelder. Bei den Ionisationsrauchmeldern wird die Anlagerung von Rauchpartikeln an Luftionen ausgenutzt. Da für eine ausreichende Ionisation der Luftmoleküle eine radioaktive Quelle erforderlich ist, deren Handhabung bei der Produktion und bei der Entsorgung problematisch ist, werden in zunehmendem Maße optische Rauchmelder verwendet Bei diesen Rauchmeldern werden die optischen Eigenschaften von Aerosolen zur Detektion von Rauch herangezogen. Hierbei nutzt man entweder die Schwächung eines Lichtstrahls durch Rauch ("Extinktionsrauchmelder'') oder die Streuung von Licht an Rauchpartikeln aus.

    [0004] Bei den letztgenannten ''Streulichtrauchmeldern'' wird die an Rauchpartikeln gestreute elektromagnetische Strahlung, vorzugsweise sichtbares Licht oder Infrarotstrahlung, von einem außerhalb des direkten Strahlengangs angeordneten Streustrahlungsempfänger gemessen. Ein solcher Strahlungsempfänger kann sehr empfindlich eingerichtet werden, da bei Abwesenheit von Aerosolteilchen in der Meßstrecke keine Streustrahlung auftritt, das Signal also praktisch gleich Null ist und bei Anwesenheit von Aerosol im Meßraum ein Signal auftritt, das gegenüber dem Nullwert sehr groß ist und daher leicht festzustellen ist. Nachteilig bei Streulichtrauchmeldern ist, daß sie nur auf Rauchtypen ansprechen, welche Licht stark streuen. Weisser, stark wasserdampfhaltiger Rauch z.B. streut Licht sehr stark, wogegen schwarzer Rauch, welcher stark rußhaltig ist, wohl Licht absorbiert, es jedoch nur in geringem Mass streut.

    [0005] Da die Abschwächung, oder Extinktion, von Licht durch Rauch verhältnismäßig gering ist, muß die Meßstrecke bei Extinktionsrauchmeldern ziemlich lang sein, um eine klare und sichere Detektion von Rauch zu ermöglichen. Sie wurden daher in der Vergangenheit meist als "Linienmelder" ausgebildet, bei denen z.B. Lichtquelle und -empfänger durch eine längere Messstrecke voneinander getrennt angeordnet sind und der Lichtstrahl die Messstrecke einmal durchläuft. In einem ähnlichen Beispiel befinden sich Lichtquelle und -empfänger in demselben Gehäuse und der Lichtstrahl durchläuft die Messstrecke zweimal, indem er durch einen Reflektor zum Gehäuse zurückreflektiert wird. Dies ermöglicht bereits eine Halbierung der Länge der Meßstrecke; trotzdem ist ein außerhalb des Rauchmelders anzubringender Reflektor erforderlich, dessen Ausrichtung und mechanische Stabilisierung problematisch sein kann. Bei beiden Typen von Meldern besteht die Gefahr von Fehlalarmen durch zufälligen Unterbruch der Meßstrecke, mechanischer Versetzung der Komponenten oder ähnlichen Störungen.

    [0006] Es ist deshalb seit langem das Bestreben gewesen, auch die Extinktionsmelder als sogenannte ''Punktmelder" auszubilden, d.h. als Melder, bei denen Lichtquelle und -empfänger in demselben Gehäuse angeordnet sind und ausserhalb dieses Gehäuses keine weiteren Bestandteile erforderlich sind. Dies ist auch im Hinblick auf eine einfach durchzuführende Wartung von Vorteil. Das Hauptproblem bei punktförmigen Extinktionsrauchmeldem besteht darin, daß es verhältnismäßig schwierig ist, die über eine kürzere Messtrecke sich ereignende geringfügige Abschwächung eines Lichtstrahls durch ein Brandaerosol sicher festzustellen. Das für die Alarmgebung ausgewertete Signal wird durch Differenzbildung zweier verhältnismäßig großer Signale erhalten. Die Anforderungen an die Stabilisierung der Lichtquelle und des Lichtstrahls sowie an die Empfindlichkeit des Lichtempfängers sind dementsprechend sehr hoch.

    [0007] Man kann davon ausgehen, daß bei den üblichen Linienextinktionsmeldern, bei denen eine Meßstrecke von vielen Metern vorhanden ist, die Empfindlichkeit so groß sein muß, daß eine Abschwächung des Signals von 4% pro Meter sicher erkannt werden kann. In Punktextinktionsmeldern beträgt die Länge der Meßstrecke jedoch nur etwa 5 bis 20 cm. Beträgt die Messstrecke z.B. 10 cm, so liegt das Alarmiveau bei einer Abschwächung von 0,4 %. Damit dieser Wert sicher gemessen werden kann, wird eine Auflösung, bzw. Drift über den gewünschten Temperaturbereich des Detektionssystems von weniger als 0,04 % gefordert. Wegen des Temperaturgangs der einzelnen Elemente des Systems kann dieses Problem nur mit speziellem Referenzmessverfahren gelöst werden.

    [0008] Eine mögliche Lösung besteht in der optischen Brückenschaltung (vgl. Figur 1):
    Werden die Ausgangssignale der optischen Brücke A1(f1), A1(f2), A2(f1) und A2(f2) durch Produkte aus den Sendeleistungen der Strahlungsquellen S1 und S2, den Strahlteilverhältnissen K1 und K2 sowie der Empfindlichkeiten der Strahlungsempfänger D1 und D2 ausgedrückt und wird der Quotient Q aus diesen vier Brückensignalen gebildet, so fallen die Sendeleistungen der Strahlungsquellen sowie die Empfindlichkeiten der Strahlungsempfänger heraus:


    Es bedeuten:
    T =
    Transmission der Luftstrecke T1 = 10 -m·d/10 , wobei m = Extinktionsmodul (ISO ''optical density'') in [dB/m] und d = Länge der optischen Strecke
    f1, f2 =
    Modulationsfrequenz der Strahlungsquellen S1 bzw. S2
    K1, K2 =
    die optischen Teilverhältnisse bei den Strahlungsteilern
    R1(f), R2(f) =
    Signalverstärkung folgend den Strahlungsempfängern D1 bzw. D2 als Funktion der Modulationsfrequenz f
    SG =
    Synchrongleichrichter mit ausgangsseitiger Tiefpaßfilterung
    Ai(fj) =
    resultierendes Ausgangssignal vom Strahlungsempfänger i entsprechend dem Signalanteil bei der Modulationsfrequenz fj,
       wobei i=1,2 und j=1,2.


    [0009] Aus der Transmission T können das Extinktionsmodul m in [dB/m], und das Lichttrübungsmodul D in [%/m] leicht berechnet werden:



    [0010] Die aus dem Messwert Q berechnete Extinktion ist somit eine Funktion der Teilverhältnisse K1, K2, sowie der im allgemeinen von der Modulationsfrequenz abhängigen Verstärkungsfaktoren Ri(fj) der Signalverstärkung. In der Praxis zeigt es sich, daß letztere über einen größeren Temperaturbereich kaum in der geforderten Präzision von 0,04 % konstant gehalten werden können. Probleme bereiten auch Elektronik-Offsets, Kanalübersprechen und die Teilverhältnisse K1 und K2, insbesondere das Driften all dieser Grössen über die Zeit und den Temperaturbereich.

    [0011] Eine Lösung zur Realisierung von einem ähnlichen Referenzmessverfahren zur Bestimmung der Transmission einer von Rauch oder anderem Fluid gefüllten Strecke sind zum Beispiel in US-4'018'513 und CH-A-643'061 dargelegt. Diese Systeme ermöglichen durch Referenzmessungen die Veränderungen der Eigenschaften der Lichtquellen und der Empfänger auszukompensieren. Sie sind jedoch so aufgebaut, dass nur eine begrenzte Auflösung in der Messung möglich ist, und sie sind demzufolge für Zwecke bestimmt, welche eine grössere Messstrecke erlauben oder eine grössere Auflösung erfordern.

    [0012] Von diesem Stand der Technik ausgehend liegt der Erfindung die Aufgabe zugrunde, einen Extinktionsrauchmelder zu schaffen, welcher die Nachteile der bekannten Rauchmelder vermeidet und insbesondere über eine erhöhte Stabilität verfügt und über eine wesentlich kürzere Messstrecke gleiche Extinktionswerte detektieren kann.

    [0013] Diese Aufgabe wird bei einem optischen Rauchmelder der eingangs genannten Art durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst. Bevorzugte Ausführungsformen der Erfindung und Ausgestaltungen sind in den abhängigen Patentansprüchen definiert.

    [0014] Die Erfindung wird im folgenden an Hand der Figuren näher erläutert. Es zeigen

    Figur 1 eine optische Brückenschaltung gemäss dem Stand der Technik,

    Figur 2 ein praktisches Ausführungsbeispiel eines erfindungsgemäßen, punktförmigen Extinktionsrauchmelders,

    Figur 3 eine optische Brückenschaltung gemäß vorliegender Erfindung mit vorgeschalteter elektronischer Zeit-Multiplexbrücke,

    Figur 4 eine weitere Ausführungsform einer erfindungsgemäßen Brückenschaltung mit verdoppelter Sensitivität,

    Figur 5 eine weitere Ausführungsform einer erfindungsgemäßen Brückenschalltung mit aktiver Offset- und Übersprechkompensation,

    Figur 6 zeigt eine weitere Ausführungsform einer erfindungsgemäßen Brückenschaltung mit einer Kombination der Erweiterungen.



    [0015] In den Figuren 2 und 3 ist ein praktisches Anwendungsbeispiel für einen erfindungsgemässen, punktförmigen Extinktionsrauchmelder dargestellt. Der Rauchmelder weist eine der Aussenatmosphäre zugängliche Messstrecke T1 und der Aussenatmosphäre nicht zugängliche Vergleichsstrecken U auf, die in einem integrierten optischen Chip in Form einer Glasplatte G angeordnet sind. In der Figur 2 ist dieses integrierte optische Bauteil dargestellt. Es enthält sämtliche für den Sensor notwendigen optischen und optoelektronischen Elemente. Wichtigster Bestandteil ist ein 60 mm x 30 mm x 1,5 mm grosses Glassubstrat, in welchem die Wellenleiter U enthalten sind, welche zur Leitung von Licht in Pfeilrichtung dienen.

    [0016] Das Licht wird von zwei Strahlungsquellen S1 und S2 erzeugt, deren Licht mit unterschiedlichen Frequenzen f1 bzw. f2 moduliert wird. Das Licht wird nach dem Prinzip des "end-fire-coupling" in die Wellenleiter U, die innerhalb des Glas-Chips enthalten sind, eingekoppelt. Als Lichtquellen S1 und S2 dienen zweckmässigerweise AlGaAs-LEDs. Das Licht der einen Strahlungsquelle S1 wird durch eine Y-förmige Teilung des Wellenleiters (Bifurkation) in zwei Wellenleiter geführt, wobei die Aufteilung des Lichtstrahls an dieser Bifurkation durch das Teilungsverhältnis K1 gegeben ist. Durch den einen Wellenleiter wird es in einem 180°-Bogen mit einem Radius von 10 mm zu einem Strahlungsempfänger D2 geführt, z.B. einer Photodiode, und durch den zweiten Wellenleiter wird es in einem 90°-Bogen zu der Messstrecke T1, die als 34 mm langer Zwischenraum in die Seite der Glasplatte G gesägt ist, geführt.

    [0017] Das Licht wird am Beginn der Messstrecke T1 durch eine Kollimationslinse L1, z.B. einer gradient-index Linse, aus dem Wellenleiter U ausgekoppelt und nach Durchlaufen der Messstrecke T1 durch eine zweite Kollimationslinse L2 von der gleichen Art wie die Linse L1 in den zweiten Wellenleiter U eingekoppelt, durch den es zu dem anderen Strahlungsempfänger D1 geleitet wird.

    [0018] Das Licht der zweiten Strahlungsquelle S2 wird nach Einkoppelung in den Wellenleiter U ebenfalls durch eine Y-förmige Bifurkation in zwei Wellenleiter geführt, wobei die Aufteilung durch das Teilungsverhältnis K2 gegeben ist, und in 180°-Bögen mit einem Krümmungsradius von je 10 mm zu den Strahlungsempfängern D1 und D2 geleitet. Die durch die Strahlungsempfänger D1 und D2 detektierten vier Lichtsignale von S1 und S2 werden in einer ersten Verstärkerstufe R1 bzw. R2 verstärkt und in einer zweiten Stufe, einem Synchrongleichrichter SG mit ausgangsseitigem Tiefpassfilter, synchron gleichgerichtet; dadurch werden die Signale durch ihre verschiedenen Modulationsfrequenzen f1, f2 unterschieden.

    [0019] Bei den Wellenleitern U handelt es sich um gradient-index Multimoden-Streifenwellenleiter, welche durch einen lonenaustauschprozess in das Substratglas eingebracht und durch lonenaustausch mit angelegtem elektrischem Feld um ca. 10 µm unter die Substratoberfläche vergraben werden. Die Wellenleiter sind so vor Oberflächeneinflüssen geschützt. Zwecks zusätzlichem Schutz und auch erhöhter mechanischer Stabilität wird ein zweites Substrat von gleichem Glastyp und Grösse mit einem Klebstoff, der den gleichen Brechungsindex wie das Glas aufweist, auf das erste Glassubstrat aufgebracht. Das Glas ist ein Natriumglas, dessen Natriumionen durch Silberionen lokal ausgetauscht werden und an diesen lokalen Stellen den Brechungsindex erhöhen. Da die Wellenleiter eine Streifengeometrie besitzen müssen, wird der lonenaustausch nur lokal gemäss der gewünschten Geometrie der Streifen vollzogen. Hierzu wird vor dem lonenaustauschprozess eine Maske aus aufgedampftem Aluminium mittels eines photolithographischen Prozesses auf das Substrat gebracht. Die Aluminiummaske gibt gerade nur die Streifen frei, wo die Wellenleiter zu bilden sind. Nach dem lonenaustausch wird die Maske wieder entfernt, und die zweite zum Schutz dienende Glasplatte wird aufgeklebt.

    [0020] Die Figur 3 zeigt eine optische Brückenschaltung gemäss vorliegender Erfindung mit vorgeschalteter elektronischer Zeit-Multiplexbrücke. Im Betrieb wird abwechselnd zwischen den Schalterstellungen b und c hin- und hergeschaltet.

    [0021] Durch Vorschalten einer elektrischen Zeitmultiplex-Brücke, welche die Modulationssignale abwechselnd gerade durchlässt (Zustand b) und dann überkreuzt (Zustand c) können die Frequenzgänge Ri(fj) aus dem Endresultat eliminiert werden. Entsprechend diesen zwei Zuständen werden zwei Quotienten Ob und Qc gebildet. Aib(fj) und Aic(fj) bezeichnen die Ausgangssignale Ai(fj), gemessen im Zustand b, bzw. c:








    Figur 4 zeigt eine weitere Ausführungsform einer erfindungsgemässen Brückenschaltung mit verdoppelter Sensitivität in der symmetrischen Brücke. Hier wird das Licht von beiden Strahlungsquellen S1 und S2 durch Messstrecken T1 bzw. T2 geführt, welche beide der Atmosphäre zugänglich sind und eine Transmission T haben. Die Empfindlichkeit der Brücke wird so verdoppelt wie aus folgender Gleichung ersichtlich ist.


    Figur 5 zeigt eine weitere Ausführungsform einer erfindungsgemässen Brückenschaltung mit aktiver Kompensation von elektronischen Offsets und Kanalübersprechen und deren Drift. Die dadurch hinzugefügten Schalter, die durch die logischen Signale SE-f1, SE-f2 (send enables) gesteuert werden, erlauben es, die jeweilige Sende-Quelle fi ein- und auszuschalten. Im folgenden Ablaufdiagramm bezeichnet Ai(fj) den jeweiligen aktuellen Messwert am entsprechenden Ausgang. Die Variablen aij, bij (i = 1, 2; j = 1, 2) dienen der Zwischenspeicherung, Oij ist der aktuelle Kompensationswert. Das korrigierte Messignal erhält man später durch Subtraktion von Oij:
    Ai(fj) (korrigiert): = Ai(fj) (gemessen) - Oij.

    1. SE-f1 = off
    SE-f2 = off
       aij: = Ai(fj); i =1, 2; j = 1,2;

    2. SE-f1 = on
    SE-f2 = on
       bij: = Ai(fj); i = 1, 2; j = 1, 2;

    3. SE-f1 = off
    SE-f2 = on
       Oi2: = bi2 - Ai(f2) + ai2; i = 1, 2;

    4. SE-f1 = on
    SE-f2 = off
       Oi1: = bi1 - Ai(f1) + ai1; i = 1, 2.



    [0022] Für die Bestimmung der Kompensationsparameter Oij sind somit vier Messungen erforderlich. Weniger leistungsfähige, vereinfachte Verfahren sind auch möglich. Beispielsweise können mit den beiden folgenden zwei Messungen Offset und Uebersprechen ebenfalls bestimmt werden. Allerdings sind die Korrekturen wegen Verzerrungen und Intermodulationen nicht exakt.

    1. SE-f1 = off
    SE-f2 = on
       Oi1: = Ai(f1); i = 1, 2,

    2. SE-f1 = on
    SE-f2 = off
       Oi2: = Ai(f2); i = 1, 2.



    [0023] Figur 6 zeigt eine weitere Ausführungsform einer erfindungsgemässen Brückenschaltung mit einer Kombination der Erweiterungen a) bis c) wie sie in einer erfindungsgemässen Brückenschaltung realisiert wurden. Es ist die Gesamtschaltung einer optischen Brücke mit zwei Extinktionsstrecken, vorgeschalteter elektronischer Zeit-Multiplex-Brücke und aktiver Offset- und Uebersprechkompensation.

    [0024] Abwandlungen der vorbeschriebenen Schaltungen für optische Rauchmelder sind im Rahmen der Erfindung gemäss den Ansprüchen möglich und dem Fachmann geläufig.


    Ansprüche

    1. Optischer Rauchmelder nach dem Extinktionsprinzip, der Mittel enthält, Licht über eine der Aussenatmosphäre zugängliche Messstrecke (T1) und eine der Aussenatmosphäre nicht zugängliche Vergleichsstrecke (U) zu leiten, der ferner zwei Strahlungsquellen (S1, S2) und zwei Strahlungsempfänger (D1, D2) und diesen nachgeschaltete Eingangsverstärker (R1, R2), welche der empfangenen Strahlungsintensität proportionale Empfangsimpulse erzeugt, und eine Auswerteschaltung, welche Schaltelemente enthält, die so eingerichtet sind, dass sie den Quotienten der Empfangsimpulse zu bilden vermögen, und weitere Schaltelemente enthält, die so eingerichtet sind, dass sie ein Alarmsignal abzugeben vermögen, wenn die Empfangsimpulse anzeigen, dass in der Messstrecke (T1) eine vobestimmte Rauchmenge überschritten wird, dadurch gekennzeichnet, dass die Messstrecke (T1) und die Vergleichsstrecke (U) in einem integrierten optischen Chip angeordnet sind, wobei die Vergleichsstrecke (U) in Form von Wellenleitern in einer Glasplatte (G) angeordnet sind und das Licht von der Strahlungsquelle (S1) zu der Messstrecke (T1) und von der Messstrecke (T1) zu dem Strahlungsempfänger (D1) durch in der Glasplatte (G) ausgebildete Wellenleiter geleitet wird.
     
    2. Optischer Rauchmelder gemäss Patentanspruch 1, dadurch gekennzeichnet, dass die beiden Strahlungsquellen (S1, S2) Licht unterschiedlicher Modulation aussenden, dass der optischen Brückenschaltung eine elektrische Zeitmultiplex-Brücke vorgeschaltet ist, welche die Modulationssignale abwechselnd gerade durchlässt (Zustand b) und dann überkreuzt (Zustand c) durchlässt, und dass die Auswerteschaltung Schaltelemente enthält, welche die Frequenzgänge Ri(fj) aus dem Endresultat eliminiert, indem diesen zwei Zuständen entsprechend zwei Quotienten Qb und Qc gebildet werden, wobei Aib(fj) und Aic(fj) die Ausgangssignale Ai(fj) bezeichnen, gemessen im Zustand b, bzw. c.




     
    3. Optischer Rauchmelder gemäss dem Patentanspruch 1 dadurch gekennzeichnet, dass die beiden Strahlungsquellen (S1, S2) durch logische Signale ein- und ausgeschaltet werden können und ein Offsetwert bestimmt werden kann, indem beide Strahlungsquellen (S1, S2) ausgeschaltet werden und Uebersprechkompensations-werte bestimmt werden können, indem zuerst die erste Strahlungsquelle ausgeschaltet und die zweite eingeschaltet wird und dann die erste Strahlungsquelle eingeschaltet und die zweite ausgeschaltet wird.
     




    Zeichnung



















    Recherchenbericht