

1) Publication number:

0 591 789 A2

(2) EUROPEAN PATENT APPLICATION

(21) Application number: 93115462.9

(22) Date of filing: 24.09.93

(51) Int. Cl.⁵: **C12N 15/12**, C12Q 1/68, C12P 21/02, A61K 9/127, B01D 67/00, C02F 1/44

Priority: 25.09.92 JP 279157/92 25.12.92 JP 357838/92

(43) Date of publication of application: 13.04.94 Bulletin 94/15

Designated Contracting States:

BE CH DE FR GB LI

 Applicant: Marumo, Fumiaki 8-2-19 Tamagawa-gakuen, Machida Tokyo(JP)

Inventor: Fushimi, Kiyohide 4-15-4-502 Nakakasai, Edogawa-ku Tokyo(JP) Inventor: Uchida, Shinichi 3-32-2 Shimouma, Setagaya-ku Tokyo(JP) Inventor: Sasaki, Sei

5-11-15-503 Koishikawa,

Bunkyo-ku Tokyo(JP)

Inventor: Marumo, Fumiaki 8-2-19 Tamagawa-gakuen, Machida Tokyo(JP)

(74) Representative: DIEHL GLAESER HILTL & PARTNER
Flüggenstrasse 13
D-80639 München (DE)

- Protein forming a water channel and gene therefor.
- © A WCH-1 cDNA probe specific to mRNA expressing a water channel localized in the kidney collecting tubule and complementary to said mRNA, and the sequence are described. Same is obtainable by
 - a) subjecting a single-chain cDNA prepared from kidney medullary mRNA of a mammal, preferably a rat, to PCR using, as degenerate primers,

$$5'-(T/C)T(T/C/A/G)AA(T/C)CC(T/C/A/G)GC(T/C/A/G)GT$$

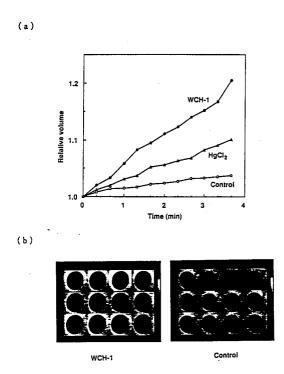
(T/C/A/G)AC-3'

and

$$5'-AA(T/C/A/G)(G/C)(T/A)(T/C/A/G)C(G/T)(T/C/A/G)GC(T/C/A/G)$$

GG(A/G)TT-3',

and


b) screening a kidney cDNA library of said mammal using a product of said PCR as a probe.

WCH-1 protein molecules constituting said water channel can be produced by Escherichia coli producing protein molecules expressed by the WCH-1 gene.

The figure shows an increase in osmotic water permeability of Xenopus oocytes in which WCH-1 RNA has

been injected compared to a control sample.

Fig. 8

This invention relates to a gene and protein molecules forming a vasopressin-regulated water channel WCH-1 localized in the kidney collecting tubule.

Urine concentration is mandatory for most mammals in order to prevent loss of body water. Concentrated urine is produced, in response to vasopressin, by the transepithelial water recovery from the lumen of the kidney collecting tubule through high water permeable membranes (Orloff, J. & Handler, J. S. Am. J. Med. 42, 757 - 768 (1967); Knepper, M. A. & Rector, F. C. Jr. in The Kidney (eds Brenner, B. M. & Rector, F. C. Jr.) 445 - 482 (W. B. Saunders, Philadelphia, (1991))). In this nephron segment, vasopressin regulates water permeability by endo- and exocytosis of water channels from and to the apical membrane (Handler, J. S. Am. J. Physiol. 255, F375 - F382 (1988); Harris, H. W. Jr., Strange, K. & Zeidel, M. L. J. Clin. Invest. 88, 1 - 8 (1991)).

Recently, it has been shown that CHIP 28 is a water channel in red blood cell membranes (RBC) and in kidney proximal tubule (Preston, G. M., Carrol, T. P., Guggino, W. B. & Agre, P. Science 256, 385 - 387 (1992)). However, CHIP 28 is not expressed in the collecting tubule (Denker, B. M., Smith, B. L., Kuhajda, F. P. & Agre, P. J. Biol. Chem. 263, 15634 -15642 (1988)).

The presence of the water channel in the kidney collecting tubule has not been proved to date. If the presence of the water channel is demonstrated, isolated and identified, the basis for clarification of the basic principle of the kidney may be achieved, and the basis for therapy of a variety of kidney diseases may be found.

It is therefore an object of the present invention to obtain a water channel of the kidney collecting tubule in an isolated form and to obtain its clone or reproduction and means for cloning or producing the same.

This object is solved by the genes, proteins and methods of the independent claims. Further advantageous features, aspects and details of the invention are evident from the dependent claims, the description, the examples and the drawings. The claims are to be understood as a first non-limiting approach to define the invention in general terms.

According to an aspect of the present invention an artificial membrane is provided in which the water channel of the present invention is incorporated.

Using the gene and the protein molecules, a screening method for water diuretics may be established, while a high water-permeable artificial membrane and liposome into which the WCH-1 protein has been incorporated may be produced.

In the present invention, WCH-1 means a vasopressin-regulated water channel localized in the kidney collecting tubule, while the gene capable of expressing such water channel is termed WCH-1 gene.

According to the present invention, the above object may be achieved by isolation of a WCH-1 cDNA probe, Escherichia coli producing WCH-1 protein molecules, WCH-1 protein molecules produced by the Escherichia coil, and a method for producing the WCH-1 protein molecules. Besides, the lipid membrane in which the WCH-1 protein is incorporated is produced.

Concretely the present invention may be summarized as follows:

A WCH-1 cDNA probe which is specific to mRNA expressing the water channel localized in the kidney collecting tubule and which is complementary to said mRNA.

A WCH-1 cDNA probe which is specific to mRNA expressing the vasopressin-regulated water channel and which is complementary to said mRNA.

The clone of the WCH-1 cDNA is obtainable by

a) subjecting a single-chain cDNA prepared from kidney medullary mRNA of a mammal to PCR using, as degenerate primers,

5'-(T/C)T(T/C/A/G)AA(T/C)CC(T/C/A/G)GC(T/C/A/G)GT

(T/C/A/G)AC-3

and

15

30

45

50

55

5'-AA(T/C/A/G)(G/C)(T/A)(T/C/A/G)C(G/T)(T/C/A/G)GC(T/C/A/G)

GG(A/G)TT-3'

and

15

25

35

40

50

b) screening a kidney cDNA library of said mammal using a product of said PCR as a probe. The kidney is preferably furnished by a rat.

A base sequence of WCH-1 cDNA represented by sequence number 1 (see Appendix: Table of Sequence Description).

A WCH-1 mRNA probe obtainable by employing the WCH-1 cDNA probe as a template.

A WCH-1 protein molecule constituting a water channel localized in the kidney collecting tubule,

or a WCH-1 protein molecule constituting a vasopressin-regulated water channel.

An amino acid sequence representing the above-mentioned WCH-1 protein molecule coded by the base sequence shown by sequence number 1.

A recombinant plasmid in which a WCH-1 gene represented by the base sequence shown by the sequence number 1 is incorporated in an expressing vector.

A recombinant plasmid in which said expressing vector is preferably pSPORT and said WCH-1 gene is inserted into sectioned sites of said pSPORT with Not-I and Sal-I.

Escherichia coli producing WCH-1 protein molecules, expressed by the WCH-1 gene, constituting a water channel localized in the kidney collecting tubule, or Escherichia coli producing WCH-1 protein molecule, expressed by the WCH-1 gene, constituting a vasopressin-regulated water channel (The Escherichia coli have been deposited at the Microorganism Laboratory of the Agency of Industrial Science and Technology, Ministry of International Trade and Industry, 1-3, Higashi 1-chome, Tsukuba-shi, Ibaraki-ken 305, Japan, under designation for identification of "Escherichia Coil rWCH-1" under deposition number of FERM P-13171).

The WCH-1 protein molecule produced by said Escherichia coli.

A method for producing the WCH-1 protein molecule wherein the WCH-1 protein molecule is obtainable using said Escherichia coli.

Preferably, said Escherichia coli is:

one obtained by introducing the recombinant plasmid which has been obtained by inserting the WCH-1 gene into the expressing vector pSPORT into Escherichia coli $DH10\alpha$ for transformation, and more preferably

said Escherichia coli being one containing the plasmid in which said WCH-1 gene is introduced into sectioned sites of pSPORT by Not-I and Sal-I, or

said Escherichia coli being one having the plasmid produced employing the vector (pSPORT), the expression of which may be derived by addition of isopropyl β -D-thiogalactoside (IPTG), host (DH10 α) family.

A lipid membrane containing the WCH-1 protein molecule.

Liposome formed of a lipid membrane containing the WCH-1 protein molecules.

The following meritorious effects may be expected from the present invention.

- 1) The presence of the water channel in the kidney collecting tubule is clearly demonstrated, isolated and identifiedd, the basis for clarification of the basic principle of the kidney has now been established.
- 2) Since the basic principle of the kidney is clarified, a new guideline is provided in giving a diagnosis of kidney lesions.
- 3) Also, since the basic principle of the kidney is clarified, a new guideline is provided in therapy for kidney lesions or a material for therapy of kidney lesions.
- 4) The WCH-1 water channel may be expressed on a living membrane by introducing WCH-1 cDNA or mRNA into cells.
- 5) High water-permeable WCH-1 protein may be acquired easily in large quantities by the gene-operated Escherichia coli according to the present invention.
 - 6) A screening method for water diuretics may be established.
 - 7) A high water-permeable artificial membrane in which is incorporated the WCH-1 protein may be produced.
 - 8) High water-permeable artificial liposome in which is incorporated the WCH-1 protein may be produced.

The following description is made by reference to the cloning of cDNA for WCH-1 which is a new water channel of the apical membrane of the kidney collecting tubule. WCH-1 is identical up to 42 % in amino acid sequence to CHIP 28. WCH-1 transcripts are detected only in the kidney collecting tubule. Immunohistochemically, WCH-1 is localized to the apical region of the kidney collecting tubule cells. Expression of WCH-1 in Xenopus oocytes markedly increased osmotic water permeability. Interestingly, dehydration markedly stimulates WCH-1 mRNA in rat kidney, without stimulating CHIP 28 mRNA. The functional expression by WCH-1 and the limited localization of WCH-1 to the apical region of the kidney

collecting tubule suggest that WCH-1 is the vasopressin-regulated water channel.

Fig. 1 is a chart illustrating a hydropathy profile of a presumed amino acid sequence of WCH-1.

Fig. 2(a) is a photo showing results Northern blot analysis of WCH-1 in a variety of rats' tissues. Fig. 2-(b) is a photo showing results of the Northern blot analysis of WCH-1 in sliced segments of the cortex and medulla of the rat's kidney.

Fig. 3 is a photo showing agarose gel electrophoresis of an RT-PCR product for WCH-1 mRNA for an isolated nephron segment.

The expressions and abbreviations in English are as follows:

PCT; bent part of a proximal tubule,

10 TDL; thin descending leg of the loop of Henle,

TAL; thin ascending leg of a medulla, MAL; thick ascending leg of a medulla,

CCD; cortex collective duct,

15

35

OMCD; outer medulla collective duct, IMCD: inner medulla collective duct.

RT(-); reaction without reverse transriptase,

Fig. 4 is a microscopic photo, with a magnification factor of 100, showing the chromosomal tissue of a rat's kidney medulla portion by the fluorescent antibody technique employing anti-WCH1/C,

Fig. 5 is a microscopic photo, with a magnification factor of 100, showing a chromosomal tissue by the fluorescent antibody technique employing anti-WCH1/C previously pre-incubated with a corresponding peptide antigen.

Fig. 6 is a microscopic photo, with a magnification factor of 400, showing a chromosomal tissue of a rat's kidney medulla by the fluorescent antibody technique employing anti-WCH1/C.

Fig. 7 is a microscopic photo, with a magnification factor of 100, showing a chromosomal tissue of a rat's kidney cortex portion by the fluorescent antibody technique employing anti-WCH1/C.

Fig. 8(a) is a graph showing a time-dependent volumetric increase of oocytes injected with 20 ng of WCH-1 RNA(WCH-1) and with water (for comparison or control).

Fig. 8(b) is a microscopic photo of oocytes injected with WCH-1 RNA or with water (control).

Fig. 9 is a photo showing results of the Northern blot analysis showing changes in the amount of WCH-1 and CHIP-28 mRNA in the rat's kidney following prolonged dehydration.

Fig. 10 is a sequence diagram showing the coincidence of the WCH-1 cDNA nucleotide sequence and its presumed amino acid sequence with human CHIP 28.

The abbreviations of the amino acid sequences are as follows:

A; alanine (Ala),

C; cysteine (Cys),

D; aspartic acid (Asp),

E; glutamic acid (Glu),

F; phenylalanine (Phe),

G; glycine (Gly),

40 H; histidine (His),

I; isoleucine (lle),

K; lysine (Lys),

L; leucine (Leu),

M; methionine (Met),

N; asparagine (Asn),

P; proline (pro),

Q; glutamine (Glu),

R; arginine (Arg),

S; serine (Ser),

T; threonine (Thr),

V; valine (Val),

W; tryptophane (Trp),

Y; tyrosine (Tyr),

Isolation and Determination of Base Sequence of WCH-1 mRNA

Rat kidney medulla poly(A)⁺RNA was submitted to reverse transcription and 30 cycles of PCR with 5 μ M each of two degenerate primers,

5'-(T/C)T(T/C/A/G)AA(T/C)CC(T/C)CA(T/C)C

G)GC(T/C/A/G)GT(T/C/A/G)AC-3'

and

5

30

50

5'- AA(T/C/A/G)(G/C)(T/A)(T/C/A/G)C(G/T)(T/C/A/G)GC(T/C/A/G) GG(A/G)TT-3',

synthesized based on conserved amino acid sequences of the MIP family (Leu-Asn-Pro-Ala-Val-Thr, Asn-Pro-Ala-Arg-Ser-Phe, respectively) (Wistow, G. J. Pisano, M. M. & Chepelinsky, A. B. Trends Biochem. Sci. 16, 170 - 171 (1991)). The cycle comprised a denaturation step at 94 °C for 1 minute, annealing at 50 °C for one minute and extension at 72 °C for three minutes, followed by a final extension for 7 minutes.

A band of ~ 370 bp PCR products was isolated by gel electrophoresis and subcloned into the plasmid vector PCR 1000 (Invitrogen). 24 clones were sequenced using the fluorescence DNA sequencer 373A (Applied Biosystems) with -21M13 and M13R fluorescent primers.

A clone (pMWC41) was obtained with a 369 bp insert of 58 % nucleotide sequence identity and 45 % deduced amino acid sequence identity to human CHIP 28.

Another clone (prCHIP 28) was a 369 bp insert of 88 % nucleotide sequence identity and 95 % deduced amino acid sequence identity to human CHIP 28.

The clone pMWC41 was used to screen a 2×10^7 recombinant rat kidney cDNA library constructed in the Not-I/Sal-I site of the λ gt 22 vector (BRL). Under stringent condition (hybridization at $6\times$ SSPE, 50 % formamide, 42 °C; washing at $2\times$ SSC, 0.5 % SDS, 42 °C), a positive clone (WCH-1) was isolated with ~ 1.4 kb insert.

The cDNA insert was subcloned into the Not-I/Sal-I site of the pSPORT vector (BRL) and the base sequence as well as the amino acid sequence was determined by the Sanger dideoxynucleotide chain termination method using Sequenase (USB).

Fig. 10 shows the sequence for WCH-1. Fig. 10 shows nucleotide sequence for the WCH-1 cDNA and alignment of its deduced amino acid sequence with that of human CHIP 28 (Preston, G. M. & Agre, P. Proc. Natl. Acad. Sci. USA. 88, 11110 - 11114 (1991)). Conserved residues are shown in boxes and deduced transmembrane domains (Kyte, J. & Doolittle, R. F. J. Mol. Biol. 157, 105 - 132 (1982)) are underlined.

* indicates consensus sequences for potential N-linked glycosylation sites (Kornfeld, R. & Kornfeld, S. Ann. Rev. Biochem. 54, 631 - 664 (1985)), ∇, ♦ and ● indicate phosphorylation sites for cAMP-dependent protein kinase, for protein kinase C and for casein kinase II, respectively. The poly(A)⁺ track at the end of the cDNA begins at the 14th base after the AATAAA cleavage and polyadenylation sequence.

The first ATG was determined as an initiation codon on the basis of the Kozak's consensus A at position -3 (Kozak, M. Nucl. Acid Res. 15, 8127 - 8146 (1987)) and the sequence identity of the first seven amino acids to human MIP (Pisano, M. M. & Chepelinsky, A. B. Genomics 11, 981 - 990 (1991)).

The longest open reading frame encodes a 271-amino acid protein (Mr 28928) with 42.7 % sequence identity with human CHIP 28 and 59.1 % sequence identity with rat MIP (Kent N. A. Shiels, A. Nucl. Acid. Res. 18, 4256 (1990)). Conserved residues in WCH-1 and the members of the MIP family (Pao, G. M. et al., Mol. Microbiol. 5, 33 - 37 (1991)) and internal tandem repeats (Wistow, G. J., Pisano, M. M. & Chepelinsky, A. B. Trends Biochem. Sci. 16, 170 - 171 (1991)) in the WCH-1 sequence suggest that the WCH-1 is a new member of the MIP family.

Fig. 1 shows the hydropathy profile of the deduced amino-acid sequence of the WCH-1. The mean hydrophobicity index was computed according to the algorithm of Kyte and Doolittle (Kyte, J. & Doolittle, R. F. J. Mol. Biol. 157, 105 - 132 (1982)) with a window of 12 residues. Hydropathy analysis of the translated protein indicated the presence of the six transmembrane domains similar to CHIP 28. Deduced membrane-spanning domains are numbered from I to VI.

Although the experiments have been conducted in the present invention on rats, it is apparent that the WCH-1 cDNA of any other animal species may be obtained by the above-described operations, if such animal species are mammals. It may be premeditated that substantial portions of the base sequence and the amino acid sequence exhibit identity with these other animal species. (It is noted that for instance,

human CHIP 28 and rat CHIP 28 exhibited 88 % base sequence identity.)

Investigation of the Presence of WCH-1 in Tissues

For Northern blot analysis, RNA extracted from several tissues was enriched for poly(A)⁺ tracts and 10 µg per lane was electrophoresed on agarose gels containing formaldehyde. Equal loading and absence of degradation was checked by staining with ethidium bromide. After transfer to nylon membranes, blots were hybridized under high stringency with the WCH-1 cDNA labeled with ³²P, and autoradiographed for 24 to 120 hours.

RT-PCR of dissected nephron segments was performed as described in Moriyama, T., Murphy, H. R., Murtin, B. M. & Garcia-Perez, A. Am. J. Physiol, 258, F1470 - F1474 (1990) and Terada, Y. et al. Am. J. Physiol. 261, F1080 - F1087 (1991). Briefly, 2 mm of dissected nephron segments were submitted to reverse transcription (RT) with random primer. Synthesized cDNA was used for 40 cycles of PCR reaction (94 °C for 1 minute, 60 °C for 1 minute, 72 °C for 3 minutes), with specific 18nt primers for WCH-1 (5'-TGGGATCTATTTCACCGG-3', bases 522 - 539, and 5'- ACAGGCACTCGGGATCAC-3', bases 1216 - 1233).

PCR products were electrophoresed in 2 % agarose, stained with ethidium bromide, and photographed. For Southern blot analysis, DNA was denatured and transfered to nylon membranes and hybridized with WCH-1 cDNA labeled with ³²P.

Fig. 2 shows photographs of localization of WCH-1.

Fig. 2 a shows Northern blot analysis of WCH-1 expression in different rat tissues, showing WCH-1 transcripts detected only in the lane containing rat kidney mRNA. WCH-1 transcripts were also not detected in lanes other than kidney mRNA by longer autoradiographic exposure up to 120 hours (data not shown).

Fig. 2 b shows Northern blot analysis of WCH-1 expression in sliced sections of rat kidney cortex and medulla. In addition to a major transcript of ~ 1.5 Kb, larger transcripts of 2.8 Kb and 4.4 Kb were detected. These may represent alternative splicing or polyadenylation variants.

The above northern blot analysis revealed that WCH-1 is expressed exclusively in kidney, predominantly in kidney medulla and less in kidney cortex.

Fig. 3 shows agarose gel electrophoresis of RT-PCR products for WCH-1 mRNA on dissected nephron segments. 712 bp bands for WCH-1 were detected in lanes on CCD, OMCD, IMCD.

By Southern blot analysis, specific binding of probes to PCR bands confirmed the identity of the products (data not shown).

Abbreviations are: PCT, proximal convoluted tubule; TDL, thin descending limb of Henle's loop; TAL, thin ascending limb of Henle's loop; MAL, medullary thick ascending limb; CCD, cortical collecting tubule; OMCD, outer medullary collecting tubule; IMCD, inner medullary collecting tubule; RT (-), reaction without reverse transcriptase.

PCR products of 712 bp specific for WCH-1 was detected only in the cortical, and the outer and inner medullary collecting tubule segments, suggesting the limited expression of WCH-1 mRNA in the collecting tubule.

Then, immunohistochemical localization of WCH-1 in a rat kidney was checked. A peptide corresponding to 15 amino acids at the COOH-terminus of WCH-1 (Val-Glu-Leu-His-Ser-Pro-Gln-Ser-Leu-Pro-Arg-Gly-Ser-Lys-Ala), with the NH₂ terminus of tyrosine, was synthesized, and conjugated with bovine thyroglobulin in accordance with Skowsky, W. R. & Fischer, D. A. J. Lab. Clin. Med. 80, 134 - 144 (1972). The resulting product is termed a conjugate. Using 0.5 ml of the conjugate obtained by mixing the complete Freund's adjuvant into the conjugate (0.2 mg as peptide), a New Zealand white rabbit was immunized to obtain a rabbit anti-serum (termed anti-WCH1/C hereinafter).

 $4~\mu m$ sections of a fixed kidney of a rat restricted in water intake for two days were mounted on slides, preincubated with a non-immune goat serum, and rinsed. The slides were incubated overnight at $4~^{\circ}$ C with 500 : 1 diluted anti-WCH1/C and rinsed. The rinsed slides were incubated with a 1 : 100 diluted solution of FITC-conjugated goat-anti-rabbit immunoglobulin at 25 $^{\circ}$ C for one hour and stained. The stained slides were rinsed and photographed (Figs. 4 to 7). Immunostaining with anti-sera from three of five immunized rabbits (anti-WCH1/C) produced similar results.

Fig. 4 shows the rat kidney medulla portion incubated with anti-WCH1/C by the above procedure with a magnification factor of 100. Fig. 5 shows the rat kidney medulla portion incubated with anti-WCH1/C which has been pre-incubated with a corresponding peptide immunogen, with a magnification factor of 100. Specificity of the antibody staining was confirmed by the disappearance of the staining (Fig. 5), by the pre-incubation with the peptide immunogen, which staining was observed in the apical domain of the cells of the collecting tubule (Fig. 4).

Fig. 6 shows the rat's medullar portion incubated with anti-WCH-1, with a high magnification factor of 400. Fig. 7 shows the rat's kidney cortical portion incubated with anti-WCH1/C, with a magnification factor of 100

Immunofluorescence staining was observed only in the cortical and medullar collecting tubules but not observed in other nephron segments inclusive of proximal tubule, thin descending tubule or thin ascending limb (Fig. 4 and 7). Specificity of the antibody staining was confirmed by the lack of staining of the sections when antiserum was preincubated with the corresponding peptide immunogen (Fig. 5). Immunolocalization of WCH-1 along the nephron segments, together with RT-PCR localization of WCH-1 mRNA, indicate the exclusive expression of WCH-1 in the collecting tubule, contrary to CHIP 28, which expresses itself in the proximal tubule and the descending thin limb of Henle's loop (Denker, B. M., Smith, B. L., Kuhajda, F. P. & Agre, P. J. Biol. Chem. 263, 15634 - 15642 (1988)).

It is known that a minority of cells of the cortical collecting tubule are not stained, and that these cells are intercalated cells in which the water channels are not expressed (Handler, J. S. Am. J. Physiol. 255, F375 - F382 (1988)). According to the intracellular immunochemical localization examined at high magnification, the apical membrane of the cells of the collecting tubule were stained deeply, whereas basolateral sides of the cells were hardly stained (Fig. 6). As a result thereof, it was proved that WCH-1 was localized in the apical membrane of the cells of the collecting tubule. Interestingly, staining could be observed in the sub-apical region of the cell, in addition to intense staining in the apical membrane. Although spatial resolution is not high enough, this is indicative of the presence of the water channels in the sub-apical endosomal reservoir.

Proof that WCH-1 is a Water Channel

To determine the osmic water permeability of oocytes injected with the WCH-1 transcript, volume increase caused by an imposed osmotic gradient was measured using videomicroscopy (Zhang, R. & Verkman, A. S. Am. J. Physiol. 260, C26 - C34 (1991)).

Capped cRNA was synthesized from WCH-1 in pSPORT vector using T7 RNA polymerase after linearization of the pSPORT vector. Oocytes were obtained from female Xenopus laevis and prepared as described in Dascal, N. CRC Crit. Rev. Biochem. 22, 317 - 373 (1987), then injected with 20 ng of water or 20 ng of WCH-1 RNA (1 μg/μl) and incubated at 18 °C. After 24 hours of incubation, the oocytes were transferred from 200 mOsm Barth's buffer to 70 mOsm Barth's buffer and osmotic volume increase was observed at 24 °C by videomicroscopy (Zhang, R. & Verkman, A. S. Am. J. Physiol. 260, C26 - C34 (1991)). The oocytes were viewed by light transmitted through an Olympus phase-contrast microscope and imaged on a Hamamatsu SIT camera connected to ARGUS-200 image processing system. Images were obtained and stored at 20 sec intervals.

Oocytes images were processed as described in Zhang, R. & Verkman, A. S. Am. J. Physiol. 260, C26 - C34 (1991) and the projection area of the oocytes was calculated by automatic summation. Relative volume (V/V_o) was calculated from the area at time 0 (A_o) and at time t (A) by :

40
$$V / V_o = (A / A_o)^{3/2}$$

45

50

20

Osmotic water permeability (Pf) was determined from an initial slope of a time curve of V / V_o (d (V / V_o) / dt), initial oocyte volume ($V_o = 9 \times 10^{-4} \text{ cm}^3$), initial oocyte surface area (S = 0.045 cm²), and the molar volume of water ($V_w = 18 \text{ cm}^3$ /mol) by :

$$Pf = [V_o \times d (V / V_o) / dt] / [S \times V_w \times (osm_{in} - osm_{out})]$$

To examine the effects of mercurial and sulfhydryl reagents, oocytes were incubated in Barth's buffer containing 0.3 mM HgCl₂ for 5 minutes prior to Pf measurements. The recovery of the inhibition by reducing agents was examined by 15 minutes incubation in a Barth's buffer containing 5 mM β -mercaptoethanol following 5-minute incubation in HgCl₂.

Fig. 8 shows an increase in osmotic water permeability of Xenopus oocytes, in which WCH-1 RNA has been injected. Fig. 8 shows time-dependent volume increase of oocytes injected with 20 ng WCH-1 RNA (WCH-1) and with water (Control). Fig. 8 b shows microphotographs of oocytes injected with WCH-1 RNA or with water (Control). Photos were taken in 20 sec intervals, shown in the order of left-to-right and top-to-bottom.

Osmotic water permeability (Pf) was 25.1 \pm 1.7 (mean \pm SEM) \times 10⁻⁴ cm/s in oocytes injected with water and 83.9 \pm 18.2 \times 10⁻⁴ cm/s in oocytes injected with WCH-1. The osmotic water permeability

coefficient (Pf) in WCH-1-injected oocytes was 3.5 times greater than Pf in water-injected oocytes.

Moreover, ten out of eleven oocytes injected with WCH-1 transcripts ruptured within 10 minutes after transfer into the hypotonic solution, whereas none of water-injected oocytes ruptured for more than 60 minutes

The Pf value in the oocytes injected with WCH-1, which was 83.9 \pm 18.2 \times 10⁻⁴ cm/sec, was lowered to 44.5 \pm 3.6 \times 10⁻⁴ cm/sec after incubation for five minutes in 0.3 mM of HgCl₂, due to partial suppression of activity of the WCH-1 water channel. Suppression by HgCl₂ was recovered by incubation in 5 mM β -mercaptoethanol for 15 minutes following incubation in 0.3 mM of HgCl₂ (Pf = 63.1 \pm 25.8 \times 10⁻⁴ cm/sec).

The activation energy (Ea) for osmotic water permeability of oocytes injected with WCH-1 cRNA, estimated from the Arrhenius Plot of Pf measured at 10 to 28 °C was 3.6 ± 0.8 kcal/mol (n = 12), which is comparable to those reported for water channels in RBC and kidney proximal and collecting tubules (Verkman, A. S. Annu. Rev. Physiol. 54, 97 - 108 (1992)).

Appearance of high osmotic water permeability, and low activation energy, together with the inhibition by mecurial reagents acting on sulfhydryl groups and the recovery with reducing agents, which are characteristic to channel mediated water permeability (Verkman, A. S. Annu. Rev. Physiol. 54, 97 - 108 (1992)), strongly suggest that the expressed protein in the WCH-1-injected oocytes is a water channel.

Our observed Pf value in WCH-1-injected oocytes was lower than that reported for CHIP 28-injected oocytes. Possible explanations for it include reduced translation of WCH-1 protein without using a Xenopus β -globin chimaeric vector (Preston, G. M., Carroll, T. P. Guggino, W. B. & Agre, P. Science 256, 385 - 387 (1992)), and reduced surface expression of WCH-1 in oocytes due to the lack of the vasopressin-regulated membrane trafficking mechanisms, which are necessary for translocating water channels from subapical reservoir vesicles to the apical membrane (Handler, J. S. Am. J. Physiol. 255, F375 - F382 (1988)). Also, in Xenopus oocytes, endosomal water channel protein could only partially be expressed in the plasma membrane because of the non-specific targetting of foreign protein in the egg (Dascal, N. CRC Crit. Rev. Biochem. 22, 317 - 373 (1987); Sigel, E. J. Membrane Biol. 117, 201 - 221 (1990)).

To examine the effects of water deprivation, 50 μ g of RNA from rat whole kidney after 0, 2, and 5 day of water restriction were used. RNA was size fractionated by agaroseformaldehyde gel electrophoresis Equal loading and absence of degradation were checked by staining with ethidium bromide and by hybridization with 32 P-labeled β -actin. After transfer to nylon membranes, blots were hybridized under high stringency with the WCH-1 cDNA for WCH-1 expression and the insert of prCHIP 28 for CHIP 28 expression labeled with 32 P, and autoradiographed.

Fig. 9 shows the results of Northern blot analysis of the regulation of WCH-1 and CHIP 28 mRNA abundance after prolonged water deprivation in Rat kidney.

Significant induction of WCH-1 mRNA, but not of CHIP 28 mRNA, in rat kidney after prolonged water deprivation suggests that during prolonged antidiuresis, an increment in collecting tubule water channel protein may contribute to the increase in water permeability.

The antidiuretic action of vasopressin includes rapid increases in water permeability of the collecting tubule by inserting water channels into the apical membrane (Ganote, C. E. et al. J. Cell Biol. 36, 355 - 367 (1968); Kuwahara, M., Berry. C. A. & Verkman. A. S. Biophys. J. 54, 595 - 602 (1988); Verkman, A. S. Annu. Rev. Physiol. 54, 97 - 108 (1992)), and an increased urinary concentration capacity by amplifying the countercurrent multiplication system and the corticomedullary osmolality gradient (Knepper, M. A. & Rector, F. C. Jr. in the Kidney (eds Brenner, B. M. & Rector, F. C. Jr.) 445 - 482 (W. B. Saunders, Philadelphia, 1991); Kirk, K. L. & Schafer, J. A. in the Kidney: Physiologh and Pathophysiology (eds Seldin, D. W. & Giebisch, G.) 1693 - 1725 (Raven Press, New, York, 1992)).

Our results indicate the possibility that vasopressin may also increase maximal water permeability by increasing the synthesis of water channels in the collecting tubule.

Because vasopressin causes enormous increase in osmotic water permeability of the apical membrane of the collecting tubule from basal level, comparable to that of other biological membranes that do not contain water channels (Verkman, A. S. Annu. Rev. Physiol. 54, 97 - 108 (1992); Kuwahara, M., Berry. C. A. & Verkman. A. S. Biophys. J. 54, 595 - 602 (1988)), all or at least the majority of water channels in the apical membrane are considered to be vasopressin regulated. The presence of WCH-1 exclusively in the apical domain of the collecting tubule cells, and the functional expression of water channel in oocytes strongly indicate that WCH-1 is indeed the vasopressin-regulated water channel of the apical and endosomal membranes of the collecting tubule.

Molecular identification of the apical membrane water channel will enable direct investigation on the cellular mechanisms of the vasopressin-regulated water permeability of the collecting tubule cells.

Means for Obtaining WCH-1 Protein

Cyclic plasmid pSPORT is sectioned with restrictive enzymes Not-I and Sal-I, and WCH-1 cDNA is inserted into the sectioned sites. The plasmid into which WCH-1 gene has been recombined is introduced into an Escherichia coli $DH10\alpha$ strain for transformation.

The transformation of host by the recombinant DNA may be realized by the known method of Cohen, S.N. et al., Proc. Natl. Acad. Sci., USA., 69, 2110 (1972) or a similar method.

The produced transformant or recombinant is cultivated on a known medium, such as (ampicillin-containing) L-broth medium. IPTG is added during cultivation in order for the promotor to be operated more effectively during a certain predetermined period following bacterial proliferation. After IPTG addition, cultivation is continued usually for 3 to 4 hours at 37 °C. After the cultivation, bacteria are collected by any known method, suspended in a buffer solution and ruptured. WCH-1 protein is purified by known methods, such as column chromatography.

15 Examples of Industrial Utilization

25

30

35

40

45

50

The following industrial advantages may be accrued by the isolation, identification and cloning of WCH-1 which are enabled by the present invention.

A screening method for water diuretics utilizing a substance in which the WCH-1 protein is expressed, such as following screening methods for water diuretics, may be established.

- 1) Several peptides thought to be the center of activity may be artificially synthesized from the amino acid sequence of WCH-1, and substances which are specifically linked to these peptides are screened.
- 2) A large quantity of WCH-1 protein is produced from

Escherichia coli having the WCH-1 recombinant plasmid according to the present invention and substances which are specifically linked to such protein are screened.

- 3) mRNA artificially produced from WCH-1 cDNA is injected into eggs of Xenopus to express WCH-1 protein on the egg membrane. Since the eggs are dilated on lowering of the osmotic pressure of the external liquid, the eggs are cultivated in a hypotonic liquid and the dilation is monitored to screen substances which are restrained in dilation.
- 4) An antibody against the extracellular domain of the WCH-1 protein is prepared, and substances which inhibit combination of the antibody with the WCH-1 protein are screened.
- 5) A vector in which WCH-1 cDNA is incorporated is transplanted on a suitable culture cell, such as COS-7 cell. Since the transplanted cell is improved in water permeability, water flows into the cell to be dilated and exploded on decreasing the osmotic pressure of the external liquid. Therefore, substances which restrict such explosion are screened.

An artificial membrane in which the WCH-1 protein is incorporated (Bear, C. E. et al., Cell, 68, 809 - 818 (1992)) exhibits high water permeability and may be used in a number of ways. For example,

- 1) The artificial membrane may be used as a membrane for ultrafiltration for preparation of pure water.
- 2) It may be used for salt concentration.
- 3) It may be used as an osmotic pressure sensor.
- 4) It may also be used for screening of water diuretics.

Above all, the WCH-1 protein incorporated into liposome as a type of the lipid membrane may also be used in a variety of ways. For example,

- 1) it may be designed as artificial blood cells:
- 2) it may be designed as the above-mentioned liposome in which pharmaceuticals are contained. Such liposome is suitable as a durable slow-release pharmaceutical because of retarded release of the pharmaceuticals in the blood;
- 3) it may be used as a therapeutic drug for patients showing resistivity to water diuretics and for patients suffering from severe edema.

If liposome containing high osmotic pressure substances is ingested, body water is captured into liposome and ultimately excreted as feces, in other words, water discharge into feces is promoted.

4) The liposome may be used as a water absorbant.

The liposome containing high osmotic pressure substances exhibit high water absorption properties. Therefore, if a large quantity of the liposome are filled between paper cells of a paper product, such paper product is markedly improved in water adsorptive properties, and hence may be used as a diaper or a sanitary napkin.

The liposome into which WCH-1 protein is incorporated may be produced by any of known methods. Among the common methods, there are a freezing melting method (M. Kasahara, P. C. Hinkle, J. Biol.

Chem., 252, 7384 (1977)), a dilution method by octylglucoside (M. J. Newman, T. H. Wilson, J. Biol. Chem., 255, 10583 (1980)) and a dialysis method (Y. Kagawa, A. Kandrach, E. Racker, J. Biol. Chem., 248, 676 (1973)).

The size and properties (i.e. single- or multi-layered) of the liposome are suitably selected depending on lipid types.

As an example, the WCH-1 protein, the lipid (preferably as a mixture with phospholipid) and a surfactant (e.g. deoxycholate) are mixed together and agitated ultrasonically. The surfactant is removed by dialysis or gel filtration to produce liposome into which is incorporated the WCH-1 protein.

An example of liposome preparation by the freezing and melting method is explained.

Preparation Example

10

To 100 mM of tris-hydrochloric acid buffer solution (pH 7.5), 50 mM of MgCl₂ and 22.5 mg of azolectin (crude lipid of soybeans) processed with acetone are added 0.5 ml of a 10 mM tris-hydrochloric acid buffer solution (pH 7.5). After blowing nitrogen gas into the resulting mixture, the mixture is treated for about 20 minutes by a water-bath type ultrasonic vibrator by ultrasonic waves until the mixture is substantially transparent.

167 μI of this liposome, 20 μg of purified WCH-1 protein and 10 mM of tris-hydrochloric acid buffer solution (pH 7.5) are combined to an overall volume of 0.5 ml. After blowing nitrogen gas into the resulting mass, the mass is frozen in acetone cooled to -70 °C. After melting at room temperature, the melted mass is ultrasonically treated for 15 sec using a water-bath type ultrasonic vibrator. The so-treated mass is diluted with 50 mM MgCl₂ - 100 mM tris-hydrochloric acid buffer solution (pH 7.5) and water to produce liposomes in which WCH-1 protein is incorporated in the form of 8 mg lipid in 1 ml of 2 mM MgCl₂ - 10 mM tris-hydrochloric acid buffer solution.

On the other hand, since it now becomes possible to duplicate the WCH-1 cDNA according to the present invention and to synthesize WCH-1 mRNA artificially, it becomes possible to express the WCH-1 protein on a living membrane by employing a known technique as disclosed in M. Mishina et al., Nature (London), 307, 604 (1984).

For example, the WCH-1 protein may be expressed on the cell membrane by transplanting the plasmid in which WCH-1 cDNA is incorporated on the cell medium or by injecting WCH-1 mRNA into oocytes, as shown in the above exemplification.

Appendix:

35

40

45

50

Table of Sequence Description

Table of Sequence Description

	Sequence ID No. : 1
5	Sequence Length: 1408
	Sequence Type : nucleic acid
	Strandedness : single
10	Topology : linear
	Molecule Type : cDNA to mRNA
	Original Source
15	Organism : Sprague-Dawley rat
	Individual Isolate of Clone: WCH-1
	Tissue Type : Kidney
20	Immediate Source
	Clone : pMWC41
0.5	
25	Sequence Description
30	AGAGAGAAGA GAAAGAGAGA GGGAGGGAGG AAGAGCCACC CCCGTGGCCC AGACCCCTGG 60
00	CCAGCGCGCA GAAGTCGGAG CAGC ATG TGG GAA CTC AGA TCC ATA GCC TTC 111
	Met Trp Glu Leu Arg Ser Ile Ala Phe
35	I 5
	TCC CGA GCA GTG CTG GCT GAG TTC TTG GCC ACG CTC CTT TTT GTC TTC 159
	Ser Arg Ala Val Leu Ala Glu Phe Leu Ala Thr Leu Leu Phe Val Phe
40	
	TTT GGC CTT GGC TCA GCC CTC CAG TGG GCC AGC TCC CCA CCC TCT GTG 207
45	Phe Gly Leu Gly Ser Ala Leu Gln Trp Ala Ser Ser Pro Pro Ser Val
	30 35 40
	CTC CAG ATC GCC GTG GCC TTT GGT CTG GGC ATC GGC ATC CTG GTT CAG 255
50	Leu Gln Ile Ala Val Ala Phe Gly Leu Gly Ile Gly Ile Leu Val Gln
	45 50 55

	GCT	CTG	GGC	CAT	GTC	AGC	GGG	GCA	CAC	ATC	AAC	CCC	GCC	GTG	ACT	GTG	303
5	Ala	Leu	Gly	His	Val	Ser	Gly	Åla	His	Ile	Åsn	Pro	Åla	Val	Thr	Val	
			60					65					70				
	GCA	TGC	CTG	GTG	GGT	TGC	CAT	GTC	TCC	TTC	CTT	CGA	GCT	GCC	TTC	TAT	351
10	Ala	Cys	Leu	Val	Gly	Cys	His	Val	Ser	Phe	Leu	Årg	Ala	Ala	Phe	Tyr	
		75					80					85					
15	GTG	GCT	GCC	CAG	CTG	CTG	GGC	GCC	GTG	GCT	GGG	GCT	GCC	ATC	CTC	CAT	399
15	Val	Åla	Ala	Gln	Leu	Leu	Gly	Ala	Val	Ala	Gly	Ala	Ala	Ile	Leu	His	
	90					95					100					105	
20	GAG	ATT	ACT	CCA	GTA	GAA	ATC	CGT	GGG	GAC	CTG	GCT	GTC	AAT	GCT	CTC	447
	Glu	Ile	Thr	Pro	Val	Glu	Ile	Arg	Gly	Åsp	Leu	Ala	Val	Åsn	Ala	Leu	
					110					115					120		
25	CAC	AAC	AAC	GCC	ACA	GCT	GGC	CAG	GCT	GTG	ACT	GTA	GAG	CTC	TTC	CTG	495
	His	Åsn	Åsn		Thr	Åla	Gly	Gln		Val	Thr	Val	Glu		Phe	Leu	
30				125					130					135			
			CAG														543
	Thr	Met	Gln	Leu	Val	Leu	Cys		Phe	Ala	Ser	Thr		GIù	Arg	Arg	
35			140					145					150			1.00	501
			AAC														591
	Gly		Asn	Leu	Gly	Ser		Ala	Leu	Ser	lle		Phe	2er	Val	inr	
40	456	155	a.a		amm	000	160	T. T	* *****	100	C C TT	165	TOO	l TC	~	CCI	620
			CAC													_	639
4 5		GTÀ	His	Leu	Leu		ile	IÀL	rne	Inr	180	cys	Ser	мес	ASII	185	
	170	ccc	TCC	стс	CCT	175	ec i	CTT	CTC	ACT		AAG	ттт	CAT	CAT		687
			Ser														501
50	uiq	ar g	ne1	กรถ	190		пта	141	141	195	413	درن	. 110		200		

	TGG	GTC	TTC	TGG	ATC	GGA	CCC	CTG	GTG	GGC	GCC	ATC	ATC	GGC	TCC	CTC	735
5	Trp	Val	Phe	Trp	Ile	Gly	Pro	Leu	Val	Gly	Ala	Ile	Ile	Gly	Ser	Leu	
				205					210					215			
10	CTC	TAC	AAC	TAC	CTG	CTG	TTC	CCC	TCG	GCA	AAG	AGC	CTG	CAG	GAG	CGC	783
	Leu	Tyr	Asn	Tyr	Leu	Leu	Phe	Pro	Ser	Ala	Lys	Ser	Leu	Gln	Glu	Årg	
			220					225					230				
15	TTG	GCA	GTG	CTC	AAG	GGC	CTG	GAG	CCC	GAC	ACC	GAC	TGG	GAG	GAÁ	CGT	831
	Leu	Ala	Val	Leu	Lys	Gly	Leu	Glu	Pro	Åsp	Thr	Asp	Trp	Glu	Glu	Arg	
20		235					240					245					
	GAA	GTG	CGG	CGG	CGG	CAG	TCG	GTG	GÅG	CTC	CAC	TCT	CCT	CAG	AGC	CTG	879
	Glu	Val	Arg	Arg	Arg	Gln	Ser	Val	Glu	Leu	His	Ser	Pro	Gln	Ser	Leu	
25	250					255					260					265	
	CCT	CGC	GGC	AGC	AAG	GCC	TGA	GCTCC	CCC :	[GCA(GCGCA	C C	GC AG(CTCA	G		927
30	Pro	Arg	Gly	Ser	Lys	Ala											
					270	271											
35	CCG	CCG	ACG (GCTC	GCCC	CC TO	CCTT		C TG	ACCC	GTCG	TCG	GTTC	CCA	GTGC	AGAGTA	987
	GCT	GCTC	CAG	CGAG	CGCAC	ST GA	AGCC:	rca a c	G AA(GGGG	CTCG	CCG	GGAG	CTG .	ACAG:	TACCTC	1047
	CGC	CCGG	AAG	CCTT	FAGC1	ra co	CCTC	GAGCT	CG	CCCC	TTGC	AGG.	AACC	AGA I	CACT	rgggga	1107
40	CCG	\GGC(GTG (GGGA	GGA	AG GO	CAGG	CCGG	GA	GAGA	CGGA	GAG	CTCT	GGA	GAGC	CCGCTC	1167
	TGG	[GCC]	IGG (GGAG	AGTO	GC AT	[AGA(CTCC	I IC	TGGG	GGAC	TGT	GCTT	AGT	GCAT(CTCATT	1227
45	TTAT	TTAG	GTT (GTAA	AGTO	GC TO	CGTC	TCCG	C GT	ATTT	CTTT	TCC	TCAC	GAA	CAGA	GTTTGC	1287
	ATG	ATCC:	rga (GCGT(SATC	CC G	AGTG	CCTG	r GG	TGAT.	ACAG	AGC	CGGG	GAC	TGTC	ATTCCC	1347
50	GCT	TIGG	CCT	CTT	CTCC	IG T	ACCT	GCAA:	r aa.	ATCC.	ACTA	TCT	CTGA	AAA .	AAAA	AAAAA	1407
,,	Å																1408

55 Claims

1. A WCH-1 cDNA probe specific to mRNA expressing a water channel localized in the kidney collecting tubule and complementary to said mRNA.

- 2. A WCH-1 cDNA probe specific to mRNA expressing a vasopressin-regulated water channel and complementary to said mRNA.
- **3.** The sequence of WCH-1 cDNA as defined in claim 1 wherein the sequence is expressed by a base sequence shown by sequence number 1.
 - **4.** A WCH-1 mRNA probe obtainable by employing the WCH-1 cDNA probe as defined in one of claims 1 to 3 as a template.
- o 5. The WCH-1 cDNA as defined in one of claims 1 to 3 obtainable by
 - a) subjecting a single-chain cDNA prepared from kidney medullary mRNA of a mammal to PCR using, as degenerate primers,

5'-
$$(T/C)T(T/C/A/G)AA(T/C)CC(T/C/A/G)GC(T/C/A/G)GT$$

(T/C/A/G)AC-3

20 and

$$5'-AA(T/C/A/G)(G/C)(T/A)(T/C/A/G)C(G/T)(T/C/A/G)GC(T/C/A/G)$$

GG(A/G)TT-3',

and

b) screening a kidney cDNA library of said mammal using a product of said PCR as a probe.

30

45

55

- 6. The WCH-1 cDNA as defined in claim 5 wherein the mammal of claim 5 is a rat.
- 7. A WCH-1 protein molecule constituting a water channel localized in the kidney collecting tubule.
- 8. A WCH-1 protein molecule constituting a vasopressin-regulated water channel.
 - **9.** An amino acid sequence of the WCH-1 protein molecule as defined in claims 7 or 8, wherein the amino acid sequence is coded by a base sequence of sequence number 1.
- **10.** A recombinant plasmid characterized in that a WCH-1 gene represented by a base sequence shown by sequence number 1 is recombined into an expressing vector.
 - **11.** The recombinant plasmid as defined in claim 10 characterized in that said expressing vector is pSPORT, and said WCH-1 gene is inserted into sites of said pSPORT sectioned with Not-I and Sal-I.
 - **12.** Escherichia coli producing protein molecules expressed by the WCH-1 cDNA as defined in claim 6, said protein molecules constituting a water channel localized in the kidney collecting tubule.
- **13.** Escherichia coli producing protein molecules expressed by the WCH-1 cDNA as defined in claim 6, said protein molecules constituting a vasopressin-regulated water channel.
 - **14.** Escherichia coli producing protein molecules expressed by WCH-1 gene represented by a base sequence shown by sequence number 1, said protein molecules constituting a water channel localized in the kidney collecting tubule.

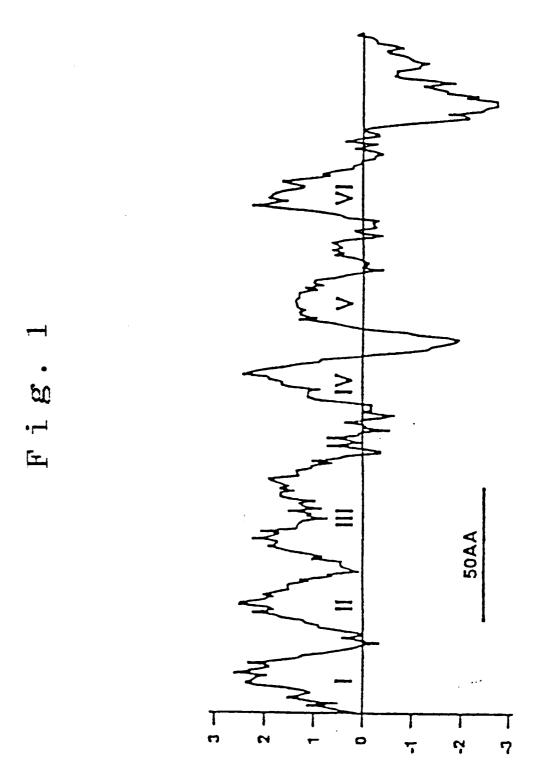
15. Escherichia coli producing protein molecules expressed by WCH-1 gene represented by a base sequence shown by sequence number 1, said protein molecules constituting a vasopressin-regulated water channel.

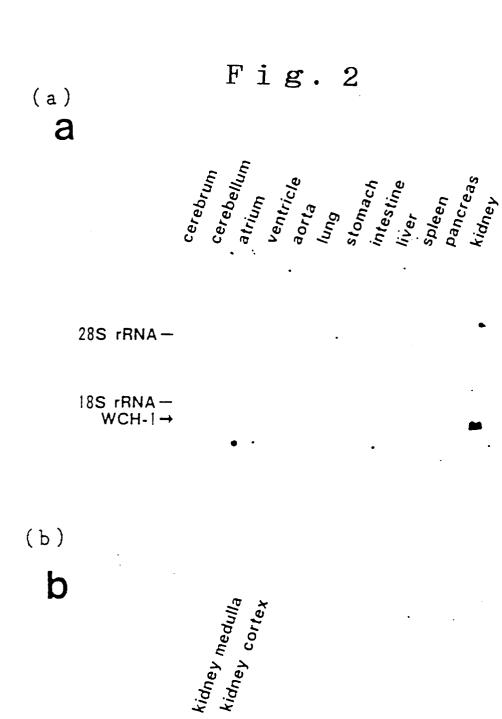
- **16.** The Escherichia coli as defined in any one of claims 12 to 15 obtainable by introducing the recombinant plasmid obtained by inserting the WCH-1 gene into the expressing vector pSPORT into an Escherichia coli $DH10\alpha$ for transformation.
- **17.** The Escherichia coli as defined in claim 16 containing the plasmid in which said WCH-1 gene is introduced into sites of pSPORT sectioned with Not-I and Sal-I.
 - **18.** The Escherichia coli having the plasmid as defined in claim 17, produced by employing the vector (pSPORT), the expression of which may be derived by addition of isopropyl β -D-thiogalactoside, host (DH10 α) family.
 - 19. A WCH-1 protein molecule produced by Escherichia coli as defined in any one of claims 1 to 18.

10

25

30


35


40

45

50

- **20.** A method for producing WCH-1 protein molecules characterized in that the WCH-1 protein molecules are obtained using Escherichia coli as defined in any one of claims 12 to 18.
 - **21.** A lipid membrane characterized in that it contains WCH-1 protein molecules constituting a water channel localized in the kidney medullary tubule.
- 22. A lipid membrane characterized in that it contains WCH-1 protein molecules constituting a vasopressin-regulated water channel.
 - 23. A liposome characterized in that it is formed of a lipid membrane containing WCH-1 protein molecules constituting a water channel localized in the kidney medullary tubule.
 - **24.** A liposome characterized in that it is formed of a lipid membrane containing WCH-1 protein molecules constituting a vasopressin-regulated water channel.

28S rRNA-

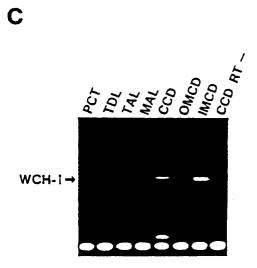
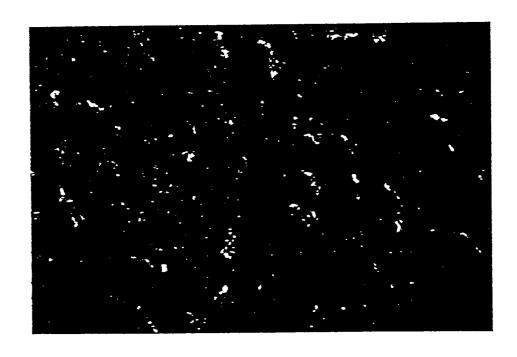
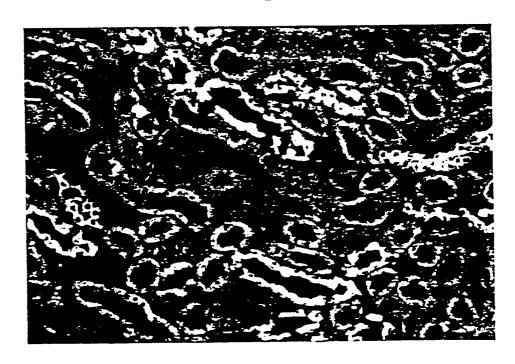
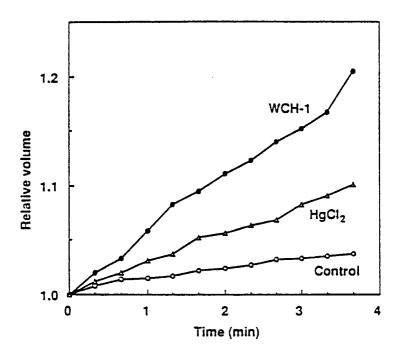
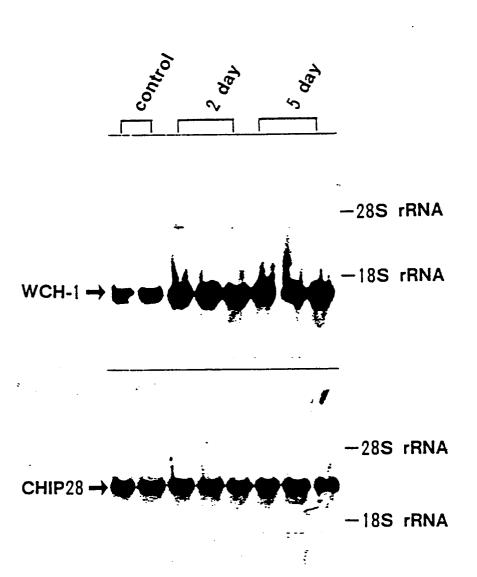



Fig. 5



Fig. 7



Fig. 8

(a)

(b)

AGCATGGGAACTCAGATCCATAGCCTTCTCCCAGCAGTGCTGGATCTGGCCCCCCTTCTCTGGCCCCCCTTGGCTGAGTTCTTGGCCCCTTGGCTGAGTTCTTGGCCCCTTGGCTGAGTTCTTGGCCCCTTGGCTGAGTTCTTGGCCCCTTGGCTGAGTTCTTGGCCCCTTGGCTGAGTTCTTGGCCCTTGGCTGAGTTCTTGGCCCTTGGCTGAGTTCTTGGCCCTTGGCTGAGTTCTTGGCCTTGGCTGGC
CH
CHIP28
CAGGGGGGGCTGCCAGGGGGGGGGGGGGGGGGGGGGGGG
CAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
CASTGESTICAGETECCEACCTTCTGTGCTCCAGATCSCCGTGGCT.TTGGTCTGGGCATC NCH-1 CHIP28 N N G T A V Q D N V K V S L A F G L S I 60 GCCATCTTGGTTCAGGCTCCAGGCCAGGCCACACCACCACCCGCCGCGCGCTGACT CHIP28 A T L A O S V G H I S G A H I N P A V T 72 CHIP28 A T L A O S V G H I S G A H L N P A V T 80 GTGGCATCTTGGTCGGTTGCCATGTCTCGTTCCTTCGAGGTTGCCTTCTATGTGGCTGCC 276 MCH-1 V A C L V G C H V S F L R A A F Y V A A 92 CHIP28 CAGCTGTTGGGTTGGCTTGGCGTTGCCATGTCTCCATGAGGATTACTCCAGTAGAAATC CHIP28 CAGCTGTTGGGTTGGCTTGGGTTGCCATGCTCCATGAGGATTACTCCAGTAGAAATC MCH-1 O L L G A V A G A A I L H E I T P V E I 112 CHIP28 O C V G A I V A T A I L S G L T S S L T 120 CGTGGGGACCTGGCTGCAATGCTCTCCACAACAACCCCCACGCTGGCCAGGCCTGCACT MCH-1 R G D L A V N A L H N N A T A G Q A V T 132 MCH-1 R G D L A V N A L H N N A T A G Q A V T 132 MCH-1 V I L F L T M Q L V L C I F A S T D E R 152 MCH-1 V I L F L T M Q L V L C I F A S T D R R 160 CGCGGTGACAACCCAAGGATGCAGCTGGCATGCTTGACT GGCCACCGAACGACCCCAACCAACCAACCCCAACCAACC
CHIP28
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CHIP28 A T L A Q S V G H I S G A H L N P A V T 80 CTGGCATGCCTGGGGT.TGCCATGTCTCCTTCGAGCTGCCTTCTATGTGGCTGCC 276 WCH-1 V A C L V G C H V S F L R A A F Y V A A 92 CAGCTGCTGGGGCTGCCGGGGGGGGCTGCCATGGTCCATGAGAAATC 336 WCH-1 CHIP28 CAGCTGCTGGGGCTGCGGGGGGGCTGCCATGGTCCATGAGAATTCTCCAGTAGAAATC 336 WCH-1 CHIP28 CGTGGGGACCTGGGGGTGCGGGGCTGCCATGGTCCATGAGAATC 396 WCH-1 CHIP28 CGTGGGGACCTGGGGTGCAATGCTCCAAAAAACGCCAACAACGGCAAGGTGGCAAGGTGAACT 396 WCH-1 CHIP28 CGTGGGGACCTGGGGTGCAATGCTCCCAAAAAAACGCCAACAACGGCAAGGTGGCAAGGTGAACT 396 WCH-1 CHIP28 CGTGGGGACCTGGGGTGCAATGCTCCCACAACAACGCCAACGAGGGCAAGGTGAACT 396 WCH-1 CHIP28 CGCGGTGACAAACGTGAATGCAGCTGGCAACAACGCCAACGAACG
CHIP28 A T L A Q S V G H I S G A H L N P A V T 80 CTGGCATGCCTGGGTTGCCATGTCTCCTTCGAGGTGCCTTCTATGTGGCTGCC 276 WCH-1 CHIP28 L G L L V G C H V S F L R A A F Y V A A 92 CAGCTGCTGGGGTGGGGTGGGGCTGCCATGCTCCATGAGATTACTCCAGTAGAAATC 336 WCH-1 CHIP28 Q C V G A I V A T A I L S G L T S S L T 120 CGTGGGGACCTGGGGTGCAATGCTCCAACAACACGCCAACAGGTGGCAAGGTGACT 396 WCH-1 R G D L A V N A L H N N A T A G Q A V T 132 CHIP28 G N S L G R N D L A D G V N S G Q G L G 140 CGTAGACCTCTCCTGACCATGCAGCTGGCAACACGCCCACCGACGAGGGGC 456 WCH-1 V E L F L T M Q L V L C I F A S T D E R 152 CHIP28 CGCGGTGACAACCTGGGTACCCTGCCCTCCCATGGCTACCTAC
WCH-1 CAGCIGGEGGCCGCGGGGCGCGCCATGCTCCATGAGATTACTCCAGTAGAAATC CAGCIGGCGGCCGCGGGCGCGCGCCATGCTCCATGAGATTACTCCAGTAGAAATC MCH-1 CHIP28 CAGCIGGCGGCCGGGGCGCGCCATGCTCCATGAGATTACTCCAGTAGAAATC 336 MCH-1 CHIP28 CCTGGGGACCTGGCTGCAATGCTCCAACAACAACGCCAAGCTGGCCAGGCTGCACT CGTGGGGACCTGGCTGCAATGCTCGCACAACAACGCCAAGCTGGCCAAGCTGCCACGAGCTGCACT CHIP28 CGTAGAGCTCTTCCTGACCATGCAGCTGGTGCTGTGCATTTACT CHIP28 CGTAGAGCTCTTCCTGACCATGCAGCTGGTGCTGTGCATTTACCTGACCGACGACGACGACCGAC
CAGCIGGEGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
CAGCTGCTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
NCH-1
CGGGGGGACCTGGGTCAATGCTCTCCAAGAACAACGCCAAGACGGCAAGGGGCAAGGTGGACT 396 WCH-1 CRIP28 CRIP29 CRIP29 CRIP29 CRIP29 CRIP29 CRIP29 CRIP29 CGGGGGGACAACCTGGGTAGCCATGCAGGTGGTGTGCATCTTTGCCTCCACCGACGAGGGCC 456 WCH-1 CRIP29 CCGGGGGACAACCTGGGTAGCCCTGCCCTCCCATGGACCCACCGACGAGGGC 456 WCH-1 CRIP29 CCGCGGGACAAACCTGGGTAGCCCTGCCCTCCCATGGCTCCTATACCTGGGCCCAC 516 WCH-1 CRIP29 CCGCGGGACAAACCTGGGTAGCCCTGCCCTCCCATGGCTCCACTGGCCCAC 516 WCH-1 CRIP29 CCGCGGGACAAACCTGGGTAGCCCTGCCCTCCCATGGATCCACCTGGCCCAC 516 WCH-1 CRIP29 CCCCTTGGGATCTATTCACCGGGTTGCTCCATGAATCCAGCCCGCTCCCTGGCTCCACCA 576 WCH-1 CCCCTTGGGATCTATTCACCGGGTTGCTCCATGAATCCAGCCCGCTCCCTGGCTCCACCA 576 WCH-1 CCCCTTGGGATCTATTCACCGGGTTGCTCCATGAATCCAGCCCGCTCCCTGGCTCCACCA 576 WCH-1 CCCCTTGGGCATCTATTCACCGGGTTGCTCCATGAATCCAGCCCGCTCCCTGGCTCCACCA 576 WCH-1 CRIP29 CCCCTGGCATCTATTCACCGGGTTGCTCCATGAATCCAGCCCGCTCCCTGCCTCCACCACCA 576 WCH-1 CRIP29 CCCCTTGGCATCTATTCACCGGGTTGCTCCATGAATCCAGCCCGCTCCCTGCCTCCACCACCA 576 WCH-1 CRIP29 CCCCTCTGGCATCTATTCACCGGGTTGCTCCATGAATCCACCCCGCTCCCTGCCTCCACCACCACCACACACA
WCH-1 CHIP28 R G D L A V N A L H N N A T A G Q A V T 132 CHIP28 G N S L G R N D L A D G V N S G O G L G 140 GTAGAGETETECTGACCATGCAGGTGGTGGTGGTGCATCT-GGCGTCCACCGACGACGACGCC 456 WCH-1 V E L F L T M Q L V L C I F A S T D E R 152 CHIP28 I E I I G T L Q L V L C V L A T T D R R 160 CGCGGTGACAACGTGGTACCCCTGCCCTCTCCATGGTTCTCTTACCTGGGCCAC 516 WCH-1 R G D N L G S P A L S I G F S V T L G H 172 CHIP28 R D L G G S A P L A I G L S V A L G H 180 CTCCTTGGCATCTATTCACCGGTTGCTCCATGAATCCACCCCGCTCCCTGCCTCCACCA 576 WCH-1 CH-1 CH-1 CTCCTTGGCATCTATTCACCGGTTGCTCCATGAATCCACCCCCCTGCCTCCACCA 576 WCH-1 CH-1 CTCCTTGGCATCTATTCACCGGTTGCTCCATGAATCCACCCCCCTCCCT
GTAGACCTCTCCCGACCATGCAGCTGGTGCTGCATCTCTGCCCCCCCC
CHIP2S VELFET MOLVEC VLATTORR 152 CGCGGTGACAACCTGGGTACCCCTGCCCTCTCCATGGTTCCTCTACCCTGGGCCCAC CGCGGTGACAACCTGGGTACCCCTGCCCTCTCCATGGTTCTCTCTACCCTGGGCCCAC NCH-1 R G D N L G S P A L S I G F S V T L G H 172 R R D L G G S A P L A I G L S V A L G H 180 CTCCTTGGGATCTATTTCACCGGTTGCTCCATGAATCCAGCCCGCTGCCTGC
CHIP2S I I I G T L O L V L C V L A T T D R R 160 CGCGGTGLEAACCTGGGTAGCCCTGCCCTCTCCATGGTTCCCTGGGGCCAC 516 WCH-1 CHIP2S R G D N L G S P A L S I G F S V T L G H 172 CHIP2S R R D L G G S A P L A I G L S V A L G H 180 CTCCTTGGGATCTATTTCACCGGTTGCTCCATGAATCCAGCCCGCTCCCTGGCTCCAGCA 576 NCH-1 CHIP2S CTCCTTGGGATCTATTTCACCGGTTGCTCCATGAATCCAGCCCGCTCCCTGGCTCCAGCA 576 NCH-1 CHIP2S
CGCGGTGACAACCTGGGTAGCCCTGCCCTCTCCATGGTTCCTGTTACCTGGGCCAC S16 WCH-1 CHIP2S RRDLGGSPALLSIGFSVTLGH 172 RRDLGGSAPLAIGLSIGFSVALGH 180 CTCCTGGGATCTATTCACCGGTTGCTCCATGAATCCAGCCGGTCCAGCA 576 NCH-1 LLGIYFTGCSATCTATTCACCGGTTGCTCCATGAATCCAGCCGGTCCAGCA 576 NCH-1 CHIP2P
CTCCTTGGGATCTATTTCACGGGTTGGTCCATGAATCCAGGCGGTCCATGGCTCCAGCA CTCCTTGGGATCTATTTCACGGGTTGGTCCATGAATCCAGGCGGTCCCTGGCTCCAGCA S76 NCH-1 L L G I Y F T G C S M N P A R S L A P A 192
CTCCTTCCCCATCTATTTCACCCGTTGCTCCATGAATCCAGCCCGCTCCCTGCCTCCAGCA 576 NCH-1 L L G I Y F T G C S M N P A R S L A P A 192 CH1379
MCH-1 L L G I Y F T G C S M N P A R S L A P A 192
CHIPPE IT TINITING THE FIRST THE FIR
CHIP28 LLAIDYTGCGINPARSFGSA 200
STIGUE ACTION TO A THE PROPERTY OF THE PROPERT
WCH-1
ATCATCCCCTCCTCCTCTACAACTACCTCCTCCTCCCCCAAAGAGCCCTCCAGGAG 696
WCH-1 IIG SILILYNY LIFP A K CT OF 772
CCCTTGGCAGGGCCTGGAGCCCGACACC CACTGGGAGGAACGTGAAGTG 753 WCH-1 R L A V L K G L E P D T - D H E E R E V 251
CHIF2S RVNVHTSGQVEEYDLDADDI 260
CGGCGGCGGCAGCCCCACCCCCCAGAGGCCCGCCCGCCAGGCCC 813
CUTPIE WEIGHT WILLIAM STORY SERVICE A 2/1
CHIP28 NS R VEHKPK 269
259
TGAGETECCETGCAGCGCAGCTCAGCCGACGGCTCGCCCCCTCETTCCCCC 873 TGACCCGTCGTCCCAGTCCAGCGAGTCCAGCGACTGCAGTGAGCCTCAAG 913
TGAGETCEETGEAGEGEACEGAGETCAGCCGACGGGCTEGGCGCCTCETTCCCCC 873 TGAGCGCTCGGCGAGTCCAGAGTAGCTCAGCGAGTGCAGTGAGCTCAAG 933 AAGGGCTCGCCGGGAGCTGACAGTACCTCGAGCT 993 CGCCCCTTGCAGGAACCAGACACTTGGGGACCGAGGGCAAGGCAAGGCAAGGCAAGCCTCCAGCT 1053
TGAGETCECTTGCAGCGCACCCCACCCCACCGCCCCCCCCCC
TGAGETCEETGEAGEGEACEGAGETCAGCCGACGGGCTEGGCGCCTCETTCCCCC 873 TGAGCGCTCGGCGAGTCCAGAGTAGCTCAGCGAGTGCAGTGAGCTCAAG 933 AAGGGCTCGCCGGGAGCTGACAGTACCTCGAGCT 993 CGCCCCTTGCAGGAACCAGACACTTGGGGACCGAGGGCAAGGCAAGGCAAGGCAAGCCTCCAGCT 1053