(19)
(11) EP 0 592 360 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
13.04.1994  Patentblatt  1994/15

(21) Anmeldenummer: 93810672.1

(22) Anmeldetag:  22.09.1993
(51) Internationale Patentklassifikation (IPC)5B22D 11/01, B22D 11/04
(84) Benannte Vertragsstaaten:
AT BE CH DE DK ES FR GB GR IT LI LU NL SE

(30) Priorität: 06.10.1992 CH 3116/92

(71) Anmelder: ALUSUISSE-LONZA SERVICES AG
CH-8034 Zürich (CH)

(72) Erfinder:
  • Berclaz, Georges
    CH-3968 Veyras (CH)
  • Carrupt, Bertrand
    CH-1955 Chamoson (CH)
  • Plata, Miroslaw
    CH-1963 Vétroz (CH)


(56) Entgegenhaltungen: : 
   
       


    (54) Giessmaschine für das vertikale Stranggiessen in einem Magnetfeld


    (57) Die Giessmaschine hat in der Kokille (10) eine Ablenkplatte (66) mit einer unteren Leitfläche (80) für mit hohem Druck aufspritzendes Kühlwasser (20) und/oder eine Tragplatte mit einer oberen Leitfläche für mit niedrigem Druck ausfliessendes Kühlwasser (20). Beide Leitflächen bestehen aus einem isolierenden Material. Die elektromagnetische Abschirmung (18,76) ist wenigstens im aktiven Bereich innengekühlt.
    Das Kokillengehäuse (32) besteht vorzugsweise aus einem mehrfach abgekanteten Lochblech (34). Der aktive Bereich der Abschirmung ist bevorzugt als U- oder V-förmiges Abschirmblech ausgebildet, mit einer Einlage oder einer Beschichtung zur von unten nach oben zunehmenden Abschwächung der magnetischen Einwirkung des Induktors (12).
    Die wasserbeaufschlagte Leifläche (80) wird kontinuierlich in einem vorgegebenen Rhythmus hin und her verschoben und/oder geschwenkt. Dadurch wird der von der elektromagnetischen Abschirmung (18) unabhängige Wasservorhang (22) auf den Strang (14) über eine Höhe (h) auf und ab bewegt.




    Beschreibung


    [0001] Die Erfindung bezieht sich auf eine Giessmaschine mit wenigstens einer genau und reproduzierbar ausgerichteten, wassergekühlten Kokille zum kontinuierlichen Giessen eines vertikalen Stranges im Magnetfeld eines geschlossen umlaufenden, teilweise abgeschirmten Induktors, in einem spitzen Winkel über wenigstens eine Leitfläche zur Bildung eines Wasserfilms auf den Strang gerichtete Kühlwasserkanäle und einen entsprechenden, absenkbaren Anfahrboden pro Kokille. Weiter betrifft die Erfindung ein Verfahren zum Kühlen eines Stranges in einer Giessmaschine.

    [0002] Bei Stranggiessverfahren, auch kontinuierliche Giessverfahren genannt, werden Metalle in Form von mehrere Meter langen Barren oder Bolzen gegossen, welche als Vormaterial für verschiedene nachfolgende Verarbeitungsschritte eingesetzt werden, wie z.B. zum Pressen, Walzen oder Schmieden.

    [0003] Das wichtigste Glied einer Stranggiessmaschine sind Kokillen, welche in konventionellen Verfahren den Querschnitt des gegossenen Stranges festlegen. Eine Giessmaschine ist, je nach der Anzahl von gegossenen Strängen, mit entsprechend vielen, absenkbaren Anfahrböden ausgerüstet, welche fest mit einem Giesstisch verbunden sind.

    [0004] Während sich die Kokillen langsam mit der Schmelze füllen, beginnt das Metall an den Anfahrböden zu erstarren. Diese werden gekühlt und mit einer derartigen Geschwindigkeit abgesenkt, dass die Soliduslinie des erstarrenden Metalls stets innerhalb des Kokillenrahmens bleibt. Die Stränge, deren Erstarrung durch Wasserkühlung beschleunigt wird, wachsen in gleichem Masse nach unten, wie die Anfahrböden abgesenkt werden. Innerhalb einer vorgegebenen Länge eines Stranges ist der Giessvorgang unterbrechungsfrei.

    [0005] Zu den wichtigsten Parametern des Stranggiessens gehören eine richtig gesteuerte Absenkgeschwindigkeit sowie die Kühlung des Metalls am richtigen Ort und mit der richtigen Intensität. Diese Parameter haben einen starken Einfluss auf die Oberfläche des Giessbarrens. Bei ungünstiger Steuerung der Parameter können Seigerung, Austritt von Schmelze durch die erstarrte Schale, Aufreissen oder Kalkaufbindung auftreten.

    [0006] Das erst in jüngerer Zeit zu industrieller Reife geführte Magnetfeldgiessen (EMC) basiert auf der vollständigen Eliminierung mechanischer Berührung zwischen der Kokille und dem erstarrenden Metall. Das flüssige Metall wird durch steuerbare elektromagnetische Kräfte exakt in der Querschnittsform des Strangs gehalten.

    [0007] Mit dem EMC-Verfahren lässt sich nicht nur eine homogene interne Struktur, sondern auch eine glatte Oberfläche des gegossenen Metalls erzielen, was zu besseren physikalischen und chemischen Eigenschaften der Press- oder Schmiedebolzen sowie Walzbarren führt. Kostspielige Nachbehandlungen, wie die Entfernung der Oberflächenhaut oder die Kantenbestossung, sind mit dem EMC-Verfahren nicht mehr notwendig.

    [0008] Beim Magnetfeldgiessen ist die Startphase sehr wichtig, weil die Erstarrungsfront in einem engen Höhenbereich der Kokille von etwa 10 mm gehalten wird. Dies ist notwendig, weil bei einer EMC-Kokille die magnetischen Kräfte den metallostatischen Druck der Schmelze oberhalb der Erstarrungsfront kompensieren müssen. Deshalb ist eine vollständige Beherrschung der Kühlung, insbesondere während der Startphase, unerlässlich. Die Absenkgeschwindigkeit und die Kühlung einer bestimmten Legierung und Barrendimensionierung müssen zeitabhängig optimalisiert werden.

    [0009] Die Barrenfusskrümmung und lokale Rissbildung können weitgehend eliminiert werden, wenn die Schockwirkung und die Intensität des Kühlwassers gesenkt werden können:
    • Mit der Verwendung von kohlendioxidhaltigem Kühlwasser kann die Kühlintensität um einen Faktor bis etwa 5 gesenkt werden. Die Verwendung von CO₂-haltigem Kühlwasser bringt jedoch auch Nachteile mit sich. Das Kohlendioxid muss in Druckflaschen abgefüllt, transportiert und gelagert werden. Weiter muss CO₂-haltiges Kühlwasser bis kurz vor dem Austritt unter hohem Druck gehalten werden, was konstruktiv und werkstoffmässig zu einem höheren Aufwand führt.
    • Nach einer weiteren Variante wird wenigstens während der Startphase des Giessens pulsierend Kühlwasser aufgespritzt. Dieses Verfahren hat sich beispielsweise beim Giessen der meisten Aluminiumlegierungen bewährt, bei harten Legierungen können jedoch Haarrisse entstehen.


    [0010] Die nach unten keilförmig ausgebildete elektromagnetische Abschirmung bekannter Kokillen für EMC-Giessmaschinen erfüllt gleichzeitig zwei Funktionen:
    • Das aus rostfreiem Stahl, insbesondere INOX, bestehende Material der Abschirmung absorbiert die den Strang formenden elektromagnetischen Kräfte in gleichem Masse zunehmend, wie das Material zunimmt. Dies führt zu einer zusätzlichen Erwärmung.
    • Die polierte Aussenfläche einer Abschrägung der Abschirmung wirkt zugleich als Leitfläche für das Kühlwasser, wobei auf der Leitfläche vorerst ein Kühlwasserfilm, dann ein auf den Strang aufspritzender Wasservorhang gebildet wird. Als Nebenwirkung wird die elektromagnetische Abschirmung durch das auftreffende Wasser gekühlt. INOX beispielsweise ist ein ausgesprochen schlechter thermischer Leiter.


    [0011] Daraus ergeben sich für bekannte EMC-Kokille einige Probleme:
    • Auf der polierten Aussenseite der elektromagnetischen Abschirmung, der Leitfläche, lagert sich Kalk ab und führt zu einer ungenügenden Filmbildung durch das Kühlwasser und zu schwachen Kühlung der Abschirmung. Da diese Kühlung hinreichend sein muss, sind aufwendige Unterhaltskosten unumgänglich.
    • Die elektromagnetische Abschirmung ist starr an der Kokille befestigt, die Lage der Leitfläche kann also nicht verändert werden.
    • Die Bestandteile der Kokille bestehen aus Aluminium, Eisen und Kupfer, was zu Korrosionsproblemen führt.


    [0012] Die Erfinder haben sich die Aufgabe gestellt, eine Giessmaschine der eingangs genannten Art zu schaffen, welche dank einfacherer Gestaltung und geringeren Verlusten an elektromagnetischer Energie der Kokillen sowohl in bezug auf die Herstellungs- als auch auf die Betriebskosten wirtschaftlicher ist. Die Kokille soll im Auftragen von Kühlwasser flexibel sein und mit einem Verfahren gekühlt werden, das schonender als bisherige angewendet werden kann.

    [0013] In bezug auf die Giessmaschine wird die Aufgabe erfindungsgemäss dadurch gelöst, dass die Leitfläche/n der Kokille für das Kühlwasser aus einem isolierenden Material besteht/bestehen, und die elektromagnetische Abschirmung wenigstens im aktiven Bereich innengekühlt ist. Spezielle und weiterbildende Ausführungsformen der Giessmaschine sind Gegenstand von abhängigen Patentansprüchen.

    [0014] Nach einer besonders vorteilhaften Ausführungsform der Erfindung besteht das Kokillengehäuse aus einem mehrfach abgekanteten, zweckmässig etwa 3 mm dicken Lochblech, mit eingeschweissten Seitenwänden. Dies bedeutet gegenüber dem bekannten Stand der Technik in ökonomischer und technischer Hinsicht einen gewaltigen Fortschritt, die teuren metallischen Formteile, welche massiv ausgebildet sind und in der Regel aus Aluminium bestehen, können durch ein Blechgehäuse aus rostfreiem Stahl, dem gleichem Material wie die Abschirmung, hergestellt sein. Wegen der grossen Mengen durchgesetzten Kühlmediums können Formteile aus Kunststoff in das Blechgehäuse eingesetzt werden, was bearbeitungstechnisch und auch kostenmässig gewaltige Vorteile bringt. Ausserdem werden die vorstehend erwähnten Korrosionsprobleme restlos beseitigt.

    [0015] Weitere Vorteile des abgekanteten Kokillengehäuses liegen darin, dass der Verlust an elektromagnetischer Energie geringer ist und der weitgehend einstückigen Ausführungsform keine Dichtungsprobleme auftreten.

    [0016] Die erfindungsgemäss aus einem isolierenden Material bestehende Leitfläche für das Kühlwasser der Kokille ist vorzugsweise die Oberfläche einer separat und zweckmässig auswechselbar eingesetzten Ablenkplatte. Die dauernde intensive Kühlung erlaubt eine Herstellung aus Kunststoff, was ebenfalls eine bearbeitungstechnisch einfache und überaus billige Ausführungsform ist. Bevorzugt ist die Ablenkplatte verschieb- und/oder schwenkbar. Die Ablenkplatte kann in ihrer Position mit an sich bekannten Mitteln eingestellt werden. Das in unveränderbarer Richtung auftreffende Kühlwasser kann so in einem bestimmten Winkelbereich umgelenkt werden. Mit andern Worten ist die Auftreffhöhe des an dieser Leitfläche gebildeten, auf den Strang gespritzten Wasservorhangs einstellbar, beispielsweise über einen Bereich von 5 bis 20 mm bei nicht verstellbarer Kokillenhöhe.

    [0017] Dies bedeutet gegenüber der Ablenkung des Kühlwassers an einer Leitfläche der magnetischen Abschirmung, welche starr montiert ist, einen bedeutenden Fortschritt. Der kühlende Wasserschleier kann mit einfachen Mitteln dort aufgebracht werden, wo er wirklich eine optimale Wirkung entfalten kann.

    [0018] Die gleichmässige Ausbildung eines Wasserfilms auf der Leitfläche der Ablenkplatte kann noch dadurch verbessert werden, dass längslaufende Rillen ausgebildet sind. Unter längslaufend wird hier die Fliessrichtung des Kühlwassers verstanden.

    [0019] Harte Aluminiumlegierungen beispielsweise werden mit niedriger Absenkgeschwindigkeit gegossen, dabei wird entsprechend weniger Kühlwasser gebraucht. Im Gegensatz zum Auftreffen von viel Wasser mit verhältnismässig hohem Druck auf der Leitfläche, wo ein weitgehend gleichmässiger Wasserfilm gebildet wird, trifft das Wasser bei geringeren Kühlmittelmengen mit zu niedrigem Druck auf die Leitfläche auf, das Kühlwasser läuft ohne Filmbildung ab und kann an den ohnehin schon empfindlicheren Strängen keine optimale Kühlwirkung entfalten. In der Kokille kann deshalb unter der Ablenkplatte bzw. unter dem austretenden Kühlwasser eine Tragplatte ausgebildet sein, welche im Vergleich zur Ablenkplatte länger ausgebildet ist, also näher zum Strang führt.

    [0020] Das Kühlwasser wird auf die Tragplatte gespritzt, bei geringerem Druck wird die Leitfläche der Ablenkplatte wenig oder nicht benetzt. Die der Ablenkplatte zugewandte Oberfläche der aus dem gleichen Material wie die Ablenkplatte ausgebildeten Tragplatte ist ebenfalls als Leitfläche für Kühlwasser ausgebildet. Diese vorzugsweise wie die Ablenkplatte auswechselbare Tragplatte ist ebenfalls vorzugsweise verschieb- und/oder schwenkbar, zweckmässig mit dem gleichen Antriebsorganen wie die Ablenkplatte. Nur mit einer beweglichen Tragplatte kann das Niveau des auf den Strang auftreffenden Kühlwasservorhangs variiert werden.

    [0021] Bei empfindlichen Metallsträngen kann die Tragplatte Löcher oder Schlitze zur Ableitung von Kühlwasser aufweisen. Weil das derart abgeleitete Kühlwasser nie auf den heissen Strang trifft, kann so der Kühleffekt weiter vermindert werden.

    [0022] Obwohl die Ablenk- und die Tragplatte wenigstens teilweise zwischen dem Induktor und der elektromagnetischen Abschirmung angeordnet sind, können sich diese nicht durch die elektromagnetische Einwirkung erhitzen, sie bestehen aus einem isolierenden Material, vorzugsweise aus Kunststoff, beispielsweise Polyäthylen oder Polypropylen. In jedem Fall ist die Kalkbildung wesentlich geringer als auf einer Leitfläche einer Abschirmung bisher bekannter Bauart.

    [0023] Im aktiven Bereich des Induktors ist ein U- oder V-förmig umgebogenes, von Kühlwasser durchflossenes, also innengekühltes Abschirmblech angeordnet, welches wie der ausserhalb des aktiven Bereichs des Induktors liegende Abschirmungskörper bevorzugt aus rostfreiem Stahl besteht. Die vorzugsweise aus etwa 1 bis 2 mm dickem, INOX-Blechen bestehende, seitlich verschlossene Abschirmung wirkt nur als funktioneller Teil, wenn eine Einlage oder Beschichtung aus einem elektromagnetisch besser abschirmenden Material angeordnet ist. Sonst hat das gebogene Blech aus rostfreiem Stahl eine reine Schutz- und Trägerfunktion.

    [0024] Bekannte Abschirmungen von EMC-Kokillen sind auch im untersten Bereich massiv ausgebildet, sie verlaufen wie erwähnt keilförmig. Dadurch wird mit grossem Materialaufwand und mit Aussenkühlung eine von unten nach oben zunehmende Abschirmung erreicht, wie dies den Erfordernissen beim EMC-Stranggiessen entspricht.

    [0025] Nach der erfindungsgemässen Ausführungsform der Kokille schwächt eine Einlage oder Beschichtung im U- oder V-förmigen Teil der Abschirmung die elektromagnetische Einwirkung des Induktors in nach oben verlaufender Richtung zunehmend ab. Diese schrittweise oder kontinuierlich zunehmende elektromagnetische Abschirmung wird beispielsweise durch folgende Massnahmen erreicht:
    • Das U- oder V-förmig umzubiegende Blech aus rostfreiem Stahl wird bevorzugt mit Silber oder Kupfer beschichtet und dann mit dieser Schicht nach innen umgebogen. Das Beschichten erfolgt mit üblichen Verfahren, beispielsweise galvanisch, chemischer Abscheidung aus der Gasphase, Aufspritzen, Abscheidung aus einem Plasma.
    • Das U- oder V-förmige Blech wird nach dem Umbiegen entsprechend beschichtet.
    • Wenigstens eine Folie oder ein Blech aus Silber, Kupfer oder Messing, wird in das U- oder V-förmige Blech eingelegt. Diese Folie oder dieses Blech kann umgebogen, gefaltet oder mehrschichtig ausgebildet sein, wobei eine Abstufung oder eine kontinuierliche Dickenveränderung in der Weise erfolgt, dass die Abschirmung von unten nach oben stufenweise oder kontinuierlich zunimmt.


    [0026] Durch die Einlage einer Folie oder eines Blechs einerseits oder eine Beschichtung andrerseits aus einem der erwähnten Metalle kann die Abschirmung gegenüber dem gebogenen Stahlblech vervielfacht werden, je nach Material und Dicke um einen Faktor von mehreren Hundert.

    [0027] Eine Einlage oder Beschichtung aus Silber ist zweckmässig 0,05 bis 0,2 mm dick, aus Kupfer 0,2 bis 0,4 mm und aus Messing 0,5 bis 2 mm, entsprechend dem spezifischen Absorptionsvermögen, wobei die Dicke dieser Schicht kontinuierlich oder stufenweise von unten nach oben zunehmen kann.

    [0028] In bezug auf das Verfahren zum Kühlen eines Stranges in einer Giessmaschine, in welcher das Kühlwasser in spitzem Winkel auf eine Leitfläche gespritzt, ein regelmässiger Wasserfilm gebildet und auf den Strang gespritzt wird, zeichnet sich die erfindungsgemässe Lösung der Aufgabe dadurch aus, dass die wasserbeaufschlagte Leitfläche kontinuierlich in einem vorgegebenen Rhythmus hin und her verschoben und/oder geschwenkt und dadurch der von der elektromagnetischen Abschirmung unabhängige Wasservorhang auf dem Strang über eine bestimmt Höhe auf und ab bewegt wird. Spezielle und weiterbildende Ausführungsformen des Verfahrens sind Gegenstand von abhängigen Patentansprüchen.

    [0029] Mit dem erfindungsgemässen Verfahren können die Vorteile einer pulsierenden Wasserkühlung ausgenützt und verbessert werden, indem der verhältnismässig harte Uebergang von "Kühlen" zu "Nichtkühlen" in stark gemilderter Form kontinuierlich auftritt. So können auch bei empfindlichen Legierungen, wie beispielsweise harten Aluminiumlegierungen, Haarrisse vermieden werden.

    [0030] In bezug auf den zeitlichen Ablauf wird die wasserbeaufschlagte Leitfläche vorzugsweise sinusförmig bewegt, insbesondere mit einer Zeitperiode von 1 bis 3 sec pro Halbwelle. Dabei vollzieht der Wasservorhang auf dem Strang vorzugsweise eine Auf- und Abwärtsbewegung von 5 bis 20 mm. In an sich bekannter Weise erfolgt die Bewegung der wasserbeaufschlagten Leitfläche vorzugsweise mit pneumatischem, hydraulischem oder elektromagnetischem Antrieb, von einem Microprozessor gesteuert.

    [0031] Das Kühlwasser wird zweckmässig mit gleichbleibendem, im Bereich 0,01 bis 0,5 bar liegendem Druck aufgespritzt, beginnend mit dem Absenken des Anfahrbodens, was etwa 0 bis 3 min nach dem Giessbeginn entspricht. Weil insbesondere die Anfahrphase kritisch ist, kann das Bewegen der wasserbeaufschlagten Leitfläche, während in der Praxis meist 3 bis 7 min, fortgesetzt werden. Selbstverständlich wird das Bewegen der Leitfläche nur eingestellt, wenn dies die Empfindlichkeit der Legierung zulässt.

    [0032] Der Strang kann während des Kühlens elektromagnetisch vibriert werden, insbesondere kontinuierlich.

    [0033] Die mit der Erfindung erreichten Vorteile können wie folgt zusammengefasst werden:
    • Durch eine vom Magnetfeld nicht erwärmte, wasserbeaufschlagte Leitfläche wird die Abscheidung von Kalk auf der polierten Oberfläche der Abschirmung vermieden und dadurch die Unterhaltskosten entsprechend herabgesetzt.
    • Durch eine einstellbare wasserbeaufschlagte Leitfläche kann das Niveau des Kühlwasservorhangs auf den Strang eingestellt werden.
    • Wenigstens in der Anfahrphase und/oder bei empfindlichen Legierungen kann der Wasservorhang in einem einstellbaren Rhythmus gehoben und gesenkt werden. Die Pulswasserkühlung wird verfeinert, indem die Schockwirkung der plötzlichen Wasserzugabe eliminiert und dauernd Kühlwasser auf den Strang geführt wird. Dadurch entstehen keine kurzzeitigen Ueberhitzungen.
    • Die Zugabe von CO₂, welche beim EMC-Stranggiessen üblich ist, entfällt.
    • Durch die Ausbildung eines abgekanteten Kokillengehäuses aus rostfreiem Stahlblech, dem gleichen Material wie die elektromagnetische Abschirmung, entfallen Korrosionsprobleme.


    [0034] Die erfindungsgemässe Ausgestaltung des Kokillengehäuses als aus einem abgekanteten Blech, insbesondere aus einem Lochblech aus rostfreiem Stahl, ist an sich nicht zwangsläufig an die Leitfläche für das Kühlwasser und die innengekühlte Abschirmung gebunden, ebensowenig diejenige des aktiven Bereichs der elektromagnetischen Abschirmung in Form eines U- oder V-förmig umgebogenen Blechs aus rostfreiem Stahl mit einer Einlage oder Beschichtung.

    [0035] Die Erfindung wird anhand von in der Zeichnung dargestellten Ausführungsbeispielen, welche auch Gegenstand von abhängigen Patentansprüchen sind, näher erläutert. Es zeigen schematisch:
    - Fig. 1
    eine den Stand der Technik darstellende, in eine Giessmaschine eingesetzte EMC-Kokille,
    - Fig. 2
    eine Teilansicht eines Lochblechs für ein Kokillengehäuse,
    - Fig. 3
    einen Schnitt durch eine Kokille in Längsrichtung des Stranges,
    - Fig. 4
    eine Variante von Fig. 3,
    - Fig. 5
    den aktiven Teil einer elektromagnetischen Abschirmung,
    - Fig. 6
    einen Teilschnitt durch einen Schenkel einer Fig. 5 entsprechenden elektromagnetischen Abschirmung,
    - Fig. 7
    ein Einlageblech für eine elektromagnetische Abschirmung, und
    - Fig. 8
    eine Variante gemäss Fig. 7.


    [0036] Fig. 1 zeigt ein an sich bekanntes Grundprinzip einer Giessmaschine zum vertikalen Magnetfeld-Strangguss. Eine Giessmaschine kann eine oder mehrere Kokillen 10 umfassen.

    [0037] Ein geschlossen umlaufender Induktor 12 für ein Mittelfrequenz-Starkstromsystem erzeugt ein Magnetfeld und dadurch jene Kraft im Strang 14, welche verhindert, dass das gegossene Metall die Kokilleninnenwand 16 berührt.

    [0038] Eine keilförmige elektromagnetische Abschirmung 18 schirmt den Induktor 12 teilweise ab und verkleinert dadurch das Magnetfeld in Aufwärtsrichtung. Schliesslich bestimmt die Abschirmung 18 die Zone, in welcher das Kühlwasser 20 in Form eines Kühlwasservorhangs 22 auf den Strang 14 spritzt.

    [0039] Ein Anfahrboden 24 ist auf einem nicht sichtbaren Giesstisch montiert. Der Anfahrboden 24 formt während der Startphase den Fuss 26 des Gussstranges 14 und stützt diesen während der ganzen Giessphase.

    [0040] Dieses Grundprinzip des Magnetfeld-Stranggiessens gemäss Fig. 1 wird erfindungsgemäss bezüglich der Leitfläche 28 für das Kühlwasser 20, des aktiven Bereichs 30 der elektromagnetischen Abschirmung 18 und des geformten, massiv ausgebildeten Kokillengehäuses 32 verbessert, im übrigen jedoch im wesentlichen unverändert beibehalten.

    [0041] In Fig. 2 ist ein etwa 3 mm dickes rostfreies Stahlblech 34 (INOX) zur Herstellung eines Kokillengehäuses 32 durch Abkanten und Anschweissen von Seitenwänden dargestellt. Das Stahlblech 34 umfasst bereits in regelmässigen Abständen a von etwa 10 mm angebrachte Löcher 34 mit einem Durchmesser von etwa 3 mm, welche später dem Austritt des Kühlwassers dienen.

    [0042] Die in Fig. 3 dargestellte Kokille 10 einer Giessmaschine umfasst ein mehrfach abgekantetes Kokillengehäuse 32 aus einem rostfreien Stahlblech 34. Der gebildete Innenraum ist mit Kühlwasser 20 gefüllt und mit einem Wasserverteilerblock 38 aus Kunststoff versehen. Eine elektromagnetische Abschirmung 18 aus rostfreiem Stahl hat zwei Innennuten 42 zum Einstecken der Stahlbleche 34 am stirnseitig offenen Ende des Kokillengehäuses 32. Die Stahlbleche 34 und der Wasserverteilerblock 38 aus Kunststoff werden von einem Bolzen 44 durchgriffen, an welchem eine Schraube 46 in der elektromagnetischen Abschirmung 40 angreift und den Wasserverteilerblock 38 und damit das Stahlblech 34 festzieht.

    [0043] Der Wasserverteilerblock 38 weist eine verhältnismässig tiefe Nut 50 auf, von welcher in regelmässigen Abständen a (Fig. 2) Kühlwasserkanäle 52 ausgebildet sind, welche in ein Loch 36 im Stahlblech 34 münden. Die Richtung des austretenden Kühlwassers 20 wird durch die Richtung der Kühlwasserkanäle 52 bestimmt.

    [0044] Durch Lösen der Schrauben 46 kann die elektromagnetische Abschirmung 18 und nach dem Entfernen des Bolzens 44 auch der Wasserverteilerblock 38 entfernt bzw. ausgewechselt werden.

    [0045] Ueber eine angeschraubte Klammer 54 und eine Abkantung 56 sind zwei miteinander verzahnte, geformte Kunststoffblöcke 58, 60 mit dem Kokillengehäuse 22 verbunden.

    [0046] Mit dem Kunststoffblock 58 ist unter Zwischenlage einer temperaturbeständigen Isolationsschicht 62 ein umlaufender, plattenförmiger Induktor 12 verschraubt, welcher im vorliegenden Fall aus Kupfer besteht.

    [0047] In einer Aussparung des Kunststoffblocks 60 ist der Anstell- und Bewegungsmechanismus einer Ablenkplatte 66 aus Kunststoff für das Kühlwasser 20 angeordnet. Ein aufblasbarer Balg 68 verschiebt druckabhängig eine Dichtungsscheibe 70 mit einer eine entsprechende Bohrung im Kunststoffblock 60 und der Abkantung 56 durchgreifenden Schubstange 72. An dieser Schubstange 72 ist die Ablenkplatte 66 gelenkig verbunden. Mit einer ebenfalls an der Schubstange 72 befestigten Feder 74 wird die Ablenkplatte 66 gegen das U-förmig gebogene Abschirmblech 76 der elektromagnetischen Abschirmung 18 geschwenkt. Die elektromagnetische Abschirmvorrichtung 18 ist mindestens im Bereich des U-förmigen Abschirmblechs 76 mit Wasser 78 innengekühlt, weil das Kühlwasser 20 für den Strang 14 nicht in Aussenkontakt mit der elektromagnetischen Abschirmung 18, insbesondere dem Abschirmblech 76, tritt.

    [0048] Mit einem Druck von beispielsweise 0,5 bar aus den Kühlwasserkanälen 52 austretend, trifft das Kühlwasser 20 in einem spitzen Winkel auf der Leitfläche 80 der Ablenkplatte 66 auf, fliesst unter Bildung eines Wasserfilms entlang dieser Leitfläche, bildet beim Ablösen von der Ablenkplatte einen homogenen Kühlwasservorhang 22, welcher seinerseits den zu kühlenden Strang 14 beaufschlagt.

    [0049] In Fig. 3 ist die Ablenkplatte 66 in zwei Extrempositionen gezeichnet. Der Wasservorhang kann innerhalb einer Höhe h von 5 bis 20 mm, insbesondere 5 bis 10 mm, in jeder einstellbaren Position auf den Strang 14 auftreten. Damit ist die Kokille 10 auch bei starrer elektromagnetischer Abschirmung sehr flexibel. Der Wasservorhang kann jedoch auch kontinuierlich gehoben und gesenkt werden, beispielsweise in Form einer sinusförmigen Bewegung.

    [0050] In der Kokille 10 gemäss Fig. 4 ist anstelle der Ablenkplatte 66 eine ebenfalls mit der Schubstange 72 schwenkbar verbundene Tragplatte 82 angeordnet. Diese Tragplatte 82 aus Kunststoff dient der Verteilung von mit geringem Druck ausfliessendem Kühlwasser 20, beispielsweise mit weniger als 0,05 bar. Das Kühlwasser erreicht die Leitfläche 80 der Ablenkplatte 66 nicht. Damit das als Film auf der Leitfläche 84 der Tragplatte 82 abfliessende Kühlwasser 20 den Strang 14 erreicht, ist die Tragplatte 82 länger als die Ablenkplatte 66 ausgebildet und reicht bis in den näheren Bereich des Stranges 14.

    [0051] In der Tragplatte 82 sind Löcher 86 oder Schlitze ausgebildet, damit ein Teil des Kühlwassers abgeleitet werden kann, ohne dass es den Strang 14 erreicht.

    [0052] Im Abschirmblech 76 ist ein Einlageblech 88 aus Kupfer eingeklemmt, welches einen hohen Absorptionsgrad für das vom Induktor 12 erzeugte Magnetfeld hat. Im oberen Bereich sind zwei Kupferbleche durch Löten, Nieten oder Kleben miteinander verbunden, wodurch in diesem Bereich stärker abgeschirmt wird.

    [0053] Auf dem Wasserverteilerblock 38 ist ein Flansch 90 mit einer Eintrittsöffnung 92 für das Kühlwasser 20 befestigt, beispielsweise mit Schrauben. Dadurch wird eine grosse Kammer 93 und eine mit der Nut 50 im Wasserverteilerblock 38 identische kleine Kammer für das Kühlwasser 20 gebildet. Mit dem Flansch 90 kann das Kühlwasser 20 ruhiger in die Kühlwasserkanäle 52 eingeführt werden.

    [0054] Fig. 5 zeigt ein Detail bezüglich der aktiven Zone der Abschirmung 18, welche durch das U-förmig gebogene, am Abschirmungskörper befestigte Abschirmblech 76 gebildet wird. Auf den beiden Schenkeln des Abschirmblechs 76 sind 0,3 mm dicke Beschichtungen 94 aus Kupfer aufgebracht, welche unterschiedlich lang sind. Dadurch entsteht eine abgestuft wirksame elektromagnetische Abschirmung, welche - wie in konventionellen Ausführungsformen - oben stärker ist als unten.

    [0055] Eine Variante ist in Fig. 6 dargestellt. Auf einem Teil des Abschirmblechs 76 ist eine von unten nach oben dicker werdende Beschichtung 94 aufgebracht, welche einen von unten nach oben kontinuierlich zunehmenden Abschirmungseffekt erzeugt.

    [0056] In Fig. 7 ist ein oben bis zur Längsmitte umgebogenes Einlageblech 88 für ein U- oder V-förmig abgebogenes Abschirmblech 76 (Fig. 3, 4). Die Wirkung bezüglich der elektromagnetischen Abschirmung ist äquivalent zu Fig. 5.

    [0057] In Fig. 8 sind zwei aufeinanderliegende, umgebogene Einlagebleche 88 gezeigt, welche verglichen mit Fig. 7 eine feinere Abstufung ergeben.


    Ansprüche

    1. Giessmaschine mit wenigstens einer genau und reproduzierbar ausgerichteten, wassergekühlten Kokille (10) zum kontinuierlichen Giessen eines vertikalen Stranges (14) im Magnetfeld eines geschlossen umlaufenden, teilweise abgeschirmten Induktors (12), in einem spitzen Winkel über wenigstens eine Leitfläche (28,80,84) zur Bildung eines Wasserfilms auf den Strang (14) gerichtete Kühlwasserkanäle (52) und einem entsprechenden, absenkbaren Anfahrboden (24) pro Kokille (10),
    dadurch gekennzeichnet, dass
    die Leitfläche/n (80,84) der Kokille (10) für das Kühlwasser (20) aus einem isolierenden Material besteht/bestehen, und die elektromagnetische Abschirmung (18,76) wenigstens im aktiven Bereich innengekühlt ist.
     
    2. Giessmaschine nach Anspruch 1, dadurch gekennzeichnet, dass das Kokillengehäuse (32) aus einem mehrfach abgekanteten Blech (34), vorzugsweise einem Lochblech aus rostfreiem Stahl, mit eingeschweissten Seitenwänden besteht.
     
    3. Giessmaschine nach Anspruch 2, dadurch gekennzeichnet, dass das stirnseitig offene Kokillengehäuse (32) in entsprechende Innennuten (42) der Abschirmung (18) gesteckt und mit diesem verschraubt ist, vorzugsweise über einen eingelegten, geformten Wasserverteilerblock (38), wobei aus dem vorzugsweise aus Kunststoff bestehenden Wasserverteilerblock (38) die Kühlkanäle (52) für das Kühlwasser (20) ausgespart sind.
     
    4. Giessmaschine nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Leitfläche (80) für das Kühlwasser (20) der Kokille (10) die Oberfläche einer vorzugsweise verschieb- und/oder schwenkbaren Ablenkplatte (66) ist.
     
    5. Giessmaschine nach Anspruch 4, dadurch gekennzeichnet, dass die auswechselbare Ablenkplatte (66) aus Kunststoff besteht und deren Leitfläche (80) in Richtung der Kühlwasserkanäle (52) vorzugsweise das Kühlwasser führende Rillen aufweist.
     
    6. Giessmaschine nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass anstelle oder unterhalb der Ablenkplatte (66) eine vorzugsweise ebenfalls verschieb- und/oder schwenkbare Tragplatte (82) mit einer entsprechenden Leitfläche (84) für Kühlwasser (20) angeordnet ist.
     
    7. Giessmaschine nach Anspruch 6, dadurch gekennzeichnet, dass die Tragplatte (82) Löcher (86) oder Schlitze zur Ableitung von Kühlwasser (20) aufweist.
     
    8. Giessmaschine nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die elektromagnetische Abschirmung (18) im aktiven Bereich des Induktors als U- oder V-förmig umgebogenes, von Wasser (78) durchflossenes Abschirmblech (76), vorzugsweise aus 1 bis 2 mm dickem, rostfreiem Stahl, ausgebildet ist, wobei eine Einlage (88) oder Beschichtung (94) im U- oder V-förmigen Teil die magnetische Einwirkung des Induktors (12) in nach oben verlaufender Richtung zunehmend abschwächt.
     
    9. Giessmaschine nach Anspruch 8, dadurch gekennzeichnet, dass ein von unten nach oben stufenweise oder kontinuierlich dicker werdendes Einlageblech (88) oder eine entsprechend von unten nach oben dicker werdende Schicht (94) auf dem Abschirmblech (76) angeordnet ist.
     
    10. Giessmaschine nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die Einlage (88) oder Beschichtung (94) aus Silber, vorzugsweise 0,05 bis 0,2 mm dick, Kupfer, vorzugsweise 0,2 bis 0,4 mm dick, oder Messing, vorzugsweise 0,5 - 2 mm dick, besteht.
     
    11. Verfahren zum Kühlen eines Stranges (14) in einer Giessmaschine nach einem der Ansprüche 1 bis 10, in welcher das Kühlwasser (20) in spitzem Winkel auf eine Leitfläche (80,84) gespritzt, ein regelmässiger Wasserfilm gebildet und als Wasservorhang (22) auf den Strang (14) gesprüht wird,
    dadurch gekennzeichnet, dass
    die wasserbeaufschlagte Leitfläche (80,84) kontinuierlich in einem vorgegebenen Rhythmus hin und her verschoben und/oder geschwenkt und dadurch der von der elektromagnetischen Abschirmung (18) unabhängige Wasservorhang (22) auf dem Strang (14) über eine Höhe (h) auf und ab bewegt wird.
     
    12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass die wasserbeaufschlagte Leitfläche (80,84) sinusförmig bewegt wird, vorzugsweise mit einer Zeitperiode von 1 bis 3 sec pro Halbwelle und einer Auf- und Abwärtsbewegung des Wasservorhangs (22) auf dem Strang (14) über eine Höhe (h) von 5 bis 20 mm, vorzugsweise 5 bis 10 mm.
     
    13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass die Leitfläche (80,84) vorzugsweise programmgesteuert, mit pneumatischem, hydraulischem oder elektromagnetischem Antrieb bewegt wird.
     
    14. Verfahren nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass der Strang (14) während des Kühlens elektromagnetisch vibriert wird, vorzugsweise kontinuierlich.
     




    Zeichnung
















    Recherchenbericht