(19)
(11) EP 0 593 978 A1

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
27.04.1994 Bulletin 1994/17

(21) Application number: 93116154.1

(22) Date of filing: 05.10.1993
(51) International Patent Classification (IPC)5A47L 15/42, A47L 15/46
(84) Designated Contracting States:
DE ES FR GB IT SE

(30) Priority: 20.10.1992 IT PN920079

(71) Applicant: ELECTROLUX ZANUSSI ELETTRODOMESTICI S.p.A.
I-33170 Pordenone (IT)

(72) Inventors:
  • Santarossa, Gianni
    I-33080 Porcia, Pordenone (IT)
  • Milocco, Claudio
    I-33170 Pordenone (IT)

(74) Representative: Busca, Luciano et al
PROPRIA Protezione Proprietà Industriale srl Via Mazzini 13
33170 Pordenone
33170 Pordenone (IT)


(56) References cited: : 
   
       


    (54) Dishwashing machine with water fill control


    (57) In order to complete a water fill phase, a valve (11) enables water from a supply mains to flow through, this water being at the same time taken in by a circulation pump (3). Both the valve and the pump are controlled by a timer switch (7) arranged to be energized from a power supply source (4, 5) through a normally open pressure-responsive switch (14) that is arranged to close when the pressure at the delivery side of said circulation pump (3) rises beyond a pre-determined value (P2). At the beginning of the water fill phase, the valve (11) is opened by the timer switch (7) until the latter has been energized for a pre-determined total period of time (T).




    Description


    [0001] This invention relates to an automatic dishwashing machine provided with a simple, but effective arrangement that is capable of controlling the amount of water being each time filled into the washing tank of the machine.

    [0002] As it is generally known, modern dishwashing machines, in order to save energy, must be capable of controlling as accurately as possible the amount of water that is filled into their washing tank. In particular, water should be used in just as low an amount as necessary to ensure a correct operation of the machine. Usually, this is achieved through an optimization of the water circuitry of the dishwashing machine and the use of sophisticated devices and arrangements to control the water fill process accordingly.

    [0003] For instance, the European patent application EP-A-0 118 719 discloses a water fill control system of the "dynamic" type, ie. that has the circulating pump switched on and, therefore, operating while water is being let into the washing tub through an electromagnetic water inlet valve. Electronic control means are used to detect the variations in a signal that is proportional to the delivery pressure of the pump, so that they can command said water inlet valve to switch off when the amplitude of said variations falls below a pre-determined value. This control system proves to be particularly effective and accurate in its operation. However, it requires the use of complex electronic components that it would on the contrary be desirable to do away with.

    [0004] Further, much simpler water fill control systems are known to include "overflow"-type and/or "air trap"-type arrangements, such as for instance arrangements of the type disclosed in EP-B-0 248 339. All these arrangements, however, have a common drawback in that soil particles being present in the water circuitry of the dishwashing machine can easily settle down in correspondence of the water level control means, thereby impairing their correct operation.

    [0005] In view of achieving a greater reliability in operation, dishwashing machines have also been proposed to feature a simple water fill control system of the dynamic type, in which a pressure-actuated water level control switch is adapted to detect the delivery pressure of the circulating pump of the machine and to command the electromagnetic water inlet valve to be energized, and therefore to open, when such a pressure is detected to have fallen below a pre-determined value. Such a solution is effective in minimizing the afore cited problems brought about by the dirt particles in the water circuitry of the machine, but may well prove to be undesirably inaccurate. As a matter of fact, under particular operation conditions of the dishwashing machine, eg. when the washing liquor in the tank develops foam, the pressure detected by the pressure-actuated switch can decrease considerably, so that the electromagnetic water inlet valve can be unduly energized and, therefore, opened. This practically means that during any phase of and even at any moment during single phases of the cycle of operation of the dishwashing machine, an excess amount of water can be let into the washing tank, with the undesirable effect of increasing the actual overall energy consumption of the machine.

    [0006] It therefore is a purpose of the present invention to provide a dishwashing machine provided with a water fill control system which not only is particularly simple and reliable, but also enables the machine to actually fill in the lowest possible amount of water in view of still ensuring an optimum operation and performance.

    [0007] According to the present invention, such an aim is reached in a dishwashing machine provided with a water fill control system embodying the characteristics as set forth in the appended claims.

    [0008] The characteristics and the advantages of the present invention will anyway be further described below, by way of non-limiting example, with reference to the accompanying drawings in which:
    • Figure 1 is a basic schematic outlining the connections of the main operational elements of the dishwashing machine in a preferred embodiment of the present invention; and
    • Figure 2 is a schematic diagram showing the variations of the pressure at the delivery side of the circulating pump during a phase in which water is being filled into the washing tank of the dishwashing machine.


    [0009] The dishwashing machine according to the present invention is generally of a traditional type and is not shown any closer. It essentially comprises a washing tank that houses at least a rotary spray arm assembly adapted to be supplied with water by means of a motor-driven circulating pump 3.

    [0010] It can be seen from Figure 1 that the motor driving said circulating pump 3 is connected at the terminals 4, 5 of a power supply source through a switch 6 that is controlled by a timer device. The latter may be of the electronic type, but preferably is of the electromechanical one, with an electric motor 7 having a rotating shaft 7 that drives a plurality of rotating cams adapted to control respective switches so as to actuate a plurality of electric loads in a well-defined timed sequence.

    [0011] In particular, further to the switch 6, said timer device 7 is adapted to control a switch 8, which is associated to a resistance-type heating element 9, as well as a switch 10, which is associated to an electromagnetic water fill valve 11.

    [0012] In a preferred way, said resistance-type heating element 9 is connected to the terminals 4, 5 of the power supply in series with the switch 8 and a safety pressure-actuated water-level control switch 12 or similar device. In a per sè known way, said pressure-actuated water-level control switch 12 is of the normally open type and adapted to close when the water in the washing tank has positively reached a pre-determined minimum filling level that is such as to actually prevent the resistance-type heating element 9 from overheating and getting possibly damaged; for instance, such a minimum filling level of the water in the tank corresponds to a pressure P1 (Figure 2) in correspondence of the delivery side of the circulating pump 3.

    [0013] The switch 10 connecting the electromagnetic water fill valve 11 to the power supply source 4, 5 is of the normally open type and is controlled by a specially profiled cam 13 of the timer device 7. According to a feature of the present invention, in fact, said cam 13 is made so as to be adapted to close the switch 10, in correspondence of each one of the water fill phases called for by the operational programme being performed by the dishwashing machine, for a period of time having a pre-determined duration T (for instance, 15 sec. ) in the case that the cam 13 is driven to advance in a continuous way by the timer device 7.

    [0014] As shown in Figure 1 by way of mere example, the period of time T associated to each water fill phase may be defined by a corresponding circular sector 130 of the cam 13 having a jutting profile. In any case, the duration of said period T is generally calculated according to such design parameters of the dishwashing machine as overall size and capacity.

    [0015] According to a further feature of the present invention, the timer device 7 is connected across the power supply source 4, 5 through a process pressure-actuated water-level control switch 14, which is preferably placed downstream of the afore cited safety pressure-actuated water-level control switch 12.

    [0016] The process pressure-actuated water level control switch 14 is of the normally open type and is adapted to close when the pressure at the delivery side of the circulating pump 3 increases to exceed a pre-determined value P2 > P1 (Figure 2). Based on the overall sizing of the water circuit of the dishwashing machine, such a pressure P2 is calculated so as to correspond to an optimum priming condition for the circulating pump 3.

    [0017] In practical operation, the timer device 7 is set (for instance by manually rotating its shaft 15 into an appropriate angular position) so as the switches 6 and 10 controlled by it are initially closed to start, at a given moment t0, a water inlet phase to fill water into the washing tank of the dishwashing machine; in particular, the sector 130 of the cam 13 co-operates with the switch 10 so as to initiate the afore cited pre-determined period of time T. If the selected washing programme includes also a water heating phase, even the switch 8 is closed.

    [0018] In a per sè known way, therefore, for instance as disclosed in the afore cited EP-A-0 118 719, said water fill phase begins with the electromagnetic water-fill valve 11 being energized and opened and, at the same time, the circulating pump 3 being switched on and operated, while the pressure-actuated water-level control switches 12 and 14 are open. Accordingly, the timer device 7 is therefore de-energized.

    [0019] After a short initial period of time, during which the circulating pump 3 is not priming, the same pump starts priming in an irregular manner and the pressure P at its delivery side tends to increase with an attenuated oscillating pattern, as shown in Figure 2.

    [0020] In a per sè known way, the pressure-actuated water-level control switch 12 closes, thereby enabling the resistance-type heating element 9 to start heating up the water, whenever the pressure P at the delivery side of the circulating pump 3 rises beyond the value P1, ie. only when the same pressure-actuated water-level control switch 12 detects the presence of an adequate amount of water in the washing tank of the dishwashing machine. In particular, said resistance-type heating element 9 is energized in an intermittent way throughout a period of time up to the moment t1, after which the pressure P keeps constantly at a value that is higher than P1 and, as a consequence, the heating element 9 keeps being energized in a continuous way.

    [0021] The water fill phase goes on with the electromagnetic water inlet valve 11 being kept open in a continuous way. The timer device 7 is kept de-energized until the pressure P at the delivery side of the circulating pump 3 rises to exceed the pre-determined value P2; each time that the process pressure-actuated water-level control switch 14 detects a pressure P > P2, it closes and, in this way, enables the timer device 7 to be energized. As it can be clearly seen in Figure 2, up to a given moment t2 this condition occurs in an intermittent way during short transients T1, T2, T3, T4, T5 (which will generally last less than 1 second), in correspondence of which the timer device 7 causes its cam 13 to progress, the sector 130 of said cam 13 being in any case capable of keeping the electromagnetic water inlet valve 11 in its open state.

    [0022] Beyond said moment t2, the pressure P stays at a higher value than P2, since the circulating pump 3 has substantially reached its optimum priming condition. As a consequence, in the example described herein, the timer device 7, after said moment t2, keeps being energized in a continuous way, so that it causes the cam 13 to progress uninterruptedly, while the sector 130 of said cam 13 keeps the switch 10 in its closed state (and, therefore, the electromagnetic water inlet valve 11 in its open state) for a further transient T6. The latter comes to an end when, at a given moment t3, the sum of the transients T1, T2, T3, T4, T5 and T6, during which the timer device 7 is energized, is equal to the pre-determined period of time T.

    [0023] In other words, the water fill phase is carried out by having the electromagnetic water inlet valve 11 kept continuously open throughout a period of time t0 - t3, during which the cam 13 is caused to progress intermittently during respective transients T1, T2, T3, T4, T5, T6 as determined by the actual priming conditions of the circulating pump 3.

    [0024] As a consequence, the overall duration t0 - t3 of the water fill phase will depend on the amount of water that is actually let into the washing tank of the dishwashing machine, regardless of possible variations in the water supply pressure.

    [0025] Furthermore, through an appropriate overall sizing of the dishwashing machine, the water fill phase will only come to an end when, at the moment t3, the circulating pump 3 will have positively and safely reached optimum priming conditions. As a matter of fact, as it can be clearly appreciated from the above description, during the transient T6 the circulating pump 3 reaches such priming conditions as to enable the cam 13 to complete its progression by an angle, as defined by the angular sector 130, that corresponds to the pre-determined period of time T.

    [0026] Of course, the particular working programme selected for the dishwashing machine to perform will then be carried out in a traditional way, ie. in a way that does not fall within the scope of the present invention and will therefore not be further described here.

    [0027] The advantages of a dishwashing machine according to the present invention are now fully apparent: only simple, easily manufactured mechanical and electomechanical component parts with a proven reliability record are in fact required to provide particularly accurate water fill phases that take into due account all main process parameters determining a good operation of the machine.

    [0028] It will be appreciated that the above described dishwashing machine may be subject to any modification as considered to be appropriate without departing from the scope of the invention.


    Claims

    1. Dishwashing machine comprising a washing tank in which, during a water fill phase, a normally closed electromagnetic valve controlled by timing means is arranged to let in water from the supply means, said water being at the same time drawn in by a circulating pump that is controlled by said timing means and whose delivery supplies at least a rotary spray arm assembly, characterized in that said timing means comprise an electric motor (7) adapted to be energized from a power supply source (4, 5) through a normally open pressure-actuated switch (14) adapted to close when the pressure at the delivery side of the circulating pump (3) rises beyond a pre-determined value (P2), said electromagnetic valve (11) being arranged to be energized into its open state by said timing means at the beginning of said water fill phase, until said electric motor (7) has been energized for a pre-determined total period of time (T).
     
    2. Dishwashing machine according to claim 1, wherein said electromagnetic valve is adapted to be energized from the power supply source through a switch controlled by a cam that is driven by said electric motor, characterized in that said cam (13) comprises a circular sector (130) which at the beginning of the water fill phase is adapted to be set at an angular position in which it causes said switch (10) to close until the electric motor (7) has been energized for said pre-determined total period of time (T).
     




    Drawing







    Search report