[0001] The present invention relates to the preparation of moss oils which are characterized
by hypoallergenicity, i.e. by a strongly reduced allergenic potential and excellent
olfactive performance in perfume compositions.
[0002] Moss oils are highly appreciated by perfumers for their typical woody notes and play
an important role in the creation of perfumes, e.g. of the so-called "Chypre" or "Fougère"
type. They are obtained by solvent extraction of lichens including, in particular
Evernia prunastri L. for the Oakmoss oil and Evernia furfuracea L. for Treemoss oil.
The total amount of lichens treated worldwide for perfumery use may be estimated to
6000 tons/year (P. Vigne, Parfums, Cosmetiques, Arômes, (78), p 97-105, 1987) and
represents an estimated annual turnover close to $ 35 millions.
[0003] Moss extracts, e.g. moss absolutes or concretes, which are the most frequently used
moss oil products have been reported to cause contact sensitization on human skin,
and several groups of researchers have shown that some components of moss oils, particularly
ethyl hematommate I, ethyl chlorohematommate II, atranorin III and chloroatranorin
IV as depicted on page 3 are involved in these allergenic reactions.
[0004] European patent publication No. 202,647 (Shiseido Company Ltd.) describes a process
for the preparation of hypoallergenic moss oils by removing allergenic substances
from moss oils by chromatography, solvent extraction, countercurrent partition and
membrane separation followed by a catalytic hydrogenation and/or an alkaline treatment.
The allergens removed in this way are aldehydes which include the above mentioned
ethyl hematommate I, ethyl chlorohematommate II, atranorin III and chloroatranorin
IV.
[0005] The more recent European patent publication No. 468,189 (Roure S.A.) describes a
process for the preparation of hypoallergenic moss oils by reacting, e.g. moss absolutes
or concretes in alcoholic solution with amino acid(s) under mono-phasic conditions
followed by removal of the insolubilized allergenic substances I-VI.
[0007] The concentrations of the allergens I-VI achieved in this way are clearly below the
critical levels (0.05 - 1%) established experimentally via allergenicity tests.
[0008] The goal of the present invention was to eliminate now substantially further the
above-mentioned aldehydes I-VI by using an economical process without affecting significantly
the original color and olfactive performance of the starting moss oil, thereby providing
moss absolutes or concretes with a strongly reduced allergenic potential. It was achieved
by reacting moss extracts e.g. concretes or absolutes with appropriate reducing agents,
e.g. alkali metal borohydrides, which specifically and exclusively reduce the allergenic
aldehydes I-VI to the corresponding primary alcohols.
[0009] A further advantage of the novel process consists in the avoidance of concomitant
formation of trace amounts of colorants, which can cause inconveniences for some perfumery
applications.
[0010] The present invention describes thus the reaction between moss extracts, e.g. oils,
concretes or absolutes, with appropriate aldehyde reducing agents, e.g. complex metal
hydrides, and preferably with alkali metal borohydrides, e.g. lithium or sodium borohydride,
in organic solvent systems.
[0011] The starting moss extracts subjected to this treatment are suitably obtained by solvent
extraction of lichens and include in particular the Oakmoss concrete (Evernia prunastri
L.) and the Treemoss concrete (Evernia furfuracea L.) and, preferably, the absolutes
thereof.
[0012] It is known from the literature [e.g. Reagents for Organic Synthesis, L.F. Fieser
and M. Fieser, p 599-603 and 1049-1055, Editor John Wiley and Sons, Inc., 1967] that
complex alkali metal hydrides, e.g. borohydrides or aluminium hydrides are able to
reduce aldehydes, ketones and even esters. The aldehydic allergens I-VI contribute
insignificantly to the total odour of moss extracts, but numerous esters, other aldehydes
and ketones are known to be olfactively important minor or major constituents of these
extracts [R. Ter Heide et al., Qualitative Analysis of the Odoriferous Fraction of
Oakmoss (Evernia prunastri (L.) Ach.), J. Agric. Food Chem., 23 (5) p 950-957 (1975)].
[0013] It was therefore surprising to find, that the novel process allowed the selective
reduction of allergens I-VI without organoleptically deteriorating the moss oil, or
in other words, none of the above-mentioned organoleptically active constituents,
e.g. no organoleptically relevant esters appear to have been removed from the original
moss extract, as was demonstrated by GC data. In addition, the concentration levels
found for I-VI are far below the required limits (cf. Table 1) and those achieved
in earlier publications [EP publication No. 468,189 and C. Ehret, P. Maupetit, M.
Petrzilka, G. Klecak, Int. J. of Cosm. Science,
14, 121-130 (1992)]. Finally, the colors of the resulting non-allergenic moss oils are
very close to the original ones and are therefore suitable for most perfumery applications.
Table 1
| Aldehydes |
Concentration levels required for moss absolute with reduced allergenic potential
(%) |
| Ethyl hematommate I |
≤1 |
| Ethyl chlorohematommate II |
≤0.05 |
| Atranorins III + IV |
≤0.15 |
| Atranol V |
≤0.2 |
| Chloratranol VI |
≤0.2 |
[0014] In the broadest context of the present invention, the starting moss oil, a concrete
or preferably an absolute thereof, is reacted with an aldehyde reducing agent, said
aldehyde reducing agent being an alkali metal hydride, an optionally substituted complex
metal or ammonium hydride, in an organic solvent medium, said medium being an optionally
halogenated, aliphatic or aromatic hydrocarbon, an ester, an alcohol, an ether or
a mixture of such solvents.
[0015] Thus, the allergenic moss oil is dissolved in an appropriate organic solvent and
treated with preferably an excess of the aldehyde reducing reagent. The suitable reducing
agents are those which are able to reduce exclusively, or at least preferentially
the aldehydes over the esters and belong to various types (cf. R.C. Larock, Comprehensive
Organic Transformations, A Guide to Functional Group Preparations, published by VCH
Publishers, Inc., New-York, 527-535 [1989],) e.g. :
- complex metal or ammonium hydrides, such as sodium, lithium, potassium, zinc, tetraethylammonium
borohydrides, etc.,
- substituted complex metal or ammonium hydrides, such as sodium triacetoxyborohydride,
potassium triacetoxyborohydride, sodium cyanoborohydride or tetra-n-butylammonium
triacetoxyborohydride,
- metal hydrides, such as diborane or an alkali or aluminium hydride, etc.
[0016] The preferred reducing agents are lithium borohydride and sodium borohydride.
[0017] The reduction can be carried out according to know methods. It is usually carried
out in an organic medium, e.g. in solution using optionally halogenated, aliphatic
or aromatic hydrocarbon solvents, such as hexane, cyclohexane or toluene, etc., ester
solvents such as ethyl acetate, isopropyl acetate etc., or alcoholic solvents, such
as methanol, ethanol etc. Alternatively ether solvents such as t-butyl methyl ether,
tetrahydrofuran etc., or halogenated solvents such as methylene chloride may also
be used. Another possibility consists in using mixtures of the above-mentioned solvents.
[0018] Reference is also made to the embodiments of Claims 3 and 4.
[0019] The concentrations of moss extracts applied in the reaction may vary between ca.
5-50%, preferably between ca. 5-15% (w/w).
[0020] Convenient amounts of reducing agents, e.g. alkali metal borohydrides, are ca. 0.02-0.1g,
preferably ca. 0.03-0.07g per g of moss extract. This amount represents a ca. 2 to
5 fold molar excess, i.e. a ca. 8 to 20 fold reducing equivalent excess.
[0021] The reaction temperature is ca. 20°-80°C, preferably ca. 20°-30°C, if, e.g. lithium
borohydride is used, and preferably reflux temperature, e.g. that of an alcanol, e.g.
ethanol, if sodium borohydride is used.
[0022] The reaction is usually quenched after ca. 30 minutes to 3 hours, preferably after
ca. 30 to 60 minutes, if sodium borohydride is used, and after ca. 1-2 hours, if lithium
borohydride is used.
[0023] If water insoluble solvents are used for the reaction, such as hydrocarbons, esters,
halogenated and aliphatic ether solvents, work up consists in extensively washing
the reaction mixture with water or aqueous acids (e.g. 1-10%, preferably 1-3% aq.
HCl solution) followed by water until neutral. Finally the organic solvent is distilled
off at reduced pressure without exceeding a temperature of ca. 85°C. Alternatively,
if water soluble solvents are used, e.g. an alcohol or a cyclic ether, such as tetrahydrofuran,
the solvent is first removed by distillation at reduced pressure. The remaining residue
is then redissolved in a water insoluble solvent, e.g. the solvents mentioned above,
and worked up as in the previous case.
Examples
1) Allergenicity
[0024] The strongly reduced allergenic potential in the product was in each case determined
by conventional, fully established skin sensitization and skin response methods, i.e.
in concreto the so-called
* Modified BUEHLER method using guinea pigs, and the
* RIFT (Repeated Insult Patch Test) using human subjects.
2) Analysis
Content of aldehydes I, II, V and VI
[0025] The contents of products I, II, V and VI are suitably determined by GC analysis,
using an internal standard and working under the following conditions :
* Column : 50m x 0.32mm inner diameter, fused silica
* Stationary phase : CP Sil 5CB (a silicone)
* Detector : FID (flame ionisation detector)
* Vector gas : Helium, 2ml/mn
* Temperature program : 100-240°C, 2°C/min.
* Internal standard : methyl 2,4-dihydroxy-3,6-dimethyl-benzoate
Content of aldehydes III and IV
[0026] The contents of aldehydes III and IV are suitably determined by HPLC, using an external
standard and working under the following conditions :
* Column : 250mm length, 4.6mm i.d.
* Stationary phase : RP 18 (reverse phase, particle size : 7µm)
* Detector : UV at 260nm
* Mobile phase A: H
2O acidified to pH 2.8 with conc. H
3PO
4 B : acetronitrile
* Gradient :
| Time (min.) |
%A |
%B |
Flow (ml/min.) |
| 0 |
80 |
20 |
1 |
| 30 |
5 |
95 |
1 |
| 40 |
5 |
95 |
1 |
[0027] This gradient allows the effective separation of the above non-volative aldehydes
m and IV.
Example 1
Production of Oakmoss absolute with strongly reduced allergenic potential using lithium
borohydride
[0028] A 500ml three-necked flask equipped with a mechanical stirrer, a condenser and a
dropping funnel was charged with 15g of a commercially available melted Oakmoss absolute
(Givaudan-Roure, mp about 70°C), which then was dissolved in 200ml of cyclohexane/isopropyl
acetate 3:1 at room temperature and under N
2. To this homogeneous solution was then added dropwise a suspension of 480mg (22 mmol)
of lithium borohydride in 100ml of cyclohexane/isopropyl acetate 3:1 during ca. 30
minutes. Immediately after addition a precipitation occurred and a slight increase
of the temperature of the reaction mixture (ca. 6°C) was observed. After stirring
the reaction mixture for an additional 2 hours at room temperature, it was carefully
quenched with 150ml of 0.5% (w/w) aqueous HCl and extracted with cyclohexane/isopropylacetate
3:1 (3 x 300ml). The organic layers were washed with water (1 x 150ml), combined and
concentrated at reduced pressure (20 mbars) on a water bath without exceeding a temperature
of ca. 85°C. An Oakmoss absolute (12.78g, 85.2% yield) was obtained in this way, which
according to GC- and HPLC- analysis contained extremely small amounts of aldehydes
I-VI (cf. Table 2).
Table 2
| Aldehyde |
Starting Oakmoss absolute (%) |
Resulting Oakmoss absolute (%) |
| Ethyl hematommate I |
2.40 |
<0.01 |
| Ethyl chlorohematommate II |
1.44 |
<0.01 |
| Atranorins III + IV |
0.58 |
0.05 |
| Atranol V |
4.24 |
0.06 |
| Chloratranol VI |
2.28 |
<0.01 |
Example 2
Production of Oakmoss absolute with strongly reduced allergenic potential using sodium
borohydride
[0029] A 250ml three-necked flask equipped with a mechanical stirrer, a condenser and a
dropping funnel was charged with 14.9g of a commercially available melted Oakmoss
absolute (Givaudan-Roure, mp about 70°C), which then was dissolved in 90ml of ethanol
96% at room temperature and under N
2. To this solution was then added dropwise a suspension of 1g (26.4 mmol) of sodium
borohydride in 60ml of ethanol 96% during ca. 5 minutes. During the addition a slight
increase of the temperature (ca. 12°C) was observed. After stirring the reaction mixture
at reflux temperature during 45 minutes, the ethanol was distilled off at reduced
pressure (20 mbars) and the residue was taken up in 300ml of t-butyl methyl ether
(TBME). The reaction mixture was then carefully quenched with 150ml of water and extracted
with TBME (3 x 300ml). The organic layers were washed with water (1 x 150ml), combined
and concentrated at reduced pressure (20 mbars) on a water bath without exceeding
a temperature of ca. 65°C. An Oakmoss absolute (12.78g, 85.2% yield) was obtained
in this way, which according to GC- and HPLC- analysis contained extremely small amounts
of aldehydes I-VI (cf. Table 3).
Table 3
| Aldehyde |
Starting Oakmoss absolute (%) |
Resulting Oakmoss absolute (%) |
| Ethyl hematommate I |
3.78 |
0.11 |
| Ethyl chlorohematommate II |
1.46 |
0.02 |
| Atranorins III + IV |
1.16 |
0.01 |
| Atranol V |
3.30 |
<0.01 |
| Chloratranol VI |
1.92 |
0.03 |
Example 3
Production of Oakmoss absolute with strongly reduced allergenic potential using sodium
borohydride (acidic work up)
[0030] A 250ml three-necked flask equipped with a mechanical stirrer, a condenser and a
dropping funnel was charged with 15g of a commercially available (Givaudan-Roure),
melted Oakmoss absolute (mp about 70°C), which then was dissolved in 100ml of ethanol
96% at room temperature and under N
2. To this solution was then added dropwise a suspension of 1g (26.4 mmol) of sodium
borohydride in 60ml of EtOH 96% during ca. 5 minutes. During the addition a slight
increase of the temperature (ca. 15°C) was observed. After stirring the reaction mixture
at reflux temperature during 45 minutes ethanol was distilled off at reduced pressure
(20 mbars) and the residue was taken up in 300ml of t-butyl methyl ether. The reaction
mixture was then carefully quenched with 100ml of water and acidified to pH = 1.5
with ca. 15ml of 6% aqueous HCl. The organic layer was washed with water (1 x 150ml)
and concentrated at reduced pressure (20mbars) on a water bath without exceeding a
temperature of ca. 65°C. An Oakmoss absolute (14.42g, 96.1% yield) was obtained in
this way, which according to GC- and HPLC- analysis contained extremely small amounts
of aldehydes I-VI (cf. Table 4).
Table 4
| Aldehyde |
Starting Oakmoss absolute (%) |
Resulting Oakmoss absolute (%) |
| Ethyl hematommate I |
3.78 |
0.05 |
| Ethyl chlorohematommate II |
1.46 |
0.02 |
| Atranorins III + IV |
1.16 |
0.05 |
| Atranol V |
3.30 |
<0.01 |
| Chloratranol VI |
1.92 |
<0.01 |
1. A process for the preparation of hypoallergenic moss oils, comprising reacting the
starting moss oil, a concrete or preferably an absolute thereof, with an aldehyde
reducing agent, said aldehyde reducing agent being an alkali metal hydride, an optionally
substituted complex metal or ammonium hydride, in an organic solvent medium, said
medium being an optionally halogenated, aliphatic or aromatic hydrocarbon, an ester,
an alcohol, an ether or a mixture of such solvents.
2. A process according to claim 1, wherein the aldehyde reducing reagent is an alkali
metal borohydride, e.g. preferably lithium or sodium borohydride.
3. A process according to claim 1 or 2, wherein the solvent used is water insoluble,
e.g. a mixture of an aliphatic hydrocarbon, preferably hexane or cyclohexane, with
an alkane carboxylic acid ester, preferably ethyl acetate or isopropyl acetate or
an aliphatic ether, preferably t-butyl methyl ether.
4. A process according to claim 1 or 2, wherein the solvent used is water soluble, preferably
an alkanol, e.g. ethanol or a cyclic ether, e.g. tetrahydrofuran.
5. A process according to claim 4, wherein the work up involves removal of the solvent
of claim 4 by distillation at reduced pressure, and the remaining residue is then
redissolved in a water insoluble solvent, preferably a solvent of claim 3, followed
by extensively washing the reaction mixture with water or an aqueous acid.
6. A process according to any one of claims 1 to 5, wherein the reaction is carried out
within a temperature range of 20°-80°C, preferably at 20°-30°C if lithium borohydride
is used and preferably at 60°-80°C if sodium borohydride is used.
1. Verfahren zur Herstellung von hypoallergenen Flechtenölen, dadurch gekennzeichnet,
dass man ein als Ausgangsmaterial verwendetes Flechtenöl, ein Concrète oder vorzugsweise
ein Absolue davon mit einem Aldehyde reduzierenden Reduktionsmittel, nämlich einem
Alkalimetallhydrid, einem gegebenenfalls substituierten komplexen Metall- oder Ammoniumhydrid,
in einem organischen Lösungsmittel als Medium, wobei dieses Lösungsmittel ein gegebenenfalls
halogenierter aliphatischer oder aromatischer Kohlenwasserstoff, ein Ester, ein Alkohol,
ein Ether oder ein Gemisch solcher Lösungsmittel darstellt, zur Umsetzung bringt.
2. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass das Reduktionsmittel ein
Alkalimetallborhydrid, vorzugsweise Lithium- oder Natriumborhydrid ist.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Lösungsmittel wasser-unlöslich
ist, beispielsweise ein Gemisch eines aliphatischen Kohlenwasserstoffs, vorzugsweise
Hexan oder Cyclohexan, ein Alkancarbonsäureester, vorzugsweise Ethylacetat oder Isopropylacetat
oder ein aliphatischer Ether, vorzugsweise t-Butylmethylether ist.
4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Lösungsmittel wasserlöslich
ist, und vorzugsweise ein Alkanol, beispielsweise Ethanol oder ein cylclischer Ether,
beispielsweise Tetrahydrofuran ist.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Aufarbeitung in der Entfernung
des Lösungsmittels gemäss Anspruch 4 besteht, nämlich durch Destillation unter vermindertem
Druck, und dass der zurückbleibende Rückstand in einem wasser-unlöslichen Lösungsmittel
wieder gelöst wird, vorzugsweise in einem Lösungsmittel gemäss Anspruch 3, gefolgt
von extensiver Wäsche des Reaktionsgemisches mit Wasser oder wässriger Säure.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Reaktion
in einem Temperaturbereich von 20 -80°C, vorzugsweise 20-30°C beträgt, falls Lithiumborhydrid
benützt wird, und vorzugsweise 60°-80°C beträgt, falls Natriumborhydrid verwendet
wird.
1. Procédé de préparation d'huiles de mousses hypoallergéniques, dans lequel on fait
réagir l'huile de mousse de départ, ou une forme concrète ou de préférence absolue
de ce corps, avec un agent réducteur aldéhyde, ledit agent réducteur aldéhyde étant
un hydrure de métal alcalin, un hydrure de métal complexe ou d'ammonium facultativement
substitué, dans un milieu solvant organique, ledit milieu étant un hydrocarbure aliphatique
ou aromatique facultativement halogéné, un ester, un alcool, un éther ou un mélange
de tels solvants.
2. Procédé selon la revendication 1, dans lequel l'agent réducteur aldéhyde est un borohydrure
de métal alcalin, par exemple de préférence le borohydrure de lithium ou de sodium.
3. Procédé selon la revendication 1 ou 2, dans lequel le solvant utilisé est insoluble
dans l'eau, par exemple un mélange d'un hydrocarbure aliphatique, de préférence l'hexane
ou le cyclohexane, avec un ester d'acide alcane-carboxylique, de préférence l'acétate
d'éthyle ou l'acétate d'isopropyle, ou un éther aliphatique, de préférence l'éther
t-butyl-méthylique.
4. Procédé selon la revendication 1 ou 2, dans lequel le solvant utilisé est soluble
dans l'eau, de préférence un alcanol, par exemple l'éthanol ou un éther cyclique,
par exemple le tétrahydrofuranne.
5. Procédé selon la revendication 4, dans lequel le traitement comprend l'élimination
du solvant de la revendication 4 par distillation à pression réduite, puis dans lequel
on redissout le résidu restant dans un solvant insoluble dans l'eau, de préférence
un solvant de la revendication 3, puis on lave de façon poussée le mélange réactionnel
avec de l'eau ou un acide aqueux.
6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel la réaction est
conduite dans un intervalle de température de 20°-80°C, de préférence à 20°-30°C si
l'on utilise du borohydrure de lithium et de préférence à 60°-80°C si l'on utilise
du borohydrure de sodium.