
Europaisches Patentamt

European Patent Office

Office europeen des brevets 0 Publication number: 0 6 0 2 2 6 3 A 1

E U R O P E A N PATENT A P P L I C A T I O N

0 Application number: 92121325.2

0 Date of filing: 15.12.92

int. ci.5: G06F 9 / 4 4

0 Date of publication of application: 0 Applicant: International Business Machines
22.06.94 Bulletin 94/25 Corporation

Old Orchard Road
0 Designated Contracting States: Armonk, N.Y. 10504(US)

DE FR GB
0 Inventor: Thelen, Ralf

Peter-Parler-Strasse 7
W-7032 Sindelfingen(DE)
Inventor: Kiri, Thomas
Schonhutstrasse 11
W-7033 Herrenberg(DE)

0 Representative: Jost, Ottokarl, Dipl.-lng.
IBM Deutschland Informationssysteme
GmbH,
Patentwesen und Urheberrecht
D-70548 Stuttgart (DE)

0 User interface program generator.

00
CO
CM
CM
o
CO

0 A method for automatically generating computer code in a procedural language from a program in a
declarative language is disclosed. In this method the declarative language program is analysed in order to obtain
information (240, 250) about the variables described in the procedural language and information (210, 220) about
the data flow in the procedural language. The information extracted from this analysis is combined (440, 460)
with code blocks from a code block file in a code generator to produce computer code which can be compiled.

The method finds particular application in a computer system with an input/output device, processor and
memory for developing applications programs (10), in which said applications programs (10) comprise an
interface declaration (30) and a business logic (40). The code generator uses the method in order to produce
interface independent code which can be linked with interface specific code (80) to produce an interface for the
applications program (10).

<
lu r> ^ ° m

$ 2] ~m
IT on ~£
_> Ij-O. cn
CO 00 uj zi

o

Rank Xerox (UK) Business Services
(3. 10/3.09/3.3.4)

EP 0 602 263 A1

Field of the Invention

The invention concerns a method for automatically generating computer code from a declarative
language.

5 The invention further comprises a computer system with input/output device, processor and memory for
developing applications programs, in which said applications programs comprise an interface declaration
and a business logic, said computer system incorporating a code generator to automatically generate code.

Introduction
70

A declarative language is defined in the IEEE Standard Computer Dictionary as "a non-procedural
language that permits the user to declare a set of facts and to express queries or problems that use these
facts". The way in which user interfaces are described in the IBM ScreenView Program Product is an
example of a declarative language.

75 The IBM ScreenView Program Product is a product for developing and running a consistent set of
applications programs. The product comprises two parts: run time services to provide services to
applications at run time and application development services which support programmers to develop
various user interfaces for those applications.

In the ScreenView environment, the functional or business logic of an application is separated from the
20 presentation or interface logic of an application. The presentation logic of an application is described by the

application developer with the declarative language mentioned above. This guarantees independence of the
functional parts of an application from the user interface technologies and allows an easy adaptation to new
technologies and standards in the future.

The IBM ScreenView product is described in the manuals ScreenView Application Developer's Guide
25 (IBM Form Number SC33-6452), ScreenView Application Developer's Reference (IBM Form Number SC33-

6453) and ScreenView User's Guide (IBM Form Number SC33-6541) which are hereby incorporated by
reference.

Prior Art
30

PCT Application WO-EP91/01642 discloses a method for specifying user interfaces in a declarative
language which are independent of the type of interface used. With each user interface is associated a
presentation front end which controls the input/output device associated with the interface specified.

The method of the PCT application PCT/EP91/01642 is very powerful in that it allows an end user to
35 switch between interfaces to an applications program whilst the applications program is being used.

However, use of the method is complicated by the fact that the developer of the applications program has
to write the interface-independent code for the interface between the business logic and the presentation
front end.

Since the declarative language defining the interface is abstract, exceptional programming skills are
40 required to generate error-free code and the development of such code requires a large amount of time. In

addition, one must ensure that the value of the variables requested or output by the interface correspond to
the variables used in the business logic.

US-A-4 742 467 describes an automated applications program development system and method which
enables the automated development of COBOL programs. In this patent, the program developer utilises

45 graphics in order to paint a picture of the task to be carried out or the program to be developed. After the
design phase has been completed, the program developers answers a series of question posed by the
development system and a COBOL source program is then automatically generated, together with program
documentation.

The code generator described in this patent does not use a declarative language from which the
50 COBOL code is to be generated and gives no indication about how the code generating method might be

extended to any declarative language. In addition, the teaching of this patent does not separate the user
interface of the applications program from the business logic of the applications program. Thus, incorporat-
ing a new interface into the program will require redesign of the program, which is time consuming and
expensive. In particular, the order in which the program requires inputs and outputs is determined not by

55 the requirements of the interface but by the dictates of the program data flow.
A report entitled "Automated COBOL Code Generation for SNAP-I CAI Development and Maintenance

Procedures" by M.A.Buhrmaster et al. of the Oak Ridge National Laboratory, report number ORNL/DSRD-8
describes research sponsored by the US Federal Government Department of Energy to develop a computer

2

EP 0 602 263 A1

aided instruction (CAI) prototype for the U.S. Navy Management System Support Office as part of the
Shipboard Non-tactical ADP Program (SNAP). The report discusses the techniques applied to store, access
and manipulate data from a database management system (DBMS) to produce the necessary COBOL
source code.

5 The report does not, however, teach the use of a declarative language from which the COBOL code is
generated nor does it provide for the use of multiple interface types.

A thesis presented by David Maurice King and Richard Montgomery Prevat III at the Naval Postgrad-
uate School in Monterey, California in December 1990 for the Master of Computer Science entitled "Rapid
Production of Graphical User Interfaces" describes a tool, the Naval Postgraduate School Designer and

io Toolbox, which provides an automated development environment that enables design, implementation,
modification and testing of customised graphical user interfaces. The tool can be used to create windows,
panels and actuators for a graphical interface. A code generator can then be used to produce compatible C-
language source code. The source code is compiled and linked to the applications program in order to
produce a runnable program.

is The teachings of this thesis are only applicable to the generation of source code which is used to
produce graphical interfaces. The source code generator described produces not only the code required to
ensure correct inputs and outputs but also the code required to generate the windows, panels and
actuators. It cannot be used in order to generate interface-independent code. There is furthermore no
indication about how the teachings of this patent may be applied to the use of a declarative language used

20 to describe the interface to an applications program.
A product developed by Caseworks Incorporated called Case PM allows a developer to automatically

generate Presentation Manager code. The code thereby developed is only suitable for use in programs
using Presentation Manager as a direct management interface and there is no indication how the product
might be used in interfaces other than graphic interfaces. Additionally the product does not allow a division

25 between the business logic of the program and the interface code.
US-A-4 956 773 and US-A-4 831 525 both describe an information processing system in which

schematic information relating to the data and logic processing of a program is input from a display screen
using processing flow diagrams, internal data definition diagrams and interface data definition diagrams for
each module of the program. The schematic information for each module is used to generate individual

30 source code programs for each module which can then be edited and put together to form a complete
source code program.

Both of these patents teach the use of methods in which the business logic of an applications program
is automatically coded using a source code generator from the input schematic information. The teachings
cannot be applied to the generation of source code for interfaces whose order depends on the variables to

35 be input and the type of interface chosen for the business logic.

Summary of the Invention

The problem therefore to be solved by this invention is to develop a method for generating computer
40 code which overcomes the above disadvantages.

This problem is solved by a method for automatically generating computer code in a procedural
language from a program in a declarative language which comprises a first step of analysing variables of
the declarative language program to obtain information about the variables, a second step of analysing data
flow of the declarative language program to obtain information about the the order in which communications

45 units are used, a third step of extracting from a code block file fragments of procedural language code and
a fourth step of mixing the variable information and the data flow information to produce computer code in a
procedural language.

The first step of this method can advantageously be carried out by establishing a first communications
unit list in which each element of the first communications unit list comprises the names of the

50 communications units in the declarative language and also comprises pointers to variable lists for those
variables included in the communication unit, whereby the information in the variable lists comprises at least
the name of the variable, the type of the variable and the access type of the variable. The code block file
will then contain separate code blocks for each variable type.

The second step can be advantageously carried out by establishing a second communications unit list
55 in which each element of the the second communications unit list comprises a language element of the

declarative language, the communications unit being operated on and a pointer to the next communications
unit to be operated on. The code block file contains separate code blocks for each declarative language
element.

3

EP 0 602 263 A1

The inventive method particularly finds applications in a method for automatically generating interface
code for an applications program with a user interface defined using a declarative language (such as that
used in the ScreenView program product) and with a business logic which comprises a first step of
analysing the user interface to establish information about the variables used in the user interface, a second

5 step of analysing the user interface to establish the order in which communications units in the user
interface are processed, a third step of extracting from a code block file fragments of procedural language
code and a fourth step of mixing the variable information and the data flow information to produce interface
code in a procedural language.

The invention is implemented in a computer system with input/output device, processor and memory
io for developing applications programs, in which said applications programs comprise an interface declaration

and a business logic, said computer system incorporating a code generator with code block file to
automatically generate code, characterized in that said computer system further includes a first communica-
tions unit list in which the order in which communications units are processed is given, a second
communications unit list in which variables associated with the communications units are given and a

is plurality of variable lists in which information about the variables in the communications units is given,
whereby said code generator uses code blocks from the code block file and the first and second
communications unit lists and the plurality of variable lists to produce interface code. In this computer
system, the interface code is independent of the interface used.

The computer system further comprises input/output device code to operate said input/output devices
20 as well as linkage means to link said generated interface code with said input/output device code.

Description of the Drawings

Fig. 1 shows an overview of the IBM ScreenView Program Product.
25 Fig. 2 shows a flow diagram which describes how an interface to the business logic of an applica-

tions program is generated.
Fig. 3 shows examples of the sequences in which communications units are processed.
Fig. 4 shows an example of a universal interface declaration used in the IBM ScreenView Program

Product.
30 Fig. 5 shows a flow diagram indicating how information required for the generation of interface code

is extracted from an abstract syntax table.
Fig. 6 shows an example of an element in a ASTTree list.
Fig. 7 shows an example of a ASTTree list.
Fig. 8 shows an example of an optimised ASTTree list.

35 Fig. 9 shows a flow diagram indicating the steps in producing the interface code from ASTList,
ASTTree and VarList lists.

Detailed Description of the Invention

40 Fig. 1 shows an overview of the IBM ScreenView Program Product. An applications program 10 is
divided into code relating to the user interface 30, code relating to the business logic 40 and code used for
run time checks 20. The business logic 40 is the heart of the program and actually performs the task for
which the program is designed. The user interface 30 is interface-independent code which builds the
connection between the business logic 40 and the external environment. It provides the information about

45 which data is to be input to the business logic 40 and specifies which data is to be output from the business
logic 40 in a form which is independent of the interface specified by the user. The user interface 30 is
specified by an abstract declarative language, the so-called user interface declaration (UID). The user
interface declaration is converted to an abstract syntax table (AST) 60 which is the machine readable form
of the UID 30.

50 The UID 30 and the AST 60 are described in detail in the co-pending PCT application WO-EP91/01642.
It should be noted that in this co-pending application, the UID 30 is termed the User Interface Information
(UN) and the AST 60 is termed the User Session Data. Tools are provided by ScreenView to convert the
UID 30 into the AST 60. The information in the AST 60 may be accessed in one of two ways as shown in
the co-pending PCT application WO-EP91/01642: either in the form of an AST table or in the form of an

55 AST tree.
An end user 90 of a ScreenView applications program 10 communicates with the applications program

10 through a universal interface conductor 50 and a presentation front end 80. The presentation front end
80 contains the code relating to the specific interface chosen by the end user 90 to communicate with the

4

EP 0 602 263 A1

applications program 10. The end user 90 may chose to communicate with the applications program 90 by
means of a command line, by means of windows, by means of voice input, by means of a touch screen or
by other means. The presentation front end 80 uses the AST 60 generated from the UID 30 to produce the
required interface for the applications program 10. The universal interface conductor 50 provides the

5 communication services between the business logic 40 of the applications program 10 and the end user 90
through the presentation front end 80. In particular, the universal interface conductor 50 establishes the
communications units which are the subsets of the application logic's variables that are to be presented to
the end user 90 during any particular interaction. The universal interface conductor 50 communications
services are described in the aforementioned ScreenView Applications Developer's Reference, pp. 211-214.

io A variable table (VT) 70 is also supplied by ScreenView. The variable table 70 is a further means of
communication between the business logic 40 of an applications program 10 and the presentation front end
80. In the variable table 70 all variable values defined in the UID 30 are stored. The applications program 10
places all the variable values that the end user 90 needs into the variable table 70 using variable table
access services 75 and it also finds in the variable table 70 the input from the end user 90. The

is presentation front end 80 communicates these values to the end user 90 from the variable table 70 and
from the end user 90 to the variable table 70. Checking routines 85 are provided to validate the variables.
The variable table access services 75 are described in more detail in the aforementioned ScreenView
Application Developer's Reference, pp. 215-238.

Fig.2 shows the steps involved in the development of a user interface 30 for use in an applications
20 program. In step 100, the UID 30 is defined with the help of an abstract declarative language. The elements

of this language are outlined below. After the UID 30 is defined, it is converted to the machine readable
AST 60 in step 105. From the AST 60, interface code relating is automatically generated (step 110) from
the UID defined in step 100. In the preferred embodiment, C language code is used. However, the
teachings of this patent are also applicable to the automatic generation of code in any other procedural

25 computer language. The generated interface code is compiled in step 115. In the preferred embodiment,
the compiler used is the IBM C/2 compiler. However, any other C compiler could be used to compile C
code generated by step 110. Finally in step 120, the generated code is linked to the presentation front end
code 90 in order to produce the interface for the applications program 10.

As mentioned above, the UID 30 is described with the help of an abstract declarative language. The
30 most important elements of this language will now be described. These language elements are only

examples of the language elements that may be used and are more fully described in the aforementioned
ScreenView Applications Developer's Reference, pp 21-53.

35 <ALT> D e f i n e s an a l t e r n a t i v e s e l e c t i o n .

< ELEMENT > D e f i n e s an i n d e p e n d e n t i t e m or a c o l u m n of a l i s t .

40
<ITERATE> can e i t h e r d e f i n e i) a l i s t of e l e m e n t s

or i i) t h e i t e r a t i o n o f

c o m m u n i c a t i o n s u n i t s .
45

<SELECT> D e n o t e s a s e t of a l t e r n a t i v e c h o i c e s .

50 <SET> D e n o t e s a s e t of e l e m e n t s .

These language elements can be combined with parameters to describe more complicated structures in
the UID 30. For example:

55 1) Description of a Communications Unit

5

EP 0 602 263 A1

10

20

25

<SET> " s a m p l e w i n d o w "

g e n e r a l : c o m m u n i t = w i n d o w

<ESET>

This provides the name of a communications unit (window) which is to be specified with a communica-
tions unit request. The subset of the applications program's variables included in the communications
unit are defined as those variables operated on by the declarative language instructions appearing
between the <SET> and <ESET> instructions and are represented here by the series of full stops.

is 2) Description of Variable

< ELEMENT > " F i r s t E n t r y "

g e n e r a l : v a r n a m e = n a m e l

v a l u e t y p e = a l p h a n u m

v a l u e l e n g t h = 20

a c c e s s t y p e = i n o u t

This provides an item in a set of elements. The item is named namel and is alphanumeric in nature with
a length of 20 characters. As indicated by the value of the parameter "accesstype", it can be used as
both an input and output type variable.

30 3) Description of Alternatives

<SELECT> R a d i o b u t t o n

g e n e r a l : v a r n a m e = r a d i o
35

v a l u e l e n g t h = 1

<ALT> " B u t t o n 1 "

40 g e n e r a l : v a l u e = 1

<ALT> " B u t t o n 2 "

g e n e r a l : v a l u e = 2 45 3

<ALT> " B u t t o n 3 "

g e n e r a l : v a l u e = 3
50

<ESELECT>

55 In this example, the variable name "radio" which has a length of 1 character can take either of the values
1, 2 or 3 depending on which of the alternatives "Button 1", "Button 2" or "Button 3" are selected.
4) Description of Iteration of a Communications Unit (Definition ii) of <ITERATE> language element)

EP 0 602 263 A1

<ITERATE>

g e n e r a l : e x i t = "END"

5
<SET>

<SELECT>
10 g e n e r a l : v a r n a m e - SEL

<ALT> "END"

75 g e n e r a l : v a l u e = E

<ALT> " C h o i c e 1 "

20
<ALT> " C h o i c e 2 "

25 <ALT> " C h o i c e n "

<ESELECT>

30
<ESET>

<EITERATE>
35

In this example, the end user 90 is continually presented with a selection of choices, Choice 1 , Choice 2,
Choice n and an "END" choice. Each selected element is added to a set until the end user 90

chooses "END" at which point the iteration finishes and the value of the variable name varname = SEL,
40 is set to the value E from the selection "END".

The UID includes variables of the following types

i) Normal Variable

45 These are variables with a defined length, e.g.:

< ELEMENT > " F i r s t E n t r y "

so g e n e r a l : v a r n a m e = n a m e l

v a l u e t y p e = a l p h a n u m

v a l u e l e n g t h = 2 0

a c c e s s t y p e = i n o u t

7

EP 0 602 263 A1

ii) Multiline Entryfield

These are represented by variables of variable length

5 < ELEMENT > " M u l t i l i n e E n t r y "

g e n e r a l : v a r n a m e = m u l t i

a c c e s s t y p e = i n o u t

10 r e q u i r e d = n o

The parameter "required" specifies whether an input value for the related variable is required or optional. A
multiline entryfield variable does not need to be filled and hence the parameter "required" is set to "no".

15
iii) Outlist

An outlist is a list which is presented to an end user 90 and out of which the end user 90 can select a
line. Using the <ELEMENT> language element, the columns forming a line of the list are described. Using

20 definition i) of the <ITERATE> language element, the complete list may be generated.
An example of an outlist is the following:

25

30

35

<ITERATE> " L i s t B o x "
25

g e n e r a l : v a r n a m e = l i s t e n t r y

v a l u e t y p e = a l p h a n u m

v a l u e l e n g t h = 25
30 o u t l i s t = l i s t l

< ELEMENT > C o l u m n l

35 g e n e r a l : v a r n a m e = c o l u m n l

v a l u e t y p e = a l p h a n u m

v a l u e l e n g t h = 10

a c c e s s t y p e = o u t
40

<EITERATE>

45 This generates a list of 25 entries with the name "listentry" which can be formed of alphanumeric
characters. The list has only one column. Each entry in the column may be up to 10 alphanumeric
characters in length.

40

50
iv) Inlist

An Inlist is a subset of the entries of an outlist that has been selected by a user. The Inlist is generated
using definition i) of the <ITERATE> language element and presenting to the end user 90 elements of an
outlist which can be selected to form the Inlist.

55

8

EP 0 602 263 A1

v) Shared

Shared variable are those variables which are shared between multiple communications units.
An access authorisation type is defined for each of the variable types by the "accesstype" parameter.

5 Three types of access parameters may be defined:

i) accesstype = in

The value of the variable may be input by the end user 90 and is not changed by the applications
io program 10.

ii) accesstype = out

The value of the variable is set by the applications program 10 and may not be overwritten by the end
is user 90.

iii) accesstype = inout

The value of the variable may be input by the end user 90 and may be changed by the applications
20 program 10.

In addition to the description of the user interfaces in the UID 30, the order in which the communica-
tions units are processed is also described. Thus the UID 30 contains not only information about the
appearance of the user interfaces but also about the sequence in which they appear. The most important
language elements used to describe the sequence of the communications units are:

25 1) Reference to a new communications unit
<LINK> NEW_CU

In this example, all further operations described in the UID 30 after this command are carried out on the
variables given in the new communications unit NEW CU.

The <LINK> statements can be gathered together in a set as illustrated in Fig. 3a. The structure
30 depicted is described in the UID 30 by the following declaration:

<SET>

35 g e n e r a l : c o m m u n i t = CU1

<LINK> CU2

40
<LINK> CU3

<LINK> C U n - 1

<LINK> CUn

50
<ESET>

In this example, once the variables in the communications unit CU1 are called, then the variables in the
55 communications units CU2 to CUn will be called in sequence.

2) Conditional reference to a new communications unit

9

EP 0 602 263 A1

<SELECT>

g e n e r a l : v a r n a m e = r a d i o b u t t o n

v a l u e t y p e = a l p h a

v a l u e l e n g t h = 1

<LINK> " C h a n g e t e x t "
10

g e n e r a l : v a l u e = A

<LINK> " P r i n t t e x t "
75 g e n e r a l : v a l u e - P

<ESELECT>

20
In this example, the end user 90 is given the choice of two communications units, "Change text" and
"Print text", of which the end user 90 has to select one. If "Change text" is selected, then the variable
name "radiobutton" takes the value A and subsequent references to variables in the UID 30 are
references to the variables in the communications unit "Change text". If, however, the end user 90

25 selects "Print text", then the variable name "radiobutton" takes the value P and subsequent references
to variables in the UID are references to the variables in the communications unit "Print text".

Another method of depicting this is shown in Fig. 3b which has the following declaration:

<SET>
30

g e n e r a l : c o m m u n i t = C U l

<SELECT>
35

<LINK> CU2

40 <LINK> CU3

<LINK> CUn
45

<ESELECT>

50 <ESET>

In this example, after the variables in the communication unit CU1 are called, the end user 90 is
presented with a choice which of the communications units CU2 to CUn to call and thus to use the

55 variables contained therein.
3) Loop around several communications units

10

EP 0 602 263 A1

<ITERATE>

g e n e r a l : e x i t = END

<SET> " P r i n t t e x t "

g e n e r a l : c o m m u n i t = P r i n t

<ESET>

<EITERATE>

In this example, the action associated with the communications unit "Print" will be repeatedly undertaken
until the end user 90 indicates that no more action is required by signalling END. The signalling of END
can be carried out in a number of ways, e.g. by selecting an END button or an END menu choice.

Another example of such a loop is shown in Fig. 3c which is described by the following declaration:

<ITERATE>

g e n e r a l : e x i t = END

<SET>

g e n e r a l : c o m m u n i t = CUl

<SELECT>

<ALT> a l t l

<ALT> a l t 2

<ALT> END

<ESELECT>

<ESET>

<EITERATE>

In this example, once the variable in the communications unit CU1 are called, then the user carries out
various actions on these same variables until an END action is initiated, at which point other actions are
carried out.

It should be noted that in the examples of the declarative language given above, only a skeleton outline
shown in order to illustrate the use of the language elements. In practice, each language element will

11

EP 0 602 263 A1

have many more parameters associated with it and further actions will be carried out on the variables within
each of the communications units. These actions may be specified by other language elements in the UID
30.

As mentioned above, the UID 30 is a program written in a declarative language by the programmer of
5 the applications program 10 in order to describe the user interface to the business logic 40. The UID 30

cannot, however, be directly accessed by the presentation front end 80 and must be converted into a
machine readable format termed the AST 60. A description of the relationship between the UID 30 and the
AST 60 is given in co-pending PCT application WO-EP91/01642. A brief description will be given here by
means of an example.

io Consider the following UID 30

<SET>CU1

g e n e r a l : c o m m u n i t CU1
15

< L I N K > L o o p

20 <ESET>

< I TERATE > L o o p

e x i t = END

<SET>CU2

g e n e r a l : c o m m u n i t = CU2

25

30

<SELECT>

g e n e r a l : v a r n a m e = b u t t o n

35
<LINK>CU3

v a l u e = A

40
<LINK>CU4

v a l u e = B

45

50

55

12

EP 0 602 263 A1

< ALT > END

v a l u e = X

70 <ESELECT>

<ESET>

75
<EITERATE>

<SET>CU3
20 g e n e r a l : c o m m u n i t = CU3

<SELECT>

25
<ALT>

30
<ESELECT>

<ESET>
35

<SET>CU4

g e n e r a l : c o m m u n i t = CU4

40
<SELECT>

<ALT>
45

<ESELECT>

50

<ESET>

In this description, the full stops indicate further non-illustrated language elements.
55 The UID 30 as given above is converted by routines available in the ScreenView product into the

machine readable form, the AST 60. The AST 60 can be accessed in one of two ways: either as an AST
tree as shown in Fig. 4 or as an AST list.

13

EP 0 602 263 A1

The AST tree in Fig. 4 illustrates the sequence in which the various communication units are called.
The top of the tree represents the beginning of the program and the communications unit CU1 is called.
The interface then links to a loop and iterates through this loop. At every pass through the loop, the
communications unit CU2 is called at which point the end user 90 must select whether to link to the

5 communications unit CU3 or CU4 or whether to end the iteration through the loop by selecting END. In the
example shown, by choosing either of the communications units CU3 or CU4, the end user will be
presented with a selection of further alternatives from which a choice must be made.

In Fig. 4 each of the language elements, e.g. <SET>, <LINK>, <ITERATE> or <SELECT> are at nodes
of a tree. The language elements <ALT> are the child nodes of the tree.

io The AST list is another way of describing the same AST 60. It consists of a list of elements, one
element for each node in the tree, and includes information about the name of the node, the nesting level of
the node within the hierarchy and the type of the node (AND-node, OR-node etc).

Once the UID 30 has been defined by the programmer of the applications program 10, then the
interface code (step 110 of Fig. 2) must be generated. This is carried out in a separate code generator.

is Once the interface code has been generated from the defined UID 30, it can be used every time the
applications program 10 is used, it does not need to be regenerated. If, however, the UID 30 is changed,
then the code has to be regenerated. Alternatively, it would be possible for the skilled programmer to alter
the generated interface code directly.

In order to generate the interface code from the UID 30, the code generator must analyse the structure
20 of the UID 30. In this analysis, the code generator identifies which parts of the UID 30 are always present,

e.g. the opening and closing of the communication between the presentation front end 80 and the UID 30 or
the writing of information into the variable table 70. The code generator will also determine which parts of
the interface code are dependent on the structure of the UID 30, e.g. the use of the variables or the
sequence of the various communications units.

25 Before describing the actual operation of the code generator, it is necessary to understand what type of
code instructions must be generated.

The types of variables used in the UID 30 have already been described. The code generator must
generate different types of interface code for these variables. When generating the interface code for a
normal variable, the code generator must produce lines of code which

30 - allocate memory space
- write the variable's value into the allocated memory space
- write the variable's value from the allocated memory space into the variable table (70)
- provide the variable's value from the variable table 70 to the business logic 40

For both multiline entry fields and outlists, the code generator must provide lines of interface code which
35 carry out the following actions:

- allocate memory space
- initialise the variable
- write the variable's value into the reserved memory space
- write the variable's value from the reserved memory space into the variable table 70

40 - provide the variable's value from the variable table 70 to the business logic 40
- deallocate memory space

For each of the different types of variables, the code generator has stored in a code block file, the basic
code structure which has to be generated. The code generator then extracts the variable names, variable
lengths, variable types and any other necessary information from the UID 30 as described below. This

45 information is inserted into the appropriate places in the code blocks and the code generated.
The exact code blocks used to carry out these tasks and which are included in the generated the

interface code depend on the procedural language used and may be programmed by any skilled program
developer. However, in order to illustrate the invention, some descriptions of the code blocks required to
produce C code are illustrated.

50
i) Normal Variables

These are valid variables which are neither multiline entryfields nor outlists.
The code generator first produces code which defines the variable in the header to the program using

55 its name (VarName) and its length (VarLength). Note that some language, e.g. C, require the variable length
to be defined to be one greater than its actual length. From the communications units in which the variable
with this variable name (VarName) appears, the code generator extracts the variable's value if the
parameter "accesstype" is defined out or inout and produces code to present this value to the end user 90.

14

EP 0 602 263 A1

The code generator also produces code which establishes a space for the variable in the variable table 70
and, irrespective of access type of the variable, produces code to write the value of the variable into the
variable table 70. No special code blocks are required to de-allocate memory space since the variable
appears in the header to the file.

5
ii) Multiline Entryfield

A variable of the type multiline entryfield is a variable of variable length. The code generator produces
in the header file, a pointer to the position in the communications unit data space (i.e. the area of memory

io allocated to store the values of the variables of the communications unit) in which the multiline entryfield
variable is to appear. The code generator then allocates a default amount of memory space in the
communications unit data space to store the multiline entryfield variable. Should the length of the multiline
entryfield variable later exceed that of the allocated memory space, then it may be reallocated within the
communications unit data space.

is From the communications units in which the multiline entryfield variable appears with the access type
out or inout, the code generator extracts the value of the variable from the AST 60 and generates code to
present this value to the end user 90. The code generator then produces code which establishes a place for
the multiline entryfield variable in the variable table 70 and writes the value of the variable, irrespective of
the variable's access type, into the variable table 70.

20 The the code generator must produce code which allocates memory space for the multiline entryfield in
the checking routines 85 for those variables that have an access type of in or inout.

Finally, the code generator produces code which deallocates the allocted memory spaces for the
checking routines 85 and in the communications and data space.

25 iii) Outlists

A variable with the type outlist is handled as a pointer to an array of characters. An additional variable is
required in order to indicate the number of entries in the outlist. The code generator generates code in the
header program which contains a pointer to the position of the outlist variable in the communications unit

30 data space and also assigns to a variable the maximum length of the outlist (i.e. maximum number of
entries).

In the main routines, the code generator initialises the outlist by setting the pointer to a null value and
the variable indicating the number of entries in the outlist to zero. Code is produced to establish in the
variable table 70 a header for the outlist.

35 The code generator next produces code to allocate memory space to the outlist variable in the
communications unit data space using the variable indicating the maximum length of the outlist. The
reserved memory is filled with blanks. The code generator analyses the UID 30 as outlined below and
extracts any defined values in the outlist and generates code which will place them into the reserved
memory space and after which into the variable table 70 at a position after the header of the outlist. Finally

40 the code generator generates code which deallocates the memory space.
Similarly, when analyzing the UID 30, the code generator must generate lines of interface code to

process the communications units in the manner in which they are described in the UID 30. In order to
ensure an efficient and accurate analysis of the UID 30, the following convention must be observed by the
programmer of the UID 30:

45 - a new communications unit may only be defined in the general section of the <SET> language
element.

- a new communications unit may only be addressed using the <LINK> language element.
- a new communications unit must always be addressed using the <LINK> language element.
- no loops may defined using the <LINK> language element (the <ITERATE> language element

50 provides the possibility of defining loops).
Taking the communications units in Fig. 3 as an example and using C language code, the following

code structures will be generated:
For Fig. 3a:

55

15

EP 0 602 263 A1

P r o c e s s CUl

P r o c e s s CU2

P r o c e s s C U n - 1
10

P r o c e s s CUn

is For Fig. 3b

P r o c e s s CUl

20 i f (a l t e r n a t i v e)

P r o c e s s CU2

25
e l s e (a l t e r n a t i v e)

P r o c e s s CU3
30

35 e l s e (a l t e r n a t i v e)

P r o c e s s CUn

40
For 3c:

d o

45

P r o c e s s CUl

50 w h i l e (e x i t 1 END)

Using these basic code blocks, the sequence of communications units processing may generated by the
code generator. The code generator stores in a code block file the basic structure of the source code that
must be produced whenever it encounters the language elements <SET>, <ITERATE>, <LINK> etc. This

55 code includes variable items whose exact value must be extracted from the UID 30 as explained below.
These items include the names of the communications units, variables etc.

Fig. 5 shows an overview of the steps performed by the code generator in order to produce the
interface code. In step 200, the code generator reads the AST 60. As mentioned above, the AST 60 may be

16

EP 0 602 263 A1

read either in the form of an AST table (called USD-list in co-pending PCT application EP91/01642) or in
the form of a tree. From the AST table is accessed information about the variables in each of the
communications units described in the UID 30. The AST tree delivers information about the actual order in
which the individual communications units are processed.

5 In step 210, a first communications unit list (ASTList) is established as a double link list. This is done by
reading the information out of the AST table and creating, for each communications unit, an element in the
ASTList list. Each element contains the name of the communications unit, a pointer to the variable list (see
below) and the names of checking routines associated with this communications unit.

In step 220, a series of variable lists (VarList) are established. For each communications unit, a separate
io variable list in the form of a double link list is established. Each element in the variable list contains

information about the variables associated with the communications unit, such as the variable name, the
variable type (normal, multiline entry, outlist), the variable access (in, inout, out) and the length of the
variable as well as any other information required. A pointer to the location of the variable list is associated
with each element in the ASTList communications unit list.

is The AST table is then recursively scanned (step 230) in order to fill the elements in the ASTList
communications unit list and the variable lists (VarList) with information from the table.

In Fig. 5, the steps 210, 220 and 230 are shown separately for clarity of explanation. In practice, they
may be carried out simultaneously.

After the information relating to the communications unit and to the variables has been established in
20 the double link lists, it is necessary to establish the order in which the communications units are processed.

This is shown in steps 240 and 250 of Fig. 5. The information relating to the order in which the
communications units are processed is stored in a second communications unit list which is given the name
ASTTree list and is a double link list. For each communications units in the AST 60, an element is
established in the double link ASTTree list which has the information as shown in Fig. 6 associated with it.

25 This list is stored in reserved memory space.
In Fig. 6, the NodeName 300 is the name of the node for which the list element is created. The

NodeClass 310 indicates the declarative language element with which the node is associated, e.g. <SET>,
<LINK>, <ITERATE>, etc. The NodeCU 320 is the name of the communications unit which is associated
with the node, i.e. the communications unit comprising the variables which the node operates on. VarName

30 330 is the name of the variable whose value is used by the action associated with the node. It should be
noted that not all nodes change or use variables and thus VarName 330 may be not be used. Varlnit 340 is
the initial value of the variable whose name is given by VarName 330. It is the value that is extracted from
the UID 30 and may not initially be set. InitLen 350 is the initial length of the variable. NewCU 360 contains
a pointer to the next communications unit to be used in the AST tree.

35 In order to construct the double link list ASTTree, then the AST 60 is processed recursively. This is
done by scanning every child node and placing the information in the ASTTree list, after which the nodes in
the next higher hierarchical level are scanned and the information extracted and inserted in the correct
place in the ASTTree list. This processing continues until all of the nodes in the AST tree have been
scanned. Taking the AST 60 as shown in Fig. 4 as an example, a ASTTree list as shown in Fig. 7 is

40 produced.
The ASTTree list of Fig. 7 can be optimised in that for the generation of the interface code, it is not

necessary to include in the list the <SELECT> entries which are directly followed by an <ESELECT> since
this does not relate to the sequence in which communications units are processed and will not expand into
relevant code. Similarly if a <SET> node has the same communications unit name as the current

45 communications unit name, then the <SET> entry and its corresponding <ESET> entry may be deleted
from the second communications unit list ASTTree as it is not necessary for the interface code to call the
communications unit twice. Fig. 8 show the optimised second communications unit list ASTTree.

Having now constructed the first (ASTList) and second (ASTTree) communications unit lists and the
variable lists, it is now possible to generate (step 260) the interface code using the code blocks described

50 above and stored in the code block file. The generation process is shown in Fig. 9.
In step 400 of Fig. 9, the code generator opens a character array into which the generator code is to be

placed. The size of the character array is not of importance. In the current implementation it is 64K in size.
Routines are, however, provided so that if the character array becomes filled then either a new character
array is created or the existing information is stored and the current character array reused.

55 Step 410 examines the ASTTree list to see whether all of the elements of the ASTTree list have been
examined. If this is the case, then step 420 is carried out in which the file containing the interface code is
established by reading the data out of the character array. If this is not the case, then the code generator
proceeds to examine the next entry or entries in the ASTTree list (step 430).

17

EP 0 602 263 A1

In step 440, the code generator attempts to match an element or a combination of elements in the
ASTTree list with entries in the code block file. As explained above, certain combinations of certain
declarative language elements may produce different code than the same language elements in a different
order.

5 In step 450, a check is made to see whether a new communications unit has been opened. This is done
by examining the NewCU 360 entry in the element of the ASTTree list. If this is the case, then in step 460,
the ASTList is examined to see what variables are contained in this communications unit and the
information relating to the variables retrieved from the VarList lists. This information is used to generate
code which carries out all the necessary actions to establish the variables depending on their type (see

io above).
Finally in step 470, the code is generated from the information extracted from the code block file, the

ASTTree list and, if necessary, the ASTList list as well as the variable VarList lists. Intermediate registers
are used to temporarily store the information extracted from these lists and the values from the intermediate
registers are placed into the code blocks as indicated.

is After the interface code has been generated, it must be compiled (step 115 of Fig. 2) and then linked
with the presentation front end 80 in order to produce the interface to the business logic 40.

Claims

20 1. Method for automatically generating computer code in a procedural language from a program in a
declarative language comprising
a first step (240, 250) of analysing variables of the declarative language program to obtain information
about the variables;
a second step (210, 220) of analysing data flow of the declarative language program to obtain

25 information about the order in which communications units are used;
a third step (440, 460) of extracting from a code block file fragments of procedural language code; and
a fourth step (470) of mixing the variable information and the data flow information to produce computer
code in a procedural language.

30 2. Method according to claim 1 in which the first step comprises the following steps
establishing a first communications unit list (ASTList), each element of the first communications unit list
(ASTList) comprising the names of the communications units in the declarative language and pointers
to variable lists (VarList) for those variables included in the communication unit,
whereby the information in the variable lists (VarList) comprises at least a name of the variable, a type

35 of the variable and an access type of the variable.

3. Method according to claim 2 whereby
the code block file contains separate code blocks for each variable type.

40 4. Method according to claim 1 in which second step comprises the following steps
establishing a second communications unit list (ASTTree), each element of the second communications
unit list (ASTTree) comprising a language element of the declarative language (NodeClass), the
communications unit being operated on (NodeCU) and a pointer to the next communications unit to be
operated on (NewCU).

45
5. Method according to claim 4 whereby

the code block file contains separate code blocks for each declarative language element.

6. Method for automatically generating interface code for an applications program (10) with a user
50 interface (30) defined using a declarative language and with a business logic (40) comprising

a first step of analysing the user interface (30) to establish information about the variables used in the
user interface (30);
a second step of analysing the user interface (30) to establish the order in which communications units
in the user interface (30) are processed;

55 a third step (440, 460) of extracting from a code block file fragments of procedural language code; and
a fourth step (470) of mixing the variable information and the data flow information to produce interface
code in a procedural language.

18

EP 0 602 263 A1

7. Method according to claim 6 in which the first step comprises the following steps
establishing (210, 220) a first communications unit list (ASTList), each element of the first communica-
tions unit list (ASTList) comprising the names of the communications units in the declarative language
and pointers to variable lists (VarList) for those variables included in the communication unit,

5 whereby the information in the variable lists (VarList) comprises at least a name of the variable, a type
of the variable and an access type of the variable.

8. Method according to claim 7 whereby
the code block file contains separate code blocks for each variable type.

70
9. Method according to any one of claims 6 to 8 whereby

the code block file contains code establishing an entry for the variables in a variable table (70) which
can be accessed by the business logic (40).

75 10. Method according to claim 6 in which second step comprises the following steps
establishing (240, 250) a second communications unit list (ASTTree), each element of the the second
communications unit list (ASTTree) comprising the declarative language element (NodeClass), the
communications unit being operated on (NodeCU) and a pointer to the next communications unit to be
operated on (NewCU).

20
11. Method according to claim 10 whereby

the code block file contains separate code blocks for each declarative language element.

12. Computer system with input/output device (90), processor and memory for developing applications
25 programs (10), in which said applications programs (10) comprise an interface declaration (30) and a

business logic (40), said computer system incorporating a code generator with code block file to
automatically generate code, characterised in that
said computer system further includes
a first communications unit list (ASTTree) in which the order in which communications units are

30 processed is given;
a second communications unit list (ASTList) in which variables associated with the communications
units are given; and
a plurality of variable lists (VarList) in which information about the variables in the communications units
is given,

35 whereby said code generator uses code blocks from the code block file and entries from the first
(ASTTree) and second (ASTList) communications unit lists and the plurality of variable lists (VarList) to
produce interface code.

13. Computer system of claim 12 further characterised in that
40 said interface code is independent of the interface used.

14. Computer system according to claims 12 or 13 further characterised in that said computer system
comprises
input/output device code (80) to operate said input/output devices (90);

45 linkage means to link said generated interface code with said input/output device code (80).

50

55

19

EP 0 602 263 A1

. IU

RUN TIME
CHECKS

2Q

UID
USER BUSINESS

INTER- LOGIC
FACE

30 4 0
i 1 1 .

VI SERVICES

60

7 5
7 0

VT

AST

8 5

CHECKING
ROUTINES

8 0 9 0

U|C pFE ENDr

F I G . 1

DEFINE UID

GENERATE AST

GENERATE INTERFACE
CODE

COMPILE CODE

LINK INTERFACE
CODE WITH PFE

1 0 0

105

110

115

I 20

r I G . 2

EP 0 602 263 A1

F I G . 3 A

CU1

NO EXIT

=END

YES

F I G . 3 C

F IG . 3 B

21

EP 0 602 263 A1

F i g . 4

<LINK> CU3

<SET> CU3

<SELECT>

<ALT> <ALT>

<SET> CU1

<LINK> LOOP

<ITERATE> LOOP

<SET> CU2

<SELECT>

<LINK> CU4

<SET> CU4

<SELECT>

<ALT> <ALT>

N o d e N a m e

N o d e C l a s s

ModeCU

V a r N a m e

Varlnit

n t L e n

NewCU

3 1 0

3 2 0

330

3 4 0

3 5 0

3 6 0

EP 0 602 263 A1

READ AST
2 0 0

ESTABLISH FIRST
CU-LIST
(ASTList)

2 1 0

ESTABLISH VARIABLE
LISTS FOR EACH CU

(VarList)

2 2 0

RECURSIVE SCAN OF
AST TABLE

2 3 0

ESTABLISH SECOND ,
2 4 0

CU-LIST /
(ASTTree)

RECURSIVE SCAN OF
ASTTree

2 5 0

GENERATE CODE
2 6 0

r I G . 5

23

EP 0 602 263 A1

NodcNamc NodcClass NodcCU VarName Varlnit InilLcn NewCU
CUl SET CUl 0

Loop ITERATE CUl button X 2 CU2
CU2 SET CU2 0

4 SELECT CU2 button 0

CU3 LINK CU2 button A 2

CU3 SET CU3 0
7 SELECT CU3 button3 0
7 ESELECT CU3 button3 0

CU3 ESET CU3 0

CU4 LINK CU3 button B 2

CU4 SET CU4 0

10 SELECT CU4 button4 0

10 ESELECT CU4 button4 0

CU4 ESET CU4 0
4 ESELECT CU2 0

CU2 ESET CU2 0

Loop EITERATE CUl button X 2 CU2

CUl ESET CUl 2

FIG. 7

NodcNamc NodcClass NodcCU VarName Varlnit InitLcn NewCU

CUl SET CUl 0

Loop ITERATE CUl button X 2 CU2

CU2 SET CU2 0
4 SELECT CU2 button 0

CU3 LINK CU2 button A 2
CU3 SET CU3 0
CU3 ESET CU3 0

CU4 LINK CU3 button B 2
CU4 SET CU4 0
CU4 ESET CU4 0

4 ESELECT CU2 0
CU2 ESET CU2 0

Loop EITERATE CUl button X 2 CU2

CUl ESET CUl 2

FIG. 8

24

EP 0 602 263 A1

OPEN CHARACTER
ARRAY

4 1 0

EXAMINE ASTTree
LIST

MATCH ENTRIES IN
ASTTree LIST WITH
ENTRIES IN CODE

BLOCK FILE

4 0 0

YES

4 2 0
/

CREATE
INTERFACE
CODE FILE

4 3 0

.440

EXTRACT INFORMATION
ABOUT VARIABLES FROM

ASTList LIST AND
VARList LISTS

GENERATE CODE
IN CHARACTER ARRAY

4 7 0

F I G . 9

!5

European Patent
Office

EUROPEAN SEARCH REPORT Application Number

EP 92 12 1325

DOCUMENTS CONSIDERED TO BE RELEVANT

Category Citation of document with indication, where appropriate,
of relevant passages

Relevant
to claim

CLASSIFICATION OF THE
APPLICATION (Int. CI. 5)

D,Y WO-A-9 217 838 (IBM)
* abs t rac t *
* page 11, line 1 - line 17 *
* page 15 - page 36, line 6 *
* f igures 1-10; tables 1-4 *

EP-A-0 515 739 (IBM)
* the whole document *

PROCEEDINGS 12TH INTERNATIONAL CONFERENCE
ON SOFTWARE ENGINEERING. 26 March 1990,
NICE, FRANCE
pages 310 - 315
D.H. BERNSTEIN ET AL. 'AUTOMATIC
MAINTENANCE OF ROUTINE PROGRAMMING TASKS
BASED ON A DECLARATIVE DESCRIPTION'
* page 311, left column, line 5 - line 21

1-14 G06F9/44

1-14

1-14

* page 311, right column, line 16
313, lef t column, line 28 *
* page 313, right column, line 41
54 *
* f igures 1,2 *

page

1 ine TECHNICAL FIELDS
SEARCHED (Int. CI. 5)

G06F

The present search report has been drawn up for all claims
Place of search

THE HAGUE
Dale of onepletioi of Ike uarck

16 AUGUST 1993 J0NASS0N J . T .

CATEGORY OF CITED DOCUMENTS
X : particularly relevant if taken alone Y : particularly relevant if combined with another

document of the same category A : technological background O : non-written disclosure
P : intermediate document

T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date
D : document cited in the application L : document cited for other reasons
A : member of the same patent family, corresponding document

	bibliography
	description
	claims
	drawings
	search report

