
19

Europaisches Patentamt

European Patent Office

Office europeen des brevets (n) Publication number : 0 602 8 6 9 A 2

12 EUROPEAN PATENT A P P L I C A T I O N

@ Application number : 93309787.5

(22) Date of filing : 06.12.93

(6) int. ci.5 : G06F 9 / 4 4 5

(§) Priority : 15.12.92 US 990760

(43) Date of publication of application
22.06.94 Bulletin 94/25

@ Designated Contracting States :
DE FR GB

(n) Applicant : International Business Machines
Corporation
Old Orchard Road
Armonk, N.Y. 10504 (US)

(72) Inventor : Kukula, Dennis Albert
32 Laswell Street
Henderson, Nevada 89015 (US)
Inventor : Legvold, Vern John
2710 North Avenida Empalme
Tucson, Arizona 85715 (US)

@) Representative : Davies, Simon Robert
I B M
UK Intellectual Property Department
Hursley Park
Winchester, Hampshire S021 2JN (GB)

(54) Updating processor control code.

CM
<

CO
00
CM
o
CO

(57) A system is provided for automatically instal-
ling new processor control code in a computing
system running old processor control code with
minimal disruption in the operation thereof. The
new code is loaded into the computing system
and compared to the old code to identify values
of a plurality of updating variables. Changes in
the operation of the computing system are ef-
fected based on the values of the updating
variables without disrupting the operation
thereof. Typically microcode being replaced
contains resource management variables which
are labelled and given predetermined values.
The resource management variables are com-
pared to corresponding variables in the old
code to determine which resources to control to
effect an updating of the system.

UJ

Jouve, 18, rue Saint-Denis, 75001 PARIS

EP 0 602 869 A2

The present invention relates to computing systems, and in particular to updating the processor control
code in computing systems.

Computing systems typically include a microprocessor which controls input and output operations of nu-
merous associated peripheral devices in accordance with a scheme (or BIOS, "basic input and output system")

5 stored as microcode in a memory associated therewith. As the need to change the input/output control scheme
changes, it is desirable to change the microcode by which these functions are performed by the microproces-
sor. This is typically accomplished by changing the microcode which controls the processor. However, this has
been somewhat problematic.

For example, storage controllers (or "storage control units"), such as the 3990 unit sold by the International
10 Business Machines (IBM) Corporation, typically include two clusters which allow access to a single set of direct

access storage devices (DASDs). Each of the clusters are on a separate power boundary and each has the
ability to load its own microcode. Each cluster has two microprocessors and each microprocessor provides a
separate path to the storage devices. Within each microprocessor, microcode regulates access by the host to
the storage device.

15 The traditional method of updating the microcode in each cluster involves a disruption in the operation
of the cluster while the microcode is loaded and the cluster is reinitialized. The procedure may take up to one-
half hour per cluster in the conventional system. In this context, "disruptive" implies that the cluster loses ac-
cess to the data behind the control unit until the new microcode has been loaded into both clusters using a
power on/reset. Hence, lengthy service disruptions are generally undesirable.

20 An alternative, thought no less undesirable, approach is to limit the updating microcode to small changes.
However, this is not practical where significant and substantial changes in the microcode are in order.

Thus, there is a need in the art for a technique for substantially updating microcode with minimal disruption
in the operation of a control processor.

Accordingly, the invention provides a method for automatically installing new processor control code in a
25 computing system running old processor control code, said method including the steps of:

loading said new code into said computing system;
comparing the new code with the old code and identifying values of a plurality of updating variables

therein; and
effecting changes in the operation of said computing system based on the values of said updating va-

30 riables.
In a preferred embodiment the variables relate to resources managed by said computing system. Prefer-

ably the method also includes the step of initializing said computing system after said changes in the operation
thereof are effected.

The invention also provides apparatus for automatically installing new processor control code in a com-
35 puting system running old processor control code, said apparatus comprising:

first means for loading said new code into said computing system;
second means for comparing the new code with the old code and identifying values of a plurality of

updating variables therein; and
third means for effecting changes in the operation of said computing system based on the values of

40 said updating variables.
Typically the computing system includes multiple processors controlling the same devices, and the new

control code is installed in one of said processors running the old control code. An example of such a system
is one having a multiplicity of storage controllers. Howeverjt should be appreciated that the invention is ap-
plicable in any computing system using control code that is updated from time to time.

45 The apparatus or system automatically installs new processor control code in a computing system running
old processor control code with minimal disruption in the operation thereof. The new code is loaded into the
computing system and compared to the old code to identify values of a plurality of updating variables. Changes
in the operation of the computing system are effected based on the values of the updating variables without
disrupting the operation thereof.

50 in a specific embodiment, the microcode includes resource management variables which are labelled and
given predetermined values. The resource management variables are compared to corresponding variables
in the old code to determine which resources to control to effect an updating of the system. Thus, substantial
changes in microcode are effected automatically and without disruption.

An embodiment of the invention will now be described by way of example with reference to the following
55 drawings:

Fig 1 is a block diagram of a data processing system.
Fig 2 is a block diagram of the storage controller of the data processing system of Fig 1 .
Fig 3 is a block diagram of a storage path for the storage controller of the data processing system of Fig

2

EP 0 602 869 A2

1.
Fig 4 is a flow diagram illustrating an alternative preferred implementation by which microcode installs

are performed automatically and without operator intervention.
An appreciation of the present invention is facilitated by an understanding of a typical conventional main

5 frame computer system in terms of the resources which must be managed. This will facilitate an understanding
of the need for changes or updates in the processor control code (microcode) by which the resources are man-
aged.

Fig 1 shows a high level block diagram of a data processing system 10. The system 10 includes a storage
controller 12, a plurality of host computers 14, 16, 18 and 20 and a plurality of direct access storage devices

10 (DASD) 22 - 32. Presently, disk drive units are the most common type of DASD. In large multiple computer
data processing systems, a large number of direct access storage devices serve several computers.

The storage controller 12 is logically positioned between the host computers 14 - 20 and the DASDs 22
- 32. The storage controller 12 handles connection and disconnection between a particular computer and mag-
netic disk unit for transfer of a data record.

15 The IBM Model 3990 storage controller, is an example of a storage controller used to control connections
between magnetic disk units and host computers. The host computers 14-20 are typically main frame systems
such as the IB 3090, the Model ES9000, or other comparable systems.

The IBM 3990 Model 3 type controller can handle up to sixteen channels from host computers and up to
sixty-four magnetic storage units. Hence, the host computers 14 - 20 are connected to storage controller 12

20 by at least one and by up to four channels. For example, the host computer 20 is connected to storage controller
12 by channels 34(a), 34(b), 34(c) and 34(d). Although four host computer systems and six direct storage de-
vices are depicted in Fig 1 , the storage controller 12 can handle additional channels and direct access storage
devices.

Fig 2 depicts the storage controller 12 in greater detail. The storage controller 12 has two storage clusters
25 36 and 38, each of which provides for selective connection between a host computer and a direct access stor-

age device. The clusters 36 and 38 are on separate power boundaries. The first cluster 36 includes a first mul-
tipath storage director 62 with associated storage paths 48 and 50, a shared control array 64 and a cache
memory 58. The second cluster 38 includes a second multipath storage director 63 with associated storage
paths 52 and 54, a shared control array (SCA) 66 and a non-volatile store (NVS) 60.

30 Fig 3 is a block diagram of a storage path. The storage path 48 is connected to a multipath storage director
62 by an upper port and to a plurality of direct access storage devices by a lower port. Data transfer between
the multipath storage director 62 and one of the direct access storage devices during synchronous operations
occurs via an automatic data transfer circuit 74 supported by a rate change buffer 76, if required. Rate change
buffer 76 compensates for differences between the speed of data transfer by disk drive type, DASDs and the

35 operating speed of the channels to host computers. The channels typically handle data at a faster rate than
the direct access storage devices.

A port adapter 72 controls transfer of data between the cache 58, the non-volatile store 60 and the lower
port. The port adapter 72 also controls transfer of data between cache 58 and the upper port. As discussed
above, the presence of cache 58 and non-volatile store 60 provide for logical completion of certain data trans-

40 fers without waiting for physical synchronization of disk and channel connection. All operations of the storage
path 48 are under control of a microprocessor 70. Processor control microcode is executed by the micropro-
cessor in the storage path to control the operation of the storage controller. Hence, while each storage path
is, in effect, a stand alone control unit based upon its own microprocessor, the storage paths share processor
control information through the SCA for synchronization functions for handling connections, disconnection

45 and reconnections relating to a transaction.
Returning to Fig 2, each storage path in the storage controller has access to three addressable memory

devices used for supporting storage controller operation. The three memory devices are: the cache 58; the
non-volatile store 60; and the shared control array 64/66. The three memory devices and asynchronous work
elements comprise the shared structures of the 3990 control unit.

so Cache is best known for its application as an adjunct to computer memory where it is used as a high speed
storage for frequently accessed instructions and data. The length of time since last use of a record is used
as an indicator of frequency of use. Cache is distinguished from system memory in that its contents are aged
from the point of time of last use. In a computer memory address space, program data has to be released
before data competing for space in the address space gains access. In cache, competition for space results

55 in data falling out of the cache when they become the least recently used data. While infrequently accessed
data periodically enter cache, they will tend to "age" and fall out of cache. The contents are duplicated in system
memory. Storage controller cache performs an analogous function for direct access storage devices and stor-
age controllers. Reading data from (and writing data to) the magnetic media of the direct access storage de-

3

EP 0 602 869 A2

vices is fairly time consuming. Among the factors slowing the read and write operations are time required for
the magnetic disk to bring a record location into alignment with a transducer and the limited bandwidth of the
magnetic transducer used to read and write the data. By duplicating frequently accessed data in cache, read
time for data is reduced and data storage system throughput is considerably enhanced. High speed compo-

5 nents are expensive in terms of cost per byte of storage, particularly when compared with magnetic media
storage and thus cache is quite small compared to the memory device. For the purposes of the present dis-
closure it should be noted that when cache has been made unavailable, no attempt is made to access the cache
until a "Make Cache Available" command is received from the host.

Non-volatile storage (NVS) serves as a backup to the cache for the buffering function. Access to NVS is
10 faster than access to a direct access storage device, but generally slower than cache. Data are branched to

cache and to NVS to back up the cache in case of power failure. Data written to NVS have been treated as
being safe as if written to magnetic media. Upon staging of a data record to NVS indication is given to the host
computer that the data are successfully stored, The NVS is required for Fast Write operations and to establish
Dual Copy pairs. If cache is made unavailable, all Fast Write data will be destaged during the make unavailable

15 process and no new Fast Write data will be written to the NVS until cache is made available. When cache is
unavailable, the NVS is still required to maintain the bit maps defining the cylinders that are out-of-sync be-
tween the primary and secondary devices for Dual Copy.

Ashared control array (SCA) is a memory array which is shared overall storage paths. There are typically
two types of data in the SCA. The first is data to support the DASD and the second is the data to support the

20 caching and extended functions (ie Fast Write and Dual Copy).
Another resource available to the mainframe computer may be an asynchronous work element (AWE).

An AWE is a task performed by any processor by which data is taken from the cache and written or "destaged"
to DASD. These structures control the internal work elements which control the asynchronous function re-
quired by the caching control unit (ie Pack Change, destaged modified data, cache space management, etc).

25 Clearly, the two clusters in the 3990 control unit share data structures. As the operational requirements
of the system change and as new and improved features of the system are made available, changes in the
operation of the system particularly with respect to the management of the many resources mentioned above,
are in order. These changes are implemented by changing the microcode which controls the operation of the
system through the microprocessors 70. As mentioned above, the conventional approach for making signif i-

30 cant changes in the microcode involve a disruption in the operation of the system while the new microcode
is loaded into microprocessor memory, typically via a support facility (diskette reader, 68 & 69 in Figure 2).
The traditional method of updating the microcode in each cluster involves a disruption in the operation of the
cluster while the microcode is loaded and the cluster is reinitialized. As this procedure may take up to one-
half hour, the service disruption is generally undesirable.

35 The need in the art for a technique for substantially updating microcode with minimal disruption in the
operation a control processor is addressed by the present invention. The invention provides a system for au-
tomatically installing new processor control code in a computing system running old processor control code
with minimal disruption in the operation thereof. In connection with the 3990 control unit, it is recognized that
the affected shared structure is only used during caching operations. When this occurs, the cache can be

40 made unavailable and the new microcode can be installed non-disruptively. In general, as discussed in detail
below, the new code is loaded into the computing system and compared to the old code to identify values of
a plurality of updating variables. Changes in the operation of the computing system are effected based on the
values of the updating variables without disrupting the operation thereof.

A specific embodiment includes microcode in which resource management variables are labelled and giv-
45 en predetermined values. The resource management variables are compared to corresponding variables in

the old code to determine which resources to control to effect an updating of the system. Thus, substantial
changes in microcode are effected automatically and without disruption.

The device SCA structures have historically been stable and generally only change when new microcode
supports a new device type. When this occurs, the new microcode will be implemented, during an update in

so accordance with the present teachings, to store data in the SCA for existing devices using the existing format.
The new format will be used only for new devices. This will only affect the fetching and storing of data in the
SCA. Since the control store within a Storage Path is not shared, the structures used in control store of the
new microcode can be implemented in a single format.

The following steps define the concurrent non-disruptive microcode installation scenario:
55 1 . Vary channel paths off to cluster from host;

2. Disable interfaces to the cluster;
3. Use the Support Facility to quiet cluster;
4. Load in new diskettes;

4

EP 0 602 869 A2

5. Use Support Facility to resume cluster;
6. Enable interfaces;
7. Vary channel paths on to cluster from host;
8. Repeat for other cluster.

5 A key aspect is the identification of microcode install variables (MIVs). Install values are assigned to each
variable in each new release. Action is taken only if the value of an MIV changes between releases. Thus, a
non-disruptive install occurs when a shared structure changes that does not affect a device.

In the illustrative implementation, the following install variables are defined:
Disruptive = The new microcode is disruptive;

10 Cache Unavailable = The cache must be unavailable during the install process;
NVS Unavailable = The NVS must be unavailable during the install process;
AWE Limiting = All AWEs must be run on the latest level of microcode during the install process;

and
Reserved = Space reserved for additional undefined variables. In the illustrative embodiment,

15 these variables have been assigned a value of zero.
During installation, the new microcode being installed will cause the microprocessor 70 to compare the

MIV values of the old microcode to the MIV values of the new microcode. The following list defines the proc-
essing initiated by the microcode if install values between the old and new microcode are not equal.

Disruptive Variable: The install process will not complete and a message will be written on the Support
20 Facility (SF) panel.

Cache Unavailable Variable: If the cache is available, the install process is stopped and the cache is made
unavailable in an automatic mode of operation or a message is written to the SF panel instructing the CE (Cus-
tomer Engineer) to make cache unavailable before restarting the install process.

NVS Unavailable Variable: If the NVS is available, the install process is stopped and the NVS is made
25 unavailable in an automatic mode of operation or a message is written to the SF panel instructing the CE to

make NVS unavailable before restarting the install process.
AWE Limiting Values: The microcode will dispatch AWEs only on the cluster that was just loaded.
The install variable values are contained in the microprocessor memory (control store) of each storage

path. When a cluster undergoes an initial microcode load (IML), a check is made to determine if the other clus-
30 ter has been loaded. If the other cluster has not been loaded, the install variable values will be moved from

the control store to the SCA. If the other cluster has been loaded, the install variable values are compared to
the values currently stored in the SCA. The compare is a 'not equal', regardless of the magnitude of the dif-
ference or if the new is less than the old. This facilitates installation of 'old code' as well as an upgraded ver-
sion.

35 In one implementation, if the disruption values are not equal, the storage facility is used to display a mes-
sage on the maintenance panel and the install process is terminated. If the cache unavailable values are not
equal, a check is made to ensure that the state of the cache is 'UNAVAILABLE'. If it is unavailable, the new
value replaces the old value in the SCA and the install continues. If cache is available, the SF is used to display
a message on the maintenance panel and the install process is halted.

40 The processing for the NVS Unavailable signal is identical to that for Cache Unavailable.
If the AWE Limiting Values are not equal, the new value is stored into the SCA and a re-initialization is

invoked. The re-initialization will cause AWEs to be terminated and re-initialized. AWEs will only be dispatched
on SPs (storage path, Fig 3) whose AWE limiting variable values equal those in the SCA. This allows only the
new microcode to run with the new structures. Creates for new AWEs by old microcode will be blocked since

45 they would be created using the old structure. This can be achieved by returning an 'in progress' code if an
attempt is made to create a new AWE on a down level SP. This 'in progress' code will result in routing the create
process to another SP. The create function is modified to reject non-AWE creates which will block asynchron-
ous device maintenance (ie move device heads) and channel commands (eg Perform Subsystem Function
and Set System Mode). Creates for Pack-Changes will still be performed on any level of microcode but exe-

50 cuted only on the new microcode. Erroneous Power-on IML with different code loads. This will cause the last
cluster up to think that it has the desirable code load and proceed to force the other cluster to run degraded,
without AWEs.

The above-described microcode provides for some operator involvement in the install of new microcode.
Fig 4 is a flow diagram illustrating an alternative preferred implementation by which microcode installs are

55 performed automatically and without operator intervention.
Tables 1 and 2 below provide an example of the use of the invention to support the installation of micro-

code. In the example the microcode releases are defined as follows:
Rel 6.0 = Release of 3990 microcode to support new hardware platform.

5

EP 0 602 869 A2

Rel 6.1 = Enhancements that did not update shared structures.
Rel 7.0 = Change caching algorithms.
Rel 8.0 = Add support of new device format and changed AWE structure.

5 Table 1 Variable Values for the four Microcode Releases

Release Disruptive Cache Unavailable NVS Unavailable AWE Limiting

Rel 6.0 0 0 0 0

Rel 6.1 0 0 0 0

Rel 7.0 0 1 0 0

Rel 8.0 0 2 1 1

75
Table 2 Install Processing

Old Microcode
,

™ Rel 6.0 Rel 6.1 Rel 7.0 Ref8.0 Level

20 Non-disruptive Non-disruptive

Cache and NVS must
Rel 6.0 Non-disruptive Non-disruptive cache must be be Unavailable

Unavailable ..„,._ , 25 AWEs limited to new
level

Non-disruptive Non-disruptive

Cache and NVS must
30 Rel 6.1 Non-disruptive Non-disruptive cache must be be Unavailable

Unavailable , AWEs limited to new
level

35 Non-disruptive Non-disruptive Non-disruptive

Cache and NVS must
Rel7"° Cache must be Cache must be Non-disruptive be Unavailable

Unavailable Unavailable , AWEs limited to new
40 level

Non-disruptive Non-disruptive Non-disruptive

Cache and cache and NVS Cache and NVS must
„ Rel8-° NVS must be must be Unavailable be Unavailable Non-disruptive
45 Unavailable

AWEs limited AWEs limited to AWEs limited to new
to new level new level level

50

Claims

1. A method for automatically installing new processor control code in a computing system running old proc-
55 essor control code, said method including the steps of:

loading said new code into said computing system;
comparing the new code with the old code and identifying values of a plurality of updating variables

therein; and

6

EP 0 602 869 A2

effecting changes in the operation of said computing system based on the values of said updating
variables.

The method of Claim 1 wherein said variables relate to resources managed by said computing system.

The method of Claim 1 or Claim 2, further including the step of initializing said computing system after
said changes in the operation thereof are effected.

Apparatus for automatically installing new processor control code in a computing system running old proc-
essor control code, said apparatus comprising:

first means for loading said new code into said computing system;
second means for comparing the new code with the old code and identifying values of a plurality

of updating variables therein; and
third means for effecting changes in the operation of said computing system based on the values

of said updating variables.

The apparatus of Claim 4 wherein said variables relate to resources managed by said computing system.

The apparatus of Claim 4 or Claim 5 further including means for initializing said computing system after
said changes in the operation thereof are effected.

The apparatus of any of Claims 4 to 6, wherein said computing system includes multiple processors con-
trolling the same devices, and the new control code is installed in one of said processors running the old
control code.

EP 0 602 869 A2

E . 1
r—

3
3= k

~

<0

T
s i

T
■

I s

^ Co

tX. ex.
ft pc

I

4

F t *

8- c2

EP 0 602 869 A2

F I G . 4 (A)

LOAD NEW MICROCODE
INTO THE FIRST CLUSTER '

LOAD MIGRATION
CODE & READ AS
2 STEP PROCESS

DISPLAY ERROR
MESSAGE TO

OPERATOR PANEL

MAKE CACHE
UNAVAILABLE

EP 0 602 869 A2

F I G . 4 (B)

TERMINATE All OLD AWEs
CREATE ALL NEW AWEs

BLOCK EXECUTION OF AWEs
BY OLD MICROCODE

CONTINUE NORMAL CONTROL
UNIT FUNCTIONS UNTIL

MICROCODE GETS LOADED
INTO THE SECOND CLUSTER

LOAD MICROCODE INTO
THE SECOND CLUSTER

2ND CLUSTER
NOT ALLOWED
TO SHARE IN

AWE EXECUTION

2ND CLUSTER
ALLOWED

TO SHARE IN
AWE EXECUTION

12

EP 0 602 869 A2

F I G . 4 (C)

MAKE NVS AVAILABLE

CONTINUE NORMAL
CONTROL UNIT

OPERATION WITH
NEW MICROCODE

13

	bibliography
	description
	claims
	drawings

