Field of the Invention
[0001] The present invention relates to a regulator for a variable displacement pump; and,
more particularly, to a regulator provided with a hydraulic servo controller capable
of controlling the displacement volume of the pump and accomplishing a feedback function
depending upon the working pressure from the pump, an effective spring force and a
pilot pressure to achieve a stable flow rate and reduce energy losses.
Description of the Prior Art
[0002] A conventional variable displacement pump comprises a regulator which employs a device
for controlling the angle of a swash plate therein. For example, Japanese Laid-Open
Publication No. 89-116294 discloses a regulator comprising: a valve body; means for
controlling the angle of a swash plate; a directional changeover valve defining a
position for supplying a working pressure to a first chamber, a position for sealing
the first chamber and a position for discharging the load pressure from the first
chamber; a feedback lever for connecting an end of the changeover valve with a servo-piston
of the control means; a first pilot spool movable by the working pressure from the
pump for controlling the horsepower thereof; a second pilot spool movable by the pilot
pressure, wherein a reservoir pressure is included, for controlling the flow rate
of the pump; and a linkage mechanism for selectively applying one of the first and
the second pilot spools to the feedback lever to reduce the discharge flow rate thereof.
[0003] However, the linkage mechanism of the regulator complicates the overall structure
and construction thereof. Further, since the flow rate of the pump is likely to be
affected by a variation in the reservoir pressure of the hydraulic system during the
flow rate control, it is difficult to achieve and maintain a predetermined target
flow rate. In addition, the regulator is handicapped by the absence of a flow rate
cutoff control and a flow rate cutoff release control, thereby causing an energy loss
due to its inability to prevent an unnecessary discharge flow.
Summary of the Invention
[0004] Accordingly, it is an object of the present invention to provide a regulator for
a variable displacement pump having a simplified structure by eliminating the linkage
mechanism.
[0005] It is another object of the present invention to provide a regulator for a variable
displacement pump capable of accomplishing a stable flow rate control by eliminating
the effect of the reservoir pressure of the hydraulic system.
[0006] It is still another object of the present invention to provide a regulator for a
variable displacement pump capable of reducing an energy loss by providing a flow
rate cutoff control when the working pressure is greater than a predetermined value.
[0007] The above and other objects of the present invention are accomplished by means of
a variable displacement pump incorporating therein a regulator for controlling the
flow rate of a fluid therein by means of varying the angle of a swash plate, which
comprises: a pump for producing a flow of the fluid; a valve body in fluid-communication
with the pump; a servo-piston pivotally mounted to the swash plate and provided with
two portions, each having a different diameter, which are movable along a first and
a second chambers formed within the valve body; a multi-stage piston movable along
a first and a second piston compartments in the valve body by a working pressure from
the pump; a control rod movable along an axis of the servo-piston and having a servo-spool
for changing the direction of the flow; a servo-sleeve in fluid-communication with
the servo spool for defining a neutral position, a position for supplying the working
pressure of the second chamber and a position for discharging the working pressure
to a reservoir; a cut-off spool in fluid-communication with the servo sleeve for defining
a position for supplying the working pressure from the pump to the second chamber
and a position for discharging the working pressure from the second chamber to the
servo sleeve; and means for biasing the control rod and the servo-piston to be spaced
apart from each other.
Brief Description of the Drawings
[0008] The above and other objects, advantages and features of the present invention will
be apparent from the following description of preferred embodiments taken in conjunction
with the accompanying drawings, wherein:
Fig. 1 is a circuit diagram of a regulator for a variable displacement pump in accordance
with the present invention;
Fig. 2 is a cross-sectional view of one embodiment of the regulator in accordance
with the present invention;
Fig. 3 is a graph showing the relationship between the flow rate and the working pressure;
and
Fig. 4 is a graph illustrating the relationship between the flow rate and the pilot
pressure.
Detailed Description of the Preferred Embodiments
[0009] Referring to Figs. 1 and 2, there is shown a regulator 10 in accordance with the
present invention. A pair of variable displacement pumps Pd
1 and Pd
2 driven by an engine 12 produce a flow rate for the hydraulic pumps Pd
1, Pd
2, which is controlled by means of varying the angle of a swash plate 14. A gear pump Pg is also
driven by the engine 12 to deliver a pilot pressure to the regulator 10. A valve body
11 is installed to be fluid communicable with the pumps Pd
1,Pd
2 and Pg. The swash plate 14 is pivotally mounted to a servo-piston 16 at its one portion
of the periphery thereof by a connecting rod 18 fixed to the servo-piston 16. The
servo-piston 16 has two portions: i.e., portion a having a relatively small diameter
and portion b having a relatively large diameter, each of which is slidably movable
along a first chamber 20 and a second chamber 22 formed within the valve body 11.
The first chamber 20 is fluid communicable with the pump Pd
1 while the second chamber 22 is fluid communicable with a reservoir 24 through a cutoff
spool 26 and a servo-spool 28 having a changeover recess 30. A servo-sleeve 34 has
three holes 31, 32, 33 for defining a neutral position as shown in Fig. 2, a position
for supplying the working pressure to the second chamber 22 via the cut off spool
26 and a position for discharging the working pressure to the reservoir 24. A control
rod 36 is connected to the servo-piston 16 by a first and a second springs 38, 40
capable of transmitting to the servo spool 28 the difference between the forces acted
on the control rod 36 and the servo-piston 16, thereby changing or adjusting the hole
position of the servo-sleeve 34. A multi-stage piston 42 in contact with the control
rod 36 is slidably located in a first and a second piston compartments 44, 46, having
a plurality of stages, each of which has a different diameter. As shown in Fig. 2,
the control rod 36, the servo-piston 16, the multi-stage piston 42, and the springs
38,40 and 66 have a coaxial relationship with one another.
[0010] The working pressure from the pumps Pd
1, Pd
2 is supplied to the first and the second piston compartments 44, 46 through pressure
lines 48, 50, and a pilot pressure is applied to a pilot chamber 52, a drain chamber
54 and a third piston chamber 56 through pilot lines 58, 60 from a control valve 64
and a line 62 through a reducing valve 76 from the gear pump Pg. The gear pump Pg
is installed to maintain a constant initial pressure of the hydraulic circuitry to
thereby prevent a delayed response time of the regulator 10 at a low working pressure.
Thus, the working pressure initially supplied to the first chamber 20 is the higher
one of the working pressure of the pump Pd
1 and the gear pump Pg.
[0011] Hereinafter, how the regulator operates, depending upon the working pressure applied
to each of the circuit elements, will be described with reference to the accompanying
drawings. First, when the working pressure from the pumps is lower than the recovering
force of the third spring 66, the movement toward the left side of the servo-spool
28 causes the second chamber 22 to be fluid communicated with the reservoir 24. Therefore,
since the working pressure applied in the first chamber 20 is greater than that in
the second chamber 22, the movement to the right side of the servo-piston 16 increases
the angle of the swash plate 14 so that the discharge flow rate from the pumps may
reach up to its maximum level.
[0012] On the other hand, when the summation of the working pressures from the pumps Pd
1, Pd
2 is higher than point A shown in Fig. 3, the working pressures supplied to the first
and the second piston compartments 44, 46 defeats the recovering force of the springs
38, 66, thereby moving the control rod 36 to the right. At the same time, the cut
off spool 26 also moves to the right by the action of the working pressure from a
line 68 to have the holes 31 and 33 communicate each other. Thus, the working pressure
is evenly provided in the first and the second chambers 20 and 22. However, since
the hydraulically pressurized area of the servo-piston 16 located in the second chamber
22 is broader than that located in the first chamber 20, the movement to the left
side of the servo-piston 16 decreases the angle of the swash plate 14 to thereby reduce
the dicharge flow rate from the pumps and tends to urge the outer spring 38 against
the control rod 36. Consequently, the control rod 36 is moved to the left to reduce
the area, through which the flow is passed, formed by the relative position of the
holes 31,32 and 33 of the servo-sleeve 34 and the recess 30 of the servo-spool 28,
thereby decreasing the working pressure supplied to the second chamber 22. When the
working pressure in the second chamber 22 becomes lower than that in the first chamber
20 again, the servo-piston 16 is moved to the right and the control rod 36 is also
moved to the right due to a relaxation of the spring 38. Accordingly, the reciprocating
movement of the control rod 36 does not stop until the resultant pressure balance
among the working pressures in the chambers 20, 22, 44, 46 and the recovering force
of the springs 38, 66 reaches an equilibrium, thereby controlling the horsepower of
the pumps at a constant level.
[0013] Further, when the summation of the working pressures from the pumps Pd1 and Pd2 is
greater than the point B shown in Fig. 3, the control rod 36 becomes urged against
the springs 38 and 40 so that the springs 38 and 40 are coincidently compressed to
form a transition point B on the slope shown in Fig. 3. Thus, an increase of the working
pressure causes a decrease of the discharge flow rate of the pumps. The operational
process of the section B-C is similar to that of the section A-B as mentioned above
except that its slope is different from the slope of the section A-B.
[0014] Furthermore, when the working pressure becomes greater than point C shown in Fig.
3, the working pressure supplied to a first cutoff piston compartment 70 overcomes
the resilient force of a fourth spring 72 so that the cutoff spool 26 is moved to
directly supply the working pressure into the second chamber 22. Thus, the servo-piston
16 is moved to reduce the angle of the swash plate 14, thereby reducing the discharge
flow rate of the pumps up to its minimum value, i.e., point D shown in Fig. 3. The
flow rate cutoff control, therefore minimizes the energy loss by reducing the discharge
flow rate up to the minimum value.
[0015] In contrast, when the variable displacement pump requires the flow rate more than
that of the section C-D, a pilot pressure Pcf from the exterior(shown in dotted lines)
is supplied into a second cutoff piston compartments 74. Thus, the recovering force
of the fourth spring 72 added to the pilot pressure Pcf in the second cutoff piston
compartment 74 defeats the working pressure in the first cutoff piston compartment
70 to ensure that the second chamber 22 is communicated with the reservoir 24 through
the hole 31 of the servo spool 28 via the cut off spool 26, although the working pressure
higher than the point C is supplied therein. Accordingly, the servo-piston 16 is moved
to increase the discharge flow rate of the pumps Pd1 and Pd2 more than their minimum
flow rate, thereby releasing the flow rate cutoff control.
[0016] Fig. 4 illustrates a graph showing the relationship between the pilot pressure and
the flow rate. First, referring to Fig. 1, the pilot pressure Pc from the control
valve 64 is directly supplied to the pilot chamber 52 through the line 58 and the
pilot pressure Pcf is supplied to the drain chamber 54 via an orifice 65 through a
line 60. Thus, the pilot pressure Pc has a higher value than that of the pilot pressure
Pcf. Accordingly, the flow rate control is accomplished by the pressure difference
\P between the pressure Pc in the pilot chamber 52 and the pressure Pcd of the drain
chamber 54 as shown in Fig. 4, wherein its operational process is similar that of
Fig. 3.
[0017] Turning now to Fig. 3, there is shown another horsepower control diagram, i.e., line
A''-B''-C'', accomplished by a pilot pressure Pps from the gear pump Pg. The pilot
pressure Pps from is supplied into the third piston compartment 56 to increase the
working pressure applied to the multi-stage piston 42. The resultant force acted on
the multistage piston 42 urges the control rod 36 so that the discharge flow rate
begins to be reduced to control the horsepower constantly along the line A''-B''-C''
shown in Fig. 3, when the working pressure is lower than the point A'', wherein its
operational process is similar to that of the line A-B-C shown in Fig. 3.
[0018] Although the invention has been shown and described with respect to the exemplary
embodiments, it should be understood by those skilled in the art that various changes,
modifications and additions may be made, without departing from the scope of the invention.
1. A variable displacement pump incorporating therein a regulator for controlling t-he
flow rate of a fluid therein by means of varying the angle of a swash plate, which
comprises:
a pump for producing a flow of the fluid;
a valve body (11) in fluid-communication with the pump;
a servo-piston (16) pivotally mounted to the swash plate and provided with two portions,
each having a different diameter, which are movable along a first and a second chambers
(20, 22) formed within the valve body;
a multi-stage piston (42) movable along a first and a second piston compartments (44,
46) in the valve body (11) by a working pressure from the pump;
a control rod (36) movable along an axis of the servo-piston (16) and having a servo-spool
(28) for changing the direction of the flow;
a servo-sleeve (34) in fluid-communication with the servo spool (28) for defining
a neutral position, a position for supplying the working pressure of the second chamber
(22) and a position for discharging the working pressure to a reservoir;
a cut-off spool (26) in fluid-communication with the servo sleeve (34) for defining
a position for supplying the working pressure from the pump to the second chamber
and a position for discharging the working pressure from the second chamber to the
servo sleeve (34); and
means (38, 40) for biasing the control rod and the servo-piston to be spaced apart
from each other.
2. The variable displacement pump as recited in claim 1, wherein said variable displacement
pump further comprises a control valve (64) for supplying a pilot pressure to a pilot
chamber (52) in which the control rod (36) is located, and a drain chamber.
3. The variable displacement pump as recited in claim 1, wherein said cutoff spool (26)
has a cutoff piston, movable along a first and a second cutoff piston compartments
(70, 74) communicating with the pump and a pilot line.
4. The variable displacement pump recited in claim 1, wherein said biasing means has
an outer spring (38) located between the control rod and the servo-piston and an inner
spring (40) having a smaller diameter and a shorter length than those of the outer
spring, which is located within the outer spring.
5. The variable displacement pump as recited in claim 1, wherein said pilot pressure
from the gear pump (Pg) is supplied via a reducing valve (76) to a third piston compartment
(56) formed with in the valve body to increase the working pressure applied to the
multi-stage piston.
6. The variable displacement pump as recited in claims 1 and 4, wherein said control
rod (36), said servo-piston (16), said multi-stage piston (42) and said springs (38,
40) have a coaxial relationship with one another.
1. Pumpe mit veränderlicher Förderleistung, die einen Regler zur Steuerung der Strömungsgeschwindigkeit
einer Flüssigkeit durch Variieren des Winkels einer Taumelscheibe enthält, mit:
einer Pumpe zum Erzeugen eines Flüssigkeitsflusses;
einem Ventilkörper (11), der mittels der Flüssigkeit in Verbindung mit der Pumpe steht;
einem Servokolben (16), der drehbar an der Taumelscheibe befestigt und mit zwei Abschnitten
ausgebildet ist, von denen jeder einen anderen Durchmesser hat, und die in einer im
Ventilkörper ausgebildeten ersten und zweiten Kammer (20, 22) bewegbar sind;
einem mehrstufigen Kolben (42), der durch den Arbeitsdruck der Pumpe in einer ersten
und zweiten Kolbenkammer (44, 46) im Ventilkörper (11) bewegbar ist;
einem Steuerstab (36), der längs einer Achse des Servokolbens (16) bewegbar ist und
einen Servosteuerkolben (28) zur Veränderung der Fließrichtung aufweist;
einem Servosteuerkolben (34), der zum Definieren einer neutralen Stellung, einer Stellung
zur Zuführung des Arbeitsdrucks von der zweiten Kammer (22) und einer Stellung zur
Abgabe des Arbeitsdrucks zum Behälter mittels der Flüssigkeit mit dem Servosteuerkolben
(28) in Verbindung steht;
einem Sperrsteuerkolben (26), der zum Definieren einer Stellung zum Zuführen des Arbeitsdrucks
von der Pumpe zur zweiten Kammer und einer Stellung zur Abgabe des Arbeitsdrucks von
der zweiten Kammer zum Servosteuerkolben (34) mittels der Flüssigkeit mit dem Servosteuerkolben
(34) in Verbindung steht; und
einer Einrichtung (38, 40) zum Vorspannen des Steuerstabes und des Servokolbens, damit
diese beabstandet voneinander vorliegen.
2. Pumpe mit veränderlicher Förderleistung nach Anspruch 1, wobei die Pumpe mit veränderlicher
Förderleistung ferner ein Steuerventil (64) zum Zuführen eines Vorsteuerdrucks zu
einer Vorsteuerkammer (52), in der der Steuerstab (36) angeordnet ist, und zu einer
Abgabekammer enthält.
3. Pumpe mit veränderlicher Förderleistung nach Anspruch 1, wobei der Sperrsteuerkolben
(26) einen Sperrkolben aufweist, der in einer ersten und zweiten Sperrkolbenkammer
(70, 74) bewegbar ist, welche mit der Pumpe und einer Vorsteuerleitung in Verbindung
stehen.
4. Pumpe mit veränderlicher Förderleistung nach Anspruch 1, wobei die Vorspanneinrichtung
eine äußere Feder (38), die zwischen dem Steuerstab und dem Servokolben angeordnet
ist und eine innere Feder (40) aufweist, die einen kleineren Durchmesser und eine
kürzere Länge aufweist als die äußere Feder, und die innerhalb der äußeren Feder angeordnet
ist.
5. Pumpe mit veränderlicher Förderleistung nach Anspruch 1, wobei der Vorsteuerdruck
von der Zahnradpumpe (Pg) über ein Reduzierventil (76) zu einer im Ventilkörper ausgebildeten
dritten Kolbenkammer (56) zugeführt wird, um den auf den mehrstufigen Kolben aufgebrachten
Arbeitsdruck zu steigern.
6. Pumpe mit veränderlicher Förderleistung nach Anspruch 1 und 4, wobei der Steuerstab
(36), der Servokolben (16), der mehrstufige Kolben (42) und die Federn (38, 40) in
koaxialer Beziehung zueinander vorliegen.
1. Une pompe à déplacement variable comprenant un régulateur, pour contrôler le débit
d'écoulement d'un fluide y circulant, par variation de l'angle d'un plateau oscillant,
qui comporte:
- une pompe pour produire un écoulement de fluide;
- un corps de valve (11) en communication de fluide avec la pompe;
- un piston d'asservissement (16) monté pivotant par rapport au plateau oscillant
et muni de deux parties, qui chacune présente un diamètre différent et qui sont mobiles
le long d'une première et d'une seconde chambres (20, 22) formées à l'intérieur du
corps de valve;
- un piston multi-étagé (42) se déplaçant le long d'un premier et d'un second compartiments
de piston (44,46) dans le corps de valve (11) sous l'effet d'une pression de service
en provenance de la pompe;
- une barre de contrôle (36), mobile le long d'un axe du piston d'asservissement (16),
présentant un tiroir d'asservissement (28) pour modifier la direction d'écoulement;
- un manchon d'asservissement (34) en communication de fluide avec le tiroir d'asservissement
(28) pour définir une position neutre, une position pour fournir la pression de service
à la seconde chambre (22) et une position pour décharger la pression de service vers
un réservoir;
- un tiroir de coupure (26) en communication de fluide avec le manchon d'asservissement
(34) pour définir une position pour fournir la pression de fluide en provenance de
la pompe à la seconde chambre et une position pour décharger la pression de service
en provenance de la seconde chambre vers le manchon d'asservissement 34; et
- des moyens (38, 40) pour solliciter la barre de contrôle et le piston d'asservissement
afin qu'ils s'écartent l'un de l'autre.
2. La pompe à déplacement variable selon la revendication 1, dans laquelle ladite pompe
à déplacement variable comporte en outre une valve de contrôle(64)pour fournir une
pression de pilotage à une chambre de pilotage (52) dans laquelle est disposée la
barre de contrôle (36), et une chambre de purge.
3. La pompe à déplacement variable selon la revendication 1, dans laquelle ledit tiroir
de coupure (26) comporte un piston de coupure susceptible de se déplacer le long d'un
premier et d'un second compartiments de piston de coupure (70, 74) communiquant avec
la pompe et avec un circuit de pilotage.
4. La pompe à déplacement variable selon la revendication 1, dans laquelle lesdits moyens
de sollicitation comportent un ressort extérieur (38) disposé entre la barre de contrôle
et le piston d'asservissement et un ressort intérieur (40) présentant un diamètre
et une longueur inférieurs à ceux du ressort extérieur, qui est disposé à l'intérieur
du ressort extérieur.
5. La pompe à déplacement variable selon la revendication 1, dans laquelle ladite pression
pilote en provenance de la pompe à engrenages (Pg) est alimentée via une valve de
réduction (76) vers un troisième compartiment de piston (56) formé à l'intérieur du
corps de valve pour augmenter la pression de service appliquée au piston multi-étagé.
6. La pompe à déplacement variable selon les revendications 1 et 4, dans laquelle ladite
tige de contrôle (36), ledit piston d'asservissement (16), ledit piston multi-étagé
(42) et lesdits ressorts (38, 40) sont en relation coaxiale les uns avec les autres.