EP 0 617 402 A2

Europdisches Patentamt

0’ European Patent Office

Office européen des brevets

®

Application number: 94201810.2

®

Date of filing: 27.07.90

@ Publication number:

0617402 A2

EUROPEAN PATENT APPLICATION

@ Int. c15: GO9G 5/14, G0O9G 1/16

This application was filed on 23 - 06 - 1994 as a
divisional application to the application
mentioned under INID code 60.

®

Priority: 28.07.89 US 387510

®

Date of publication of application:
28.09.94 Bulletin 94/39

®

Publication number of the earlier application in
accordance with Art.76 EPC: 0 410 783

®

Designated Contracting States:
DE FR GB

®

Applicant: Hewlett-Packard Company
3000 Hanover Street
Palo Alto, California 94304 (US)

@

Inventor: Pinedo, David

1013 Greenfield Ct.

Fort Collins, CO 80525 (US)
Inventor: Larson, Ronald D.
1743 Waterford Lane

Fort Collins (US)

Inventor: Emmot, Darel N.
3931 Moss Creek Drive
Fort Collins, CO 80526 (US)
Inventor: Alcorn, Byron A.
3931 Benthaven Drive

Fort Collins (US)

Inventor: Rhoden, Desi

4755 Kincross Court
Boulder, CO 80301 (US)

Representative: Colgan, Stephen James et al
CARPMAELS & RANSFORD

43 Bloomsbury Square

London WC1A 2RA (GB)

®

@ Graphics window systems which utilize graphics
pipelines and graphics pipeline bypass buses. Hard-
ware solutions for window relative rendering of
graphics primitives, block moving of graphics primi-
tives, transfer of large data blocks, and elimination of
pipeline flushing are disclosed. The hardware im-
plementations provided in accordance with the in-

20

— % 7 230

Methods and apparatus for accelerating windows in graphics systems.

vention are interfaced along the pipeline bypass bus,
thereby eliminating gross overhead processor time
for the graphics pipeline and reducing pipeline la-
tency. Methods and apparatus provided in accor-
dance with the invention exhibit significant pipeline
efficiency and reductions in time to render graphics
primitives o the screen system.

TRANSFORM

| PINEL

HOST
PROCESSOR ENGINE

| CACHE

VRAM

500

[~—BURST

250

-

ADDRESS
MANIPULATOR

Fig.8

Rank Xerox (UK) Business Services
(3.10/3.09/3.3.4)

1 EP 0 617 402 A2 2

Field of the Invention

This invention relates to computer workstation
window systems. More specifically, this invention
relates to method and apparatus for accelerating
graphics primitive rendering on multitasking work-
stations that utilize graphics pipelines.

Background of the Invention

Computer workstations provide system users
with powerful tools to support a number of func-
tions. An example of one of the more useful func-
tions which workstations provide is the ability to
perform highly detailed graphics simulations for a
variety of applications. Graphics simulations are
particularly useful for engineers and designers per-
forming computer aided design (CAD) and com-
puter aided management (CAM) tasks.

Modern workstations having graphics capabil-
ities utilize "window" systems to accomplish graph-
ics manipulations. An emerging standard for graph-
ics window systems is the "X" window system
developed at the Massachusetts institute of Tech-
nology. The X window system is described in K.
Akeley and T. Jermoluk, "High-Performance Poly-
gon Rendering”, Computer Graphics, 239-246, (Au-
gust 1988). Modern window systems in graphics
workstations must provide high-performance, mul-
tiple windows yet maintain a high degree of user
interactivity with the workstation. Previously, soft-
ware solutions for providing increased user interac-
fivity with the window system have been imple-
mented in graphics workstations. However, soft-
ware solutions which increase user interactivity with
the system tend 1o increase processor work time,
thereby increasing the time in which graphics ren-
derings to the screen in the workstation may be
accomplished.

A primary function of window systems in
graphics workstations is to provide the user with
simultaneous access to multiple processes on the
workstation. However, each of these processes pro-
vides an interface to the user through its own area
onto the workstation display. The overall result is
an increase in user productivity since the user can
manage more than one task at a time with multiple
windows. However, each process associated with a
window views the workstation resources as if it
were the sole owner. Thus, resources such as the
processing unit, memory, peripherals and graphics
hardware must be shared between these processes
in a manner which prevents interprocess conflicts
on the workstation.

Graphics workstations generally utilize graphics
"pipelines" which interconnect the various compo-
nents of the system. A graphics pipeline is a series
of data processing elements which communicate

10

15

20

25

30

35

40

45

50

55

graphics commands through the graphics system.
Today, graphics pipelines and window systems are
evolving to support multitasking workstations.

The typical graphics pipeline interconnects a
"host" processor to the graphics system which
provides the various graphics commands available
to the system and which also interfaces with the
user. The host processor is interfaced through the
graphics pipeline to a "transform engine" which
generally comprises a number of parallel floating
point processors. The transform engine performs a
multitude of system tasks including context man-
agement, maitrix transformation calculations, light
modeling and radiosity computations, and control
of vector and polygon rendering hardware.

In graphics systems, some scheme must be
implemented to "render" or draw graphics primi-
tives to the system screen. A "graphics primitive"”
is a basic component of a graphics picture such as,
for example, a polygon or vector. All graphics pic-
tures are formed from combinations of these
graphics primitives. Many schemes may be utilized
to perform graphics primitives rendering. One such
scheme is the "spline tessellation” scheme utilized
in the TURBO SRX graphics systems provided by
the Hewlett-Packard Company Graphics Technol-
ogy Division, Fort Collins, Colorado. Regardless of
the type of graphics rendering scheme utilized by
the graphics workstation, the fransform engine is
essential in managing graphics rendering.

A graphics "frame buffer" is interfaced further
down the pipeline from the host processor and
transform engine in the graphics window system. A
"frame buffer" generally comprises a plurality of
video random access memory (VRAM) computer
chips which store information concerning pixel ac-
tivation on the display corresponding to the particu-
lar graphics primitives which will be rendered to the
screen. Generally, the frame buffer contains all of
the data graphics information which will be written
onto the windows, and stores this information until
the graphics system is prepared to render this
information to the workstation's screen. The frame
buffer is generally dynamic and is periodically re-
freshed until the information stored on it is ren-
dered to the screen. The host and frame buffer
have associated bandwidths. The bandwidth is a
measure of the rate of data flow over a data path.

In order to accelerate multiple processes in a
graphics system, the graphics pipeline must be
capable of handling multiple "contexis." A graphics
context consists of the current set of atiributes,
matrix stack, light sources, shading control, spline
basis maitrices, and other hardware state informa-
tion. Previous graphics systems were generally
only able to support a single graphics context at a
time end required the host's software to perform all
of the context switching. In these systems, software

3 EP 0 617 402 A2 4

context switching requires the host to store the
context for each active process in virtual memory,
write the context to the device when the process is
active, and read the context back in the system.
This process is extremely time consuming and
inefficient, and does not adequately support high
level graphics operations in the graphics system.

Several problems exist in state of the art
graphics window systems utilizing graphics pipe-
lines. A significant known difficulty arises when
multiple contexts must be switched through the
pipeline. Whenever a window context must be
changed or "switched" through the graphics pipe-
line, the pipeline must be "flushed." Flushing re-
quires that the pipeline be emptied of data to
determine if all of the data corresponding to the
previous context has passed through the pipeline
o the frame buffer.

There are problems attendant in this method of
context switching. Since all the data must be emp-
tied from the pipeline to determine if the previous
context has passed through to the frame buffer
before the next context can be input o the pipeline
from the host, severe limitations in rendering
graphics primitives to the screen in a timely fashion
are infroduced and the system is significantly
slowed. Furthermore, host management of this kind
of context switching greatly increases the host's
overhead duties, thereby decreasing the host's effi-
ciency and increasing host processor time dedi-
cated to matters not associated with actively ren-
dering data to the frame buffer. Thus, graphics
pipeline flushing is an inadequate and inefficient
method o accomplish context switching in modern
window systems utilizing graphics pipelines.

Other timing problems exist in window systems
utilizing graphics pipelines. All graphics pipelines
experience pipeline "latency", which is defined as
the time required for a single primitive to traverse
the pipeline. A significant difficulty is encountered
during context switching in graphics pipelines as a
result of pipeline latency, since pipeline latency
decreases the window system's responsiveness
and user interactivity. Furthermore, complex primi-
tives require significant processing time for render-
ing and therefore, force other primitives fo back up
in the pipeline until they are completely rendered
o the screen.

Thus, window operations which theoretically
should be interactive with the user oftentimes force
the user to wait while graphics primitives are being
rendered. Since graphics pipelines and graphics
workstations are evolving to support more complex
primitives and longer pipelines, pipeline latency
and pipeline flushing now present prohibitive prob-
lems in the ongoing effort to increasing pipeline
throughput and efficiency.

10

15

20

25

30

35

40

45

50

55

There is thus a long-felt need in the art for
graphics pipeline architectures which eliminate the
need for pipeline flushing and reduce pipeline la-
tency. Additionally, there is a long-felt need in the
art for pipeline graphics systems to support mul-
fiple context switching. Furthermore, a long-felt
need in the art exists for graphics systems which
support multiple contexts, yet reduce the need for
complex host management and processor over-
head. These needs have not heretofore been satis-
fied in the graphics window art by any current
software implementations currently in use.

Summary of the Invention

In accordance with the invention, there are
provided a computer systems which provide for
interrupting data flow between a rendering circuitry
and a frame buffer while allowing data to continue
to flow from a host to a fransform engine and the
rendering circuitry, comprising the host and a
graphic subsystem having the frame buffer, a pipe-
line and a pipeline bypass. The system comprises
a marker register means interfaced with the pipe-
line for tracking the progress of graphics data from
the host through the pipeline to the frame buffer.

Further in accordance with the invention, there
are provided a systems for eliminating a need for
flushing a graphics pipeline comprising host pro-
cessor means for providing graphics commands for
controlling rendering of data in a frame buffer,
pipeline means interfaced with the host processor
means for processing data from the host processor
means and communicating the data to a frame
buffer, marker register means interfaced with the
pipeline means for fracking data output, and pipe-
line bypass means bypassing the pipeline means
for providing access of data to the frame buffer,
thereby improving timeliness of the data passed
from the host processor means to the frame buffer
through the pipeline means.

Methods of tracking and monitoring data com-
mands in the pipeline system having a marker
register and a frame buffer are also provided in
accordance with this invention. The methods com-
prise establishing a value for a marker, transmitting
a data block through the pipeline, inserting a mark-
er command with the marker value into the pipe-
line, recording the marker value at predetermined
registers along the pipeline, and checking the
marker register at predetermined points along the
pipeline.

Computer work station window systems com-
prising a host, a graphic subsystem, a frame buffer,
a pipeline graphics processor and a pipeline by-
pass are provided in accordance with this inven-
tion. The computer work stations comprise address
manipulator means interfaced with the pipeline by-

5 EP 0 617 402 A2 6

pass for transforming graphics rendered on win-
dows according to window relative addresses fo
graphics rendered on the frame buffer according fo
frame buffer relative addresses.

Further in accordance with this invention, sys-
tems for rendering primitives, initially rendered in
window relative addresses, to a graphics frame
buffer are provided. The systems comprise host
processor means for providing graphics commands
to render primitives in window relative addresses,
scan converter means interfaced with the host pro-
cessor means for rendering the graphics primitives
through a graphics pipeline on the graphics frame
buffer according to window relative addresses,
pipeline bypass means interfaced with the host
processor means for bussing window offset ad-
dresses from the host, the window offset addresses
specifying the window's position on the frame buff-
er, and table means interfaced with the pipeline
bypass means for receiving and storing the window
offset addresses and applying the window offset
addresses to the window relative addresses, there-
by rendering the graphics primitives to the frame
buffer according to the frame buffer relative ad-
dresses determined according to the window offset
addresses.

Methods of rendering graphics primitives to a
frame buffer without flushing the pipeline to change
window offset addresses are provided in accor-
dance with this invention. The methods comprise
rendering the graphics primitives through the
graphics pipeline according to window relative ad-
dresses, determining window offset addresses cor-
responding to frame buffer relative addresses any-
time during the rendering, transmitting window off-
set addresses to an address manipulator anytime
during the rendering, applying the window offset
addresses to the window relative addresses to ob-
tain frame buffer relative addresses for the window
containing the graphics primitives after the deter-
mining and fransmitting of the window offset ad-
dresses, and transmitting the graphics primitives fo
the frame buffer according to the frame buffer
relative addresses.

Further in accordance with this invention, com-
puter window systems comprising a host, a graph-
ics subsystem, a frame buffer, a pipeline, a pipe-
line bypass, and an address manipulator are pro-
vided. The computer window systems comprise
source register means for storing a source refer-
ence address of a block of primitives to be moved,
destination register means for storing a destination
reference address of the block of primitives, dimen-
sion register means for storing data indicative of
the block's size, source specifier means for storing
data indicative of whether the source reference
address of the block is a window relative address
or a screen relative address, destination specifier

10

15

20

25

30

35

40

45

50

55

means for storing data indicative of whether the
destination reference address of the block is a
window relative address, or a screen relative ad-
dress, and table means interfaced with the pipeline
bypass means for receiving and storing the window
offset addresses and applying the window offset
addresses to the window relative addresses, there-
by rendering the graphics primitives to the frame
buffer according to frame buffer relative addresses
determined according to the window offset ad-
dresses.

Systems for moving blocks in a window graph-
ics system having a frame buffer are further pro-
vided in accordance with this invention. The sys-
tems comprise a plurality of first register means for
storing source address data of a block in window
relative address form, a plurality of second register
means interfaced with the plurality of first register
means for storing destination address data of the
block in frame buffer relative address form, and
block moving means interfaced with the first and
second register means for moving the block from
the source to the destination in accordance with the
address data in the first and second register
means.

Systems for moving blocks in a window graph-
ics system having a frame buffer are further pro-
vided in accordance with this invention. The sys-
tems comprise a plurality of first register means for
storing source address data of a block in window
relative address form, a plurality of second register
means interfaced with the plurality of first register
means for storing destination address data of the
block in window relative address form, and block
moving means interfaced with the first and second
register means for moving the block from the
source to the destination in accordance with the
address data in the first and second register
means.

Systems for moving blocks in a window graph-
ics system having a frame buffer are further pro-
vided in accordance with this invention. The sys-
tems comprise a plurality of first register means for
storing source address data of a block in frame
buffer relative address form, a plurality of second
register means interfaced with the plurality of the
first register means for storing destination address
data of the block in frame buffer address form, and
block moving means interfaced with the first and
second register means for moving the block from
the source to the destination in accordance with the
address data in the first and second register
means.

Methods of moving blocks in a graphics win-
dow system having a window with a window offset
are provided in accordance with this invention. The
methods comprise storing source addresses of
blocks in a source address register, storing des-

7 EP 0 617 402 A2 8

tination addresses of blocks in a destination ad-
dress register, storing data indicative of block size
in a block size register, specifying whether a
source address of the block is a frame buffer
relative address or a window relative address,
specifying whether a destination address of the
block is a frame buffer relative address or a win-
dow relative address, and moving the block from a
source to a destination in accordance with the
specification of whether a source address of the
block is a frame buffer relative address or a win-
dow relative address and the specification of
whether a destination address of the block is a
frame buffer relative address or window relative
address.

Computer systems comprising a host and a
graphics subsystem having a frame buffer, a pipe-
line and pipeline bypass for optimizing the band-
width between the host and the frame buffer, for
providing a high speed path between the frame
buffer and the host and for providing a source
reference address or a destination reference ad-
dress in host memory are provided. The systems
comprise burst data block means having at least
data register between the host and the frame buffer
for directly storing data blocks received from the
host, block moving means interfaced with the data
register for rendering the data blocks to the frame
buffer, and alignment register means interfaced
with the block moving means for defining a sub-
block and for clipping data rendered to the frame
buffer which falls outside the sub-block.

Computer systems comprising a host in a
graphics subsystem having a frame buffer, a pipe-
line and a pipeline bypass, for optimizing the band-
width between the host and the frame buffer, for
providing a high speed path between the frame
buffer and the host, and for providing a source
reference address or a destination reference ad-
dress in the host memory are further provided in
accordance with this invention. The systems com-
prise burst data block means having at least one
data register between the host and frame buffer for
directly storing data blocks received from the host,
block moving means interfaced with the data regis-
ter for transmitting the data blocks from the frame
buffer to the host, and alignment register means
interfaced with the block moving means for defin-
ing a sub-block and for clipping data rendered to
the frame buffer which falls outside the sub-block.

Systems for transferring blocks directly from a
host to a frame buffer are provided in accordance
with this invention. The systems comprise pipeline
bypass means interfaced with the host and the
frame buffer for bussing data, first data block
means for receiving data blocks from the host and
for transmitting data blocks from the frame buffer
to the host, address register means interfaced with

10

15

20

25

30

35

40

45

50

55

the host for receiving block reference addresses
and block size data from the host, block moving
means interfaced with the frame buffer for render-
ing the blocks to the frame buffer and for transmit-
ting the blocks to the burst data block, and align-
ment register means interfaced with the block mov-
ing means for defining a sub-block and for clipping
data rendered to the frame buffer which falls out-
side the sub-block.

Methods of rendering blocks in a graphics sys-
tem having an address manipulator from a host
directly to a frame buffer using a burst data block
are further provided in accordance with this inven-
tion. The methods comprise writing block reference
addresses from the host to a data register in the
address manipulator, writing block size from the
host to a data register in the address manipulator,
writing alignment data from the host to a data
register, writing block data from the host to a burst
data block, rendering the block data to the refer-
ence addresses in the frame buffer, and aligning
the block data on the block rendered to the frame
buffer, defining a sub-block and discarding data
which falls outside the sub-block.

Methods of fransmitting blocks in a graphics
system having an address manipulator, from a
frame buffer directly to a host, using a burst data
block are further provided in accordance with this
invention. The methods comprise writing block ref-
erence addresses from the host to a data register
in the address manipulator, writing block size data
from the host to a data register in the address
manipulator, writing alignment data from the host to
a data register, transmitting block data from the
frame buffer to the host, and aligning the block
data on the block rendered to the frame buffer,
defining a sub-block, and discarding data which
falls outside the sub-block.

Brief Description of the Drawings

Figure 1 is a block diagram of a window graph-
ics system utilizing a graphics pipeline and a
graphics pipeline bypass.

Figure 2 is a block diagram of a window graph-
ics system utilizing a graphics pipeline, a graphics
pipeline bypass, a marker register and a stopmar-
ker register.

Figure 3 is a flow chart of a method provided in
accordance with this invention utilizing marker reg-
isters and stopmarker registers.

Figure 4 is a block diagram of a window graph-
ics system wherein window relative addressing is
performed.

Figure 5 is a flow chart of a method provided in
accordance with this invention for window relative
addressing and implementing virtual windows.

9 EP 0 617 402 A2 10

Figure 6 is a block diagram of a window graph-
ics system utilizing a graphics pipeline and a
graphics pipeline bypass for moving block data
through the graphics pipeline bypass to a frame
buffer.

Figure 7 is a flow chart of a method provided in
accordance with this invention for moving block
data and rendering the block data on a frame
buffer according to frame buffer relative addresses.

Figure 8 is a block diagram of a graphics
window system for fransferring large data blocks
from a host processor to a frame buffer through a
burst block utilizing FIFO registers.

Figure 9A is a flow chart of a method provided
in accordance with this invention for transferring
large blocks of data along a pipeline bypass from a
host processor to a burst block.

Figure 9B is a flow chart of a method provided
in accordance with this invention for transferring
data from a burst block to a pixel cache.

Detailed Description of Preferred Embodi-
ments

The inventors of the subject matter herein
claimed and disclosed have solved the above men-
tioned long-felt needs in the art by implementing a
graphics window system Using a graphics pipeline
having a separate path for commands and data
which do not require traverse through the graphics
pipeline. This separate path is herein defined as a
"pipeline bypass bus" and provides data com-
mands and blocks direct access to the frame buffer
without passing through the pipeline bus. The pipe-
line bypass bus supports block moves, block reads
and write operations, as well as other data transfer
functions in hardware rather than software.

The pipeline bypass bus also provides fast
access to the frame buffer for comparatively simple
commands originating from the host processor.
Furthermore, the pipeline bypass bus reduces
graphics pipeline overhead and provides services
required by the window system which would other-
wise have to be processed through the pipeline
bus. While the pipeline bus offers high perfor-
mance rendering, the pipeline bypass bus offers
fast block operations and direct frame buffer ac-
cess to data output by the host processor.

Referring to Figure 1, a graphics system is
comprised of a host processor 20 which is inter-
faced 30 to a transform engine 40. The pipeline 50
interfaces the host processor 20 and transform
engine 40 with rendering circuit 60. The pipeline 50
is a graphics processor which performs a variety of
tasks in the graphics window system. These tasks
include bussing data through the graphics system
and processing the graphics commands through
various hardware blocks and software functions.

10

15

20

25

30

35

40

45

50

55

The terms pipeline, pipeline bus, and pipeline pro-
cessor are used interchangeably throughout to de-
note the graphics pipeline processor. Window cir-
cuitry 65 in preferred embodiments comprises
graphics hardware provided in accordance with this
invention for rendering graphics primitives on win-
dows to frame buffer 70. Window circuitry in inter-
faced with frame buffer 70 and rendering circuitry
60. These graphics primitives, as well as other
graphics commands, are output from host proces-
sor 20 and manipulated by transform engine 40
through graphics pipeline 50 for rendering to frame
buffer 70. After rendering circuit 60 renders a win-
dow with a particular context through window cir-
cuitry 65 on frame buffer 70, the window is output
on raster display 80.

A pipeline bypass bus 90 is interfaced 30 to
host processor 20 and frame buffer 70. Pipeline
bypass bus 90 provides a separate path for data
from host processor 20 to frame buffer 70. Thus,
when data passes through pipeline bypass bus 90
to frame buffer 70, no overhead time through the
graphics pipeline is incurred. Pipeline bypass bus
90 offers fast block transfer operations and direct
frame buffer access for data output from host pro-
cessor 20.

In preferred embodiments, hardware solutions
which eliminate the need for pipeline flushing and
which reduce pipeline latency, thereby increasing
window acceleration through the system are pro-
vided in accordance with this invention. In siill
further preferred embodiments, hardware imple-
mentations allow storage of multiple graphics con-
texts on the graphics system.

Furthermore with methods and apparatus pro-
vided in accordance with this invention, windows in
the graphics system may be viewed as "virtual”
devices. A virtual device operates according fo
window relative addresses through the graphics
pipeline independent of addresses corresponding
to the frame buffer or raster display. Since windows
and window context switching may thus be ren-
dered according to window relative addresses, the
need for pipeline flushing is eliminated and pipeline
latency is significantly reduced. Thus, each window
in the window system can view the graphics pipe-
line as an exclusive resource since time consuming
manipulations of windows which increase pipeline
latency are eliminated. Therefore, methods and ap-
paratus provided in accordance with this invention
solve a long-felt need in the art for graphics sys-
tems which support multiple window contexts and
eliminate the need for pipeline flushing.

Referring to Figure 2, host processor 20 is
interfaced along pipeline 50 with rendering circuit
60. Interposed between rendering circuit 60 and
frame buffer 70 is a marker register 100. In pre-
ferred embodiments, the pipeline marker register

11 EP 0 617 402 A2 12

100 is accessed by the host processor 20 through
the pipeline bus 50 without affecting data flowing
through the pipeline. Marker register 100 prevents
unnecessary pipeline flushing when it is desired to
change a window context.

A window context change often requires swap-
ping of system resources such as, for example,
window clipping planes or window display mode
planes. Furthermore, these system resources often-
times must be swapped during the context switch
because they are a limited resource and are
shared between multiple processes. Marker regis-
ter 100 provides a preferred resource for switching
contexts when compared with previous software
solutions which might tend to reduce the need for
pipeline flushing, but do not --and cannot-- elimi-
nate it.

In preferred embodiments, marker register 100
keeps track of currently active contexts which fra-
verse the graphics pipeline 50 from host processor
20. In further preferred embodiments, a "marker” is
sent down the pipeline 50 from host processor 20
between each context switch. The marker register
is incremented each time a context fraverses the
pipeline such that a table of contexts currently in
the pipeline is maintained by the system in marker
register 100. The table shows the context number,
the window clipping planes, window identification,
and marker numbers for each active context in the
pipeline. As the contexts are processed through the
pipeline bus 50, pipeline marker register 100 is
automatically updated each time a marker reaches
the end of pipeline bus 50.

A stopmarker register 110 is interfaced on the
pipeline bypass bus 90 between host processor 20
and frame buffer 70. In still further preferred em-
bodiments, stopmarker register 110 is set with a
particular value according to the particular applica-
tion specified by host processor 20 and the user.
When a context switch occurs, the window system
can read the value of marker register 100 and
compare this value with the predetermined value in
stopmarker register 110 to determine which con-
texts are still in the pipeline. If the marker register
value equals the stopmarker register value, the
window system will wait until the current context
has been processed by the system and rendered
to frame buffer 70. If the stopmarker register value
is not equal to the marker register value, the con-
text being swapped is not in the pipeline and the
context switch and clipping plane changes can
occur immediately. Therefore, under no circum-
stances will it be necessary to halt data flow in the
pipeline or prevent the host processor from con-
tinuing to place commands and data onto the pipe-
line. Thus, the need for pipeline flushing is elimi-
nated.

10

15

20

25

30

35

40

45

50

55

Referring to Figure 3, a flow chart of a pre-
ferred embodiment of a method implementing the
marker/stopmarker system of Figure 2 is illustrated.
The system initiates a stopmarker register through
the pipeline bypass at step 120. It is then desired
to "unplug" the pipeline at step 125. The system
initiates a marker register through the pipeline at
step 130 and sends data command segments
through the pipeline at step 135.

The host processor interrogates the system at
step 140 to determine if the pipeline is "plugged."”
The term "plugged" used herein means that data
and graphics commands do not flow through the
pipeline. If the pipeline is plugged, then the system
performs the task for which the stop or plug was
desired at step 150. The system then initiates the
next stopmarker through the pipeline bypass at
step 155 and unplugs the pipeline at step 160.

If the pipeline was not plugged, then the sys-
tem asks if the pipeline is filled at step 145. If the
pipeline is filled, then the system returns o step
140. However, if the pipeline is not filled, then the
system returns to step 125 where it unplugs the
pipeline.

Occurring simultaneously with step 125, the
host processor interrogates the system to deter-
mine at step 165 if the marker register value is
equal to the stopmarker register value. If the stop-
marker register value is equal to the marker regis-
ter value, then the system stops pixel data flow to
the frame buffer or "plugs" the pipeline at step
170. The host processor then interrogates the sys-
tem to determine whether the pipeline has been
unplugged at step 175. If the pipeline has not been
unplugged, then the system waits.

If the system is unplugged, then the host pro-
cessor interrogates the system at step 165 again fo
determine if the marker value is equal to the stop-
marker value. If the stopmarker value is not equal
to the marker value, then the host processor out-
puts a command at step 180 which allows the pixel
cache to write data to the frame buffer.

Otherwise, the host processor plugs the pipe-
line at step 170 at which time the host processor
interrogates the system to determine whether the
pipeline is plugged at step 140. Thus, the need to
flush the pipeline has been eliminated since plug-
ging of the pipeline need only occur between the
pixel cache and the frame buffer for relatively short
periods of time while complex processing and ma-
trix transformation occurs earlier in the pipeline.
This advantageous result is achieved since the
marker and stopmarker registers tell the graphics
system when the pixel data flow to the frame buffer
must wait since a particular context has not yet
been rendered to the frame buffer.

Context switching utilizing the marker and stop-
marker hardware provided in accordance with this

13 EP 0 617 402 A2 14

invention thus eliminates the need for pipeline
flushing since the graphics pipeline need never be
emptied of data in order to determine whether a
current context has been rendered to the frame
buffer. In this fashion, extremely fast and efficient
context switching can be accomplished, thereby
significantly improving overall graphics system per-
formance. The marker register and stopmarker reg-
ister hardware provided in accordance with this
invention satisfies a long-felt need in the art for
context switching in graphics systems utilizing a
pipeline bus and pipeline bypass bus.

The inventors of the subject matter herein
claimed and disclosed have discovered that any
graphics application will run faster when it views
itself as the sole owner of the graphics system.
This is a consequence of the fact that when a
graphics application requests a window, the cor-
responding frame buffer memory is allocated to
that application for graphics output. Thus, an ideal
environment for graphics rendering would allow
each graphics process to treat the window as a
"stand alone" or virtual graphics device.

Previous graphics systems have usually re-
quired the graphics process to be modified to run
inside a window. These systems require the ap-
plication to be "window smart" and post-process
the application output to conform to the window
environment by adding window offsets, or clipping
to window boundaries. Software which performs
these functions considerably reduces overall sys-
tem performance since an inordinate amount of
host processor time is required to perform these
tasks. The inventors of the subject matter herein
claimed and disclosed have implemented graphics
functions in hardware which allow primitives in the
pipeline bus to be specified relative to the window
origin.

In preferred embodiments, the window origin is
a reference for the graphics primitives which are
rendered to the window. Translation to screen rela-
tive or "frame buffer relative addresses" occurs
after scan conversion according to window relative
addresses and before frame buffer access. Thus,
the application treats the window as a full screen
"virtual" device since the graphics system renders
primitives as if the window comprises the entire
frame buffer.

Operations of this nature may be performed by
a transformation matrix. However, if the window
offset is included in the matrix stack, the pipeline
must be flushed every time the window is moved
or changed. After flushing the pipeline, the new
window offset may then be added to the trans-
formation matrix and the pipeline must be filled up
again. Thus, a more preferred solution is to allow
the application to access the window as if it owned
the entire screen or frame buffer, then provide

15

20

25

30

35

40

45

50

55

hardware to receive window offset data correspond-
ing to frame buffer relative addresses so that the
window containing the graphics primitives can be
rendered to the frame buffer according to frame
buffer relative addresses.

By rendering primitives in window relative co-
ordinates and performing the window relative fo
screen relative conversion downstream from the
rendering hardware in the pipeline, the need to
flush the pipeline in order to render a window to
the frame buffer is eliminated. Window translation
thus accomplished in hardware is completely trans-
parent to the application. The offset operations are
performed in parallel with other pipeline operations
through the pipeline bypass bus so that no perfor-
mance penalty for the various block operations or
context switches is introduced to the window
graphics system.

Referring to Figure 4, host processor 20 is
interfaced with rendering circuit 60. In preferred
embodiments, rendering circuit 60 comprises a
transform engine 210 and a scan converter 220.
Preferably, the scan converter is a raster scan
converter. Interfaced with the scan converter along
pipeline bus 50 is a pixel cache 230. Pixel cache
230 is further interfaced with frame buffer 70. In
still further preferred embodiments, video random
access memory VRAM 240 comprises the addres-
sable frame buffer for the system. An address
manipulator 250 is interfaced on pipeline bypass
bus 90. Address manipulator 250 is interposed
along pipeline bypass bus 90 between host proces-
sor 20 and frame buffer 70.

In yet further preferred embodiments, address
manipulator 250 comprises data registers for re-
ceiving offset addresses for each window from host
processor 20 window relative conversion circuitry,
and data register for storing window identification.
The window offsets are applied to each window by
address manipulator 250 before the windows con-
taining graphics primitives are rendered to frame
buffer 70. Since the window offsets are written to
address manipulator 250 through pipeline bypass
bus 90, they may be updated asynchronously. The
windows can thus be moved or shuffled on the
frame buffer through pipeline bypass 90 simulta-
neously as window relative rendering of graphics
primitives occurs at scan converter 220 through
pipeline bus 50. Graphics applications and pro-
cesses may therefore run on graphics pipeline bus
50 without explicit knowledge of their eventual win-
dow location on the frame buffer. Thus, windows in
graphic systems provided in accordance with this
invention truly function as virtual devices since they
are able to view the graphics pipeline as an exclu-
sive resource during window relative rendering op-
erations.

15 EP 0 617 402 A2 16

Preferably, pixel cache 230 is interfaced with
address manipulator through a central bus 240.
The pixel cache 230 contains window relative ad-
dresses 245 of graphics primitives which have
been rendered on the window with respect to the
window origin. Since window offset data is written
to address manipulator 250 through pipeline by-
pass bus 90, the pixel cache 230 interfaces 245
with address manipulator 250 to provide the win-
dow relative data which will be combined with the
window offset addresses in the address manipula-
tor. Address manipulator 250 is also interfaced with
frame buffer 70 so that the graphics windows can
be rendered to the frame buffer according to frame
buffer relative addresses 255.

Since address manipulator 250 applies the win-
dow offsets to the window relative addressed
graphics primitives, the need for flushing graphics
pipeline 50 when context changes occur is elimi-
nated and pipeline latency for the graphics sys-
tems is greatly reduced. These advantageous re-
sults are achieved since the complex manipulation
associated with rendering the graphics primitives in
frame buffer relative addresses directly through the
graphics pipeline is eliminated with systems and
methods provided in accordance with this inven-
tion.

A flow chart to accomplish window relative
rendering in window graphics systems provided in
accordance with this invention is shown in Figure 5.
A window manager the pipeline processes an ap-
plication through the pipeline. The application re-
quests a window ID at step 260. The window man-
ager determines whether a new window ID has
been requested at step 265. If a new window ID
has not been requested, then the window manager
determines whether a window move has been re-
quested at step 270. If a window move has not
been requested, then the process returns to step
265. However, if a window move is requested, then
the window manager plugs the pipeline at step 275.

The window manager then calculates a new
window location and moves the window at step
280. Furthermore, the window manager writes the
window offset to the address manipulator at step
285 and unplugs the pipeline at step 290. The
process then returns to step 265 to determine
whether a new window ID has been requested.
Since a new window ID has not been requested at
this point, the window manager assigns a window
ID at step 295 and plugs the pipeline at step 300.

The host processor then interrogates the sys-
tem at step 305 to determine whether the new
window ID has been received. If the new window ID
has not been received, then the system waits until
the window manager sends a new window ID How-
ever, if a new window ID has been received, the
host processor sends the application which com-

10

15

20

25

30

35

40

45

50

55

prises data or command segments to the assigned
window ID through the pipeline at step 310. The
host processor then determines whether the ap-
plication is finished at step 315. If the application is
not finished, then the host processor sends addi-
tional data or command segments through the
pipeline at step 310. However, if the application is
finished, then the window can be said to have been
rendered and the window manager will have moved
the window to its new location at step 280. The
process then stops at 320 until another window
traverses the pipeline.

Window relative rendering accomplished meth-
ods illustrated in Figure 5 eliminates the need for
pipeline flushing. The window manager indepen-
dently applies window offset addresses to window
relative data while the pipeline can simultaneously
process windows according to window relative ad-
dresses. This has not been heretofore achieved in
the art and significantly increases the speed and
timeliness of rendering of graphics primitives to the
frame buffer.

Graphics window systems must support block
move operations in order to maximize the system's
performance. Furthermore, block move operations
generally support basic window primitives including
raster texts and icons. Other types of graphics
block moves such as shuffles and block "resizes"
must also take advantage of the system's block
moving capabilities.

A "block" may be considered an entire window
or merely part of a window comprising a set graph-
ics primitives on the graphics system. Block moves
are particularly difficult to handle in a window envi-
ronment because window offset addresses need to
be included in these operations which are typically
implemented as screen address relative. In con-
trast, block move operations inside a window must
be window relative so that forcing all block moves
in the graphics system to be window relative is
neither an adequate nor versatile solution. The rea-
son that block move operations inside a window
must be window relative is that many objects, for
example fonts, are stored in off screen memory on
the frame buffer and thus these objects are iden-
tified exclusively according to frame buffer relative
addresses.

The inventors of the subject matter herein
claimed and disclosed have discovered that im-
plementation of a graphics block mover in hard-
ware allows the graphics system to handle several
different kinds of block moving operations. In pre-
ferred embodiments, implementation of the block
mover in hardware includes a register having the
ability to store a bit for each operand output from
the host processor that specifies whether the
operand is window address relative or screen ad-
dress relative. Block moves accomplished by

17 EP 0 617 402 A2 18

methods and systems provided in accordance with
this invention can thus be window relative, screen
relative, or any combination thereof.

Window systems provided in accordance with
this invention may include block moving hardware
which supplies window offsets through a pipeline
bypass bus for windows having graphics primitives
rendered thereon according to window relative ad-
dresses. In still further preferred embodiments,
block moves initiated in accordance with this inven-
tion write the block's source and destination ad-
dresses, the block's width and height, and a par-
ticular replacement rule to the address manipulator
through the pipeline bypass bus prior fo initiation of
the block move.

Thus, block moving hardware provided in ac-
cordance with this invention does not require the
window to make decisions about its particular co-
ordinate system as it traverses the graphics pipe-
line. This eliminates the need for the window sys-
tem to incur additional processor overhead while
manipulating graphics primitives according to
frame relative addresses which would necessarily
occur in parallel with processing the application or
context. In preferred embodiments, if a block is off
screen in the work area of the frame buffer it may
automatically be assumed to be screen relative.
However, if the block is displayed in the active
screen area of the frame buffer, it may be assumed
to be addressed window relative.

Referring to Figure 6, host processor 20 out-
puts graphics commands along pipeline bus 50 to
window relative rendering circuit 330. Window rela-
tive rendering circuit 330 generally comprises ras-
ter scanning means and pixel cache buffer means
as exemplified in the earlier figures. Window rela-
tive rendering circuit 330 renders graphics primi-
tives to the window according to window relative
addresses.

Window relative rendering circuit 330 is further
interfaced with frame buffer 70. In preferred em-
bodiments, frame buffer 70 is a VRAM. Frame
buffer 70 may be conceptually broken into two
parts. The first part 340 corresponds to screen
addresses, i.e., places on the video screen where
graphics primitives will actually be displayed. The
second portion of the frame buffer 350 corresponds
fo an "off screen" work area. The off screen work
area 350 is an area where windows or blocks which
have not been rendered on the video screen of the
graphics system exist exclusively according fo
frame buffer relative addresses. Blocks which ap-
pear on the first portion of the frame buffer 340
may be addressed relative to the screen in frame
buffer relative addresses or window relative ad-
dresses as they are processed through the pipe-
line.

10

15

20

25

30

35

40

45

50

55

10

In preferred embodiments a source block 360
may be moved from the work area 350 to destina-
tion window or block 370 in the first portion 340 of
frame buffer 70. It will be recognized by those with
skill in the art that the source and destination
addresses could be interchanged such that blocks
can be moved window relative, screen relative or
any combination thereof.

In order to move blocks between a destination
and a source, host processor 20 outputs window
offset information over pipeline bypass bus 90 to a
variety of data registers which comprise address
manipulator 250. Destination register 380 is adapt-
ed to store the destination address of the block
output by host processor 20. Source address regis-
ter 390 is adapted to receive the block's source
address over the pipeline bypass 90 output by host
processor 20. In further preferred embodiments, it
is desired o write the block size to the block size
register 400. In still further preferred embodiments,
the block size comprises the block's width and
height so that the block may be correctly written to
the appropriate destination in the frame buffer.

The specifier register 410 is adapted to receive
data from host processor 20 through pipeline by-
pass bus 90 which specifics whether the block to
be moved is currently window address relative or
frame buffer address relative. In still further pre-
ferred embodiments, a single bit of the operand
received from host processor 20 and stored in
specifier register 410 specifies whether the block is
window or screen relative. Thus, with methods and
apparatus provided in accordance with this inven-
tion, blocks may be moved which are window ad-
dress relative or screen address relative, and be-
fween sources and destinations which are window
relative addressed or frame buffer relative ad-
dressed.

Similarly, the source addresses and destination
addresses may be specified either according fo
window relative addresses or frame buffer relative
addresses and blocks may be concomitantly
moved between sources and destinations address-
es either within windows, or in and around the
frame buffer. Systems and methods provided in
accordance with this invention therefore satisfy a
long-felt need in the art for highly efficient and
versatile block moving circuitry in graphics win-
dowing systems that utilize graphics pipelines.

Referring to Figure 7, a flow chart of block
moving methods provided in accordance with this
invention is shown. In preferred embodiments, a
block is rendered through a graphics pipeline ac-
cording to window relative addresses at step 420.
The block's source addresses are written through
the pipeline bypass to the source address register
at step 430. Similarly, the block's destination ad-
dresses are written to the destination address reg-

19 EP 0 617 402 A2 20

ister through the pipeline bypass bus at step 440. It
is desired to write the block's size to the block size
register through the pipeline bypass bus at step
450.

The host processor interrogates a specifier reg-
ister at step 460 to determine whether a destination
block has been addressed according to window
relative addresses or frame buffer relative address-
es. Similarly, the host processor interrogates a
specifier register at step 465 to determine whether
a source block has been addressed according fo
window relative or frame buffer relative addresses.
If the blocks have been addressed according to
frame buffer relative addresses a "zero" window
offset is applied at step 470 which effectively does
not change the block addresses since the block is
considered to be frame buffer relative addressed.

However, if the specifier register indicates that
the blocks are window address relative, then the
window offset addresses are applied to the block at
step 480 so that the blocks are correctly addressed
according to frame buffer relative addresses before
the blocks are rendered to the destination on the
system frame buffer or screen. After the window
offsets have been applied to the window relative
addressed blocks, the blocks may be rendered to
their destinations on the frame buffer at step 490.

In still further preferred embodiments, the block
window offset addresses are written to the address
manipulator through the pipeline bypass bus rather
than through the graphics pipeline bus. Therefore,
the graphics pipeline is not used to address the
block relative to the frame buffer and thus is free to
perform graphics primitive renderings to blocks and
windows entirely according to window relative ad-
dresses.

Methods and systems provided in accordance
with this invention reduce pipeline latency since
each window is in effect treated as a virtual device
in the system. Furthermore, methods and appara-
tus provided in accordance with this invention solve
a long-felt need in the art for graphics pipelines
that eliminate the need for pipeline flushing since
the time consuming task of adding window offsets
to window relative addressed blocks and obtaining
frame buffer relative addressed blocks is elimi-
nated. This goal is accomplished by implementing
a graphics pipeline bus having hardware adapted
to perform these tasks.

Modern graphics window systems having
graphics pipelines exhibit a need for the ability fo
move large amounts of pixel data to and from the
system's memory. Software solutions which have
given previous graphics systems the ability fo
move large amounts of data in this fashion require
an inordinate amount of processor time to accom-
plish this function. Thus, previous window systems
utilizing a graphics pipeline with special purpose

15

20

25

30

35

40

45

50

55

11

software to provide large data block movement
capability do not satisfy a long-felt need in the art
for graphics window systems which can move large
data blocks efficiently without unduly burdening the
host processor and graphics pipeline.

Referring to Figure 8, "burst" data hardware
block 500 is provided in accordance with this in-
vention interfaced in pipeline bypass bus 90 and
interposed between host processor 20 and pixel
cache 230. The data block 500 is denoted a
"burst" data block since host processor 20 can
load data block 500 with exiremely large blocks of
data through pipeline bypass bus 90. Generally,
these large blocks of data may comprise graphics
animation data which will be written to the frame
buffer. These large blocks of data are organized as
multiple rows of pixels, called "scanlines." The
data is organized in host processor memory as an
array of data with the first datum being the leftmost
pixel of the first scanline, then proceeding along
the scanline to the rightmost pixel of the first scan-
line, and then back to the leftmost pixel of the
second scanline, etc. This forms a two dimensional
array of pixel data to be sent to the frame buffer.

The burst is comprised of a number of first-in,
first-out (FIFO) registers shown at 510. The FIFO's
are organized in banks. There are from one to "n"
banks of FIFO's. Each FIFO bank buffers pixels
along the scanline. The number of pixels buffered
along a scanline is dependent on the depth of the
FIFO's. Multiple scanlines, equal to the number of
FIFO banks, can be buffered. The input port and
output port of the FIFO's operate independently.
Data is transferred from the host processor 20 to
the FIFO input ports independently and in parallel
with data transferred from the FIFO output ports to
the pixel cache 230.

The banks are connected in parallel as seen
from the pipeline bypass bus 90. The host proces-
sor 20 writes data to the input port of one of the
FIFO banks from one scanline of data until that
FIFO bank is full. The host processor then writes
data to the input port of the next FIFO bank from
the next scanline of data.

When data is available in all FIFO banks, data
transfer from the output port of the FIFO's 510 to
the pixel cache can start. This happens in parallel
with host processor 20 sending data to the input
port of the FIFO's 510. The pixel cache 230 is
interfaced with VRAM 70 to allow data in burst 500
to be written fo the frame buffer.

The graphics pipeline 50 is then plugged, and
pixel data transfer from the graphics pipeline SO
into the frame buffer 70 is suspended while the
data transfer from burst 500 is active. Since burst
500 is interfaced with the pixel cache 230 through
the pipeline bypass bus 90, the need to flush the
graphics pipeline is eliminated.

21 EP 0 617 402 A2 22

If only a sub-region "sub-block" of the two
dimensional area of pixel data is to be sent o the
frame buffer, a way to clip data from the left and
right edges is provided. Two additional offset
operands from the host processor are written to the
address manipulator 230. The offsets specify the
number of pixels along a scanline from the begin-
ning of the scanline to the right edge and the left
edge of the desired sub-block of data. These off-
sets instruct the address manipulator to clip the
data transferred from the FIFO's 510 to the pixel
cache 230; that is to the right, or to the left of the
desired sub-block of data.

In preferred embodiments, burst 500 is com-
prised of a number of first-in, first-out (FIFO) regis-
ters, shown generally at 510. The FIFO's 510 are
connected in parallel with each other in the burst
block 500. FIFO's 510 are interfaced with the pipe-
line bypass bus 90 so that host processor 20 can
move large data blocks in parallel to each of the
FIFO's 510. The amount of data bussed from host
processor 20 to burst 500 is only limited by the
number of FIFO's which are connected in parallel
in the burst block.

Burst 500 is interfaced with pixel cache 230 so
that it may transfer the data in FIFO's 510 to pixel
cache 230 after host processor 20 has written the
desired data to FIFO's 510. Pixel cache 230 is
interfaced with VRAM 70 to allow data in burst 500
to be rendered to the frame buffer. Since burst 500
is interfaced with the pixel cache through pipeline
bypass bus 90, the graphics pipeline 50 is free to
perform window relative rendering of other graphics
primitives output from host processor 20. There-
fore, use of burst 500 interfaced with graphics
pipeline bypass bus 90 reduces graphics pipeline
latency and eliminates the need to flush the pipe-
line 50 when a context switch for the data in burst
500 is desired.

In still further preferred embodiments, address
manipulator 250 is provided interfaced on the pipe-
line bypass bus 90 interposed between host pro-
cessor 20 and VRAM 70. The address manipulator
functions as described above and renders the data
in burst 500 according to frame buffer relative
addresses on the VRAM 70. It is necessary to
utilize address manipulator 250 since the data writ-
ten to FIFO's 510 in burst 500 from host processor
20 may appear in window relative addresses. Thus,
host processor 20 writes window offset addresses
for the data in FIFO's 510 to a data register in the
address manipulator so that address manipulator
250 may render the data in FIFO's 510 according
to frame buffer relative addresses on VRAM 70.

Address manipulator 250 also aligns data writ-
ten in the FIFO's 510 on the frame buffer. Align-
ment is accomplished by an additional offset
operand from the host processor 20 written fo the

10

15

20

25

30

35

40

45

50

55

12

address manipulator 250 which instructs the ad-
dress manipulator to clip data in FIFO's 510 which
will be input to pixel cache 230 and which falls
outside of the specified block on frame buffer 240
when the data is rendered. In preferred embodi-
ments, clipping is necessary since block data out-
put from burst 500 is potentially large enough to
fall outside the particular destination addresses on
the frame buffer.

Referring to Figure 9A, a flow chart of a pre-
ferred embodiment of transfer of large data blocks
from a host processor to a burst block is shown.
The block destination addresses are written
through the pipeline bypass to the address manipu-
lator at step 520. Similarly, the block size is written
through the pipeline bypass bus from the host
processor to the address manipulator at step 530.
It is then desired to write left edge and right edge
offsets through the pipeline bypass to the address
manipulator at step 540.

Left edge and right edge offsets are then writ-
ten through the pipeline bypass bus to the address
manipulator at step 540. At step 550 the host
processor interrogates the FIFO's to determine
whether there is room in the FIFO's. If there is not
room in the FIFO's, then the process must wait.
However, if there is room in the FIFQO's, the host
processor asks if there is data to be transferred at
step 560. If there is not data to be transferred, the
process stops. However, if there is data to be
transferred, then individual datum are transferred at
step 570. In this fashion data from the host proces-
sor may be transferred to the burst block.

Referring to Figure 9B, a preferred embodi-
ment of a flow chart for transferring data from a
burst block to a pixel cache is shown. The host
processor interrogates the burst block at step 580
to determine if there is data available in all of the
FIFO's. If data is not available from all of the
FIFO's, then the process must wait. However, if
data is available from all of the FIFO's, then individ-
ual transfers of datum from the burst block to the
pixel cache at step 590 is accomplished. The host
processor then interrogates the system at step 600
to determine if all the data has been fransferred. If
all data transfer has occurred, then the process
stops.

If the block is not aligned, then the data which
falls outside the window must be clipped from the
block so that it is not rendered on the screen
impermissibly outside the window. In this fashion,
the burst data can be rendered to the frame buffer
through the pipeline bypass, thereby freeing the
graphics pipeline from high overhead operations.
Therefore, burst transfer operations provided in ac-
cordance with this invention satisfy a long-felt need
in the art for window systems having the ability to
move a large amount of pixel data to around the

23 EP 0 617 402 A2 24

system in an efficient manner.

Methods and apparatus provided in accordance
with this invention which implement hardware solu-
tions on pipeline bypass buses in window systems
utilizing a graphics pipeline satisfy a long-felt need
in the art for methods and systems which eliminate
the need for pipeline flushing and reduce pipeline
latency. These long-felt needs have not heretofore
been satisfied in the art by previous graphics win-
dow systems utilizing software solutions. Graphics
window systems utilizing graphics pipelines pro-
vided in accordance with this invention exhibit sig-
nificant improvement compared to previous modern
systems which render graphics primitives to a
frame buffer or screen. The graphics windows sys-
tems provided in accordance with this invention
treat windows as virtual graphics devices, thereby
eliminating the need for pipeline flushing during
context switching, and greatly reducing pipeline
latency.

There have thus been described certain pre-
ferred embodiments of methods and apparatus for
accelerating graphics rendering in graphics window
systems. While preferred embodiments have been
disclosed and described, it will be readily apparent
to those with skill in the art that modifications are
within the true spirit and scope of the invention.
The appended claims are intended to cover all
such modifications.

Claims

1. A computer system comprising a host and a
graphics subsystem having a frame buffer, a
pipeline and a pipeline bypass, for optimizing
the bandwidth between the host and the frame
buffer, for providing a high speed path be-
tween the frame buffer and the host, and for
providing a source reference address or a des-
tination reference address in host memory, the
system comprising:

burst data block means having at least one
data register between the host and the frame
buffer for directly storing data blocks received
from the host;

block moving means interfaced with the
data register for rendering the data blocks to
the frame buffer; and

alignment register means interfaced with
the block moving means for defining a sub-
block and for clipping data rendered to the
frame buffer which falls outside the sub-block.

2. A computer system comprising a host and a
graphics subsystem having a frame buffer, a
pipeline and a pipeline bypass, for optimizing
the bandwidth between host and the frame
buffer, for providing a high speed path be-

10

15

20

25

30

35

40

45

50

55

13

tween the frame buffer and the host, and for
providing a source reference address or a des-
tination reference address in the host memory,
the system comprising:

burst data block means having at least one
data register between the host and the frame
buffer for directly storing data blocks received
from the host;

block moving means interfaced with the
data register for transmitting the data blocks
from the frame buffer to the host; and

alignment register means interfaced with
the block moving means for defining a sub-
block and for clipping data rendered to the
frame buffer which falls outside the sub-block.

The system recited in claim 2 wherein the data
register is a first-in, first-out data register.

The system recited in claim 3 wherein the data
register comprises a plurality of first-in, first-out
data registers.

The system recited in claim 4 wherein the data
register is interposed on the pipeline bypass
between the host and the frame buffer.

The system recited in claim 5 wherein the
frame buffer is a video random access mem-
ory.

The system recited in claim 6 wherein the data
stored in the data register are graphics primi-
fives.

A system for transferring blocks directly from a
host to a frame buffer comprising:

pipeline bypass means interfaced with the
host and the frame buffer for bussing data;

burst data block means for receiving data
blocks from the host and for fransmitting data
blocks from the frame buffer to the host;

address register means interfaced with the
host for receiving block reference addresses
and block size data from the host;

block moving means interfaced with the
frame buffer for rendering the blocks to the
frame buffer and for transmitting the blocks fo
the burst data block; and

alignment register means interfaced with
the block moving means for defining a sub-
block and for clipping data rendered to the
frame buffer which falls outside the sub-block.

The system recited in claim 8 wherein the
burst data block means is a first-in, first-out
register.

10.

11.

12,

13.

14.

15.

16.

17.

18.

25 EP 0 617 402 A2 26

The system recited in claim 9 wherein the
burst data block means comprises a plurality
of first-in, first-out registers.

The system recited in claim 10 wherein the
burst data block is interposed on the pipeline
bypass means between the host and the frame
buffer.

The system recited in claim 11 wherein the
frame buffer is a video random access mem-
ory.

The system recited in claim 12 wherein the
alignment register means is adapted fo receive
data from the host indicative of whether the
block is addressed relative to a window or
relative to the frame buffer.

The system recited in claim 13 wherein the
block moving means is an address manipula-
tor.

A method of rendering blocks in graphics sys-
tem having an address manipulator from a host
directly to a frame buffer using a burst data
block, comprising the steps of:

writing block reference addresses from the
host to a data register in the address manipu-
lator;

writing block size data from the host to a
data register in the address manipulator;

writing alignment data from the host to a
data register;

writing block data from the host to a burst
data block;

rendering the block data to the reference
addresses in the frame buffer; and

aligning the block data on the block ren-
dered to the frame buffer, defining a sub-block,
and discarding data which falls outside the
sub-block.

The system recited in claim 15 wherein the
aligning step comprises comparing the block
reference addresses with the block size data
and discarding data from the block reference
addresses which falls outside the block size
data.

The method recited in claim 16 wherein the
frame buffer is a video random access mem-
ory.

The method recited in claim 17 wherein the
burst data block comprises a first-in, first-out
register for providing independent transfer of
data between the host and the frame buffer.

10

15

20

25

30

35

40

45

50

55

14

19.

20.

21,

22,

23.

The method recited in claim 18 wherein the
block data written to the burst data block from
the host corresponds to graphics primitives.

The system recited in claim 19 wherein the
rendering step is accomplished with an ad-
dress manipulator.

The method recited in claim 20 wherein the
address manipulator is interfaced directly with
the frame buffer.

The method recited in claim 21 wherein the
address manipulator is interfaced with a pixel
cache buffer means for receiving the graphics
primitives.

A method of transmitting blocks, in a graphics
system having an address manipulator, from a
frame buffer directly to a host, using a burst
data block, comprising the steps of:

writing block reference addresses from the
host to a data register in the address manipu-
lator;

writing block size data from the host to a
data register in the address manipulator;

writing alignment data from the host to a
data register;

fransmitting block data from the frame
buffer to the host; and

aligning the block data on the block ren-
dered to the frame buffer, defining a sub-block,
and discarding data which falls outside the
sub-block.

EP 0 617 402 A2

: 4315193y
L yINEVR dois [/
ol 06
AV14SI0 43440 43151934 ALINOYI §055390kd
yasvy [Fved €71 amwn (€7 | onwdany [7| ISoM
; p 0 . s L € L
09 0L 00l 09 02
gwwo:og
N7 e
— sﬁ%z_
06 o h
AV1dSI0 434408 AHLINOHI) ALINOYI INIINI
yswy [vy [© 7 moONIM [7 | onw3andy [© 7| waosSnvuL
v v p) y4 On P
08~ 0 05 nm\ 0 09" W

15

EP 0 617 402 A2

ISS\ l

120
INITIATE STOP- TS IS MARKER
MARKER THROUGH| | = STOPMARKER ?
PIPELINE BYPASS| | :
5 4 | N
STOP PIXEL DATA | 70
Y PG |) e— FLOW TO FRAME +
PIPELINE | [BUFFER(PLUG PIE) 180
———-l G v /
/ PLUGGED PUT PIPELINE
INITIATE MARKER'] | 75 |PIXEL DATA INTO
THROUGH PIPELINE| | FRAME BUFFER
135 | WAIT FOR
J, /| UNPLUG?
SEND DATA TS
COMMAND SEGMENT | |
THROUGH PIPELINE | UNPLUGGED v
r——w———.e—’__l
IS PIPELINE \ YES
PLUGGED ?]
PERFORM_TASK FOR] 10
WHICH STOP(PLUG) A
WAS DESIRED
l 155
INITIATE NEXT }
STOPMARKER THROUGH
PIPELINE BYPASS
L
UNPLUG PIPELINEY
v

Fig.3

16

EP 0 617 402 A2

662 535534y
JNLYTIY NS

434408
BILLE!

09

/

P 7
HOLYINAINVA |
SSIAAV | $SI¥AY 3
J sissagy| o¥ 06
05¢ INLY13Y N
Tounoa| 0% HOTNA |
v
|
JHOV) ¥3LYIANO) INI9N3 | 40553908
“—wa | x4 [WS (€| w0ASNYYL K 150H
7 7 0 | %
02
0§2 | e e _ 07

17

APPLICATION
(WINDOW RELATIVE)

REQUEST

EP 0 617 402 A2

WINDOW 1D

HAS WINDOWN, yo
10 BEEN
RECEIVED?

YES

)

" SEND DATA OR
COMMAND SEGMENT
T0 ASSIGNED ID

l 315
NO /1S APPLICATION
FINISHED?

WINDOW
MANAGER
START
—_——— — S
265, [
] v
YES /1S NEW WINDOW
10 REQUESTED?
295 NO
// }70
| ASSIGN IS WINDOW * "\ NO |
WINDOW ID MOVE REQUESTED?
l 300 lYES 215
L %
PLUG PIPELINE PLUG PIPELINE |
l 8
/

CALCULATE NEW *
WINDOW LOCATION
AND MOVE WINDOW

YES
320 »J' /285
STOP ,
(TP WRITE WINDOW
OFFSET TO' ADDRESS
MANIPULATOR
l e
Fig. 5 UNPLUG PIPELINE

18

¢

EP 0 617 402 A2

P 1 00
05—t TETREL TETREN,
1 wnies [| 3as woe [
9 b1 4 TEITRER ETREL]
<] S5IHAQY fe— GSIHAQY te—
374105 NOLLYNILS30
N
06¢ } Up
VI8V NHOM JAILYTRY
NTIIS ‘NIIWIS 410 0L
INIONOISIHY0D ¥344ng
IV 0 NOTLNO
~ \
—_ \V\\
v
05
N NOILYNILS30 INIYN3Y
Vo 300 —C— INIVTIY
| HOGNIA
| 7 (
0L¢ 0¢¢
| o0g¢ e 0
__\\\\ 0% N3OS 0L
INIONOJSINY0) ¥314nd

JWv4d 40 NOILYOd

e

405530044
1SOH

/
02

19

410

EP 0 617 402 A2

RENDER BLOCK
IN WINDOW
RELATIVE ADDRESSES

'

WRITE SOURCE 1
ADDRESSES TO SOURCE
ADDRESS REGISTER

l

A0

430

440

WRITE DESTINATION

ADDRESSES TO DESTINATION

ADDRESS REGISTER

;

SIZE T0 BLOCK

450
WRITE BLOCK

SIZE REGISTER

) v

ADD 0" ADDRESS
SINCE BLOCK 1S

ALREADY FRAME
BUFFER RELATIVE

460

T

N0 /15 DESTINATION
BLOCK WINDOW
RELATIVE?

YES
\ 4

ADD WINDOW OFFSET
ADDRESSES TO WINDOW

<

463

1S
SOURCE BLOCK \JES
WINDOW
RELATIVE™?

480

NO

RELATIVE BLOCK

l

TO DESTINATION

(TP

20

490
RENDER BLOCK 4~

EP 0 617 402 A2

WYYA

15418 —
g bi4 Y |
Los” m
0 | e
01S
YOLY INdINVH Lo o1y fe
SSH0Y A 1
015
‘ e 1
052 0iS 06—
/A
|
|
IV EILEI M ||| 40553044
13X1d NV3S wiossvaL [150K
\N \\ o_m\\ _ 0§ \\
052 0 ; | 02

21

EP 0 617 402 A2

(om

WRITE BLOCK DESTINATION'
ADDRESS THROUGH PIPELINE
BYPASS TO ADDRESS
MANIPULATOR

l /50

WRITE BLOCK SIZE ~
THROUGH PIPELINE BYPASS
T0 ADDRESS MANIPULATOR

l

WRITE LEFT EDGE AND ///540
RIGHT EDGE OFFSETS -
THROUGH PIPELINE
BYPASS TO ADDRESS
MANIPULATOR

330

N
THERE_ROOM
IN FIFO'S ?

YES

560
No /1S THERE
DATA T0 BE
TRANSFERRED?
YES
(STOP)
l 510
TRANSFER
DATUM
! .

Fig.9A

280

15 DATA
AVAILABLE IN
ALL FIFO'S

59%

TRANSFER
DATUM

Fig.9B

	bibliography
	description
	claims
	drawings

