a’ European Patent Office

Europaisches Patentamt ‘ ‘llm

Office européen des brevets @) Publication number: 0 620 517 A1
@) EUROPEAN PATENT APPLICATION
(1) Application number : 94302629.4 6D Int. c1.°: GO6F 3/033

@2) Date of filing : 13.04.94

Priority : 15.04.93 US 48445 @2 Inventor : Morgan, Scott Anthony
3609 Kentfield Road
Date of publication of application : Austin, Texas 78759 (US)
19.10.94 Bulletin 94/42 Inventor : Stone, Steve Stanley
2303 Dowd Lane
Designated Contracting States : Austin, Texas 78728-6715 (US)
DE FR GB Inventor : Swearingen, Craig Ardner
8905 Martha’s Drive
@1) Applicant : International Business Machines Austin, Texas 78717 (US)
Corporation
Old Orchard Road Representative : Moss, Robert Douglas
Armonk, N.Y. 10504 (US) IBM United Kingdom Limited
Intellectual Property Department
Hursley Park
Winchester Hampshire S021 2JN (GB)

EP 0 620 517 A1

Object resizing and repositioning for a new font in a graphical user interface.

@ A graphical user interface is changed accord-
ing to a new font for one object in the graphical 100
user interface. The set of appearance par-
ameters are adjusted for the object according to - -
the new font and presenting the object accord- | Font dropped on client-related object "
ing to the adjusted appearance parameters and
the new font. A set of related objects within the l Font set on dropped object L/—1o4
interface can also be changed according to the ¥
new font. Once the new font is established for LObject receives WM_PRESPARAMCHANGED message |_/1oe
the object, the set of related objects in the
graphical user interface for the object is deter- " —
mined. Then, each respective set of appearance I Window repainting halted L/1oa
parameters for the set of related objects is 110
adjusted according to its object class and the
set of related objects is presented according to
their respective appearance parameters and the
new font.

Is
object the
client?

Remove object font, [~ 1"
set to client

1

| Client-related objects’ inherit changed font |~/"4

FIG. 5

v

[Each object performs special font processing L/ns
v

I Client recalculates all sizes and positions L/-118
Y

| Client sets all sizes and positions L/- 120

)
L Painting enabled, window appearance refreshed —L/122

End 124

Jouve, 18, rue Saint-Denis, 75001 PARIS

1 EP 0 620 517 A1 2

This invention relates generally to a graphical
user interface to control a computer system. More
particularly, it relates to changing appropriate objects
within the graphical user interface in response to a re-
quest to change a font on one of the objects.

It is well known to provide a graphical user inter-
face to allow a user to control a computer system and
to present the results of user actions on the system
display. In a graphical user interface, applications and
data files are generally presented within windows.
Each window typically has a number of elements
which are associated with the window and are pre-
sented in the display space allocated to the window.
The window and each of its separate elements are
generally structured and stored in memory as objects
which are related logically. The elements of the win-
dow are generally child objects of the main window
object (for example the individual screen elements
representing specific processes created solely for a
specific ’parent’ process).

In newer graphical user interfaces, it is possible
for a user to select the font by which the information
is displayed if the standard font is not pleasing to the
user. Typically, after the selection of the new font, the
window is refreshed to display the new font, but is not
changed in any other way. If the font was a larger font,
it is often clipped or unreadable due to the element
within the graphical user interface being too small to
display it properly. If a smaller font was selected, then
the window display space is wasted. Furthermore, the
GUI looks awkward and malproportioned. Further,
when a font is selected for one object in the graphical
user interface, the font is typically changed only for
the immediate object. When that object is a child ob-
ject of the main window or another parent object with-
in the window, sibling objects of the object receiving
the font will not receive the new font even when it
makes sense that they should.

The present invention provides a system and a
method for changing a graphical user interface ac-
cording to a user selection of a new display font, the
system comprising:

means responsive to a user input for changing
a font for a first object of a first object class displayed
in the graphical user interface to a new font;

means for automatically adjusting a set of size
and position parameters for the first object according
to the new font and the first object class; and

means for presenting the first object according
to the adjusted size and position parameters and the
new font.

A method according to the invention comprises
changing a font for an object in the graphical user in-
terface to a new font, adjusting a set of appearance
parameters for the object according to the new font
and presenting the object according to the adjusted
appearance parameters and the new font. The ap-
pearance parameters of the object are adjusted ac-

10

15

20

25

30

35

40

45

50

55

cording to an object class of the object. A font palette
within the graphical user interface may be used to
change the font, wherein the new font is ’'grab-
bed’ and 'dragged’ from a font palette and ’drop-
ped’ over the object. A font is 'grabbed’ by selecting,
using a cursor and positive selection, an icon or name
representative of the font from a system menu. 'Drag-
ging’ is the movement of such a selected item, such
as by moving a mouse after the selection associates
the mouse cursor with the item. 'Dropping’ is using
the cursor positioning to indicate what object the new
font is to be associated with.

It is preferred that the new font is passed to ob-
jects which are logically related in the graphical user
interface to the object for which the new font was se-
lected. A set of related objects within the interface can
preferably also be changed in size and position ac-
cording to the new font. Once the new font is estab-
lished for the object, the set of related objects in the
graphical user interface for the object is determined.
Then, each respective set of appearance parameters
for the set of related objects is adjusted according to
its object class and the set of related objects is pre-
sented according to their respective appearance
parameters and the new font. The set of related ob-
jects can be determined by determining a set of child
objects of a parent object for the object, the set of
child objects being the set of related objects.

Specific Description

The present invention will now be described in
more detail, by way of example, with reference to the
accompanying drawings in which:

FIG. 1 shows a computer comprising system unit,
keyboard, mouse and display.

FIG. 2 is a block diagram of the components of
the computer shown in FIG. 1.

FIGS. 3A and 3B depict a prior art graphical user
interface in which the controls of a window are not re-
sized in response to the selection of a larger font.

FIGS. 4A and 4B show the graphical user inter-
face of the invention in which the appropriate objects
within an interface are resized and repositioned ac-
cording to the selection of a larger font.

FIG. 5 is a flow diagram of dropping a new font
on a window and adjusting that portion of the inter-
face.

FIG. 6 is a flow diagram of adjusting other child
objects within the window.

FIG. 7 is a diagram of related objects within a win-
dow.

FIG. 8 is a flow diagram of adjusting child objects
of other windows in an application.

The invention may be run on a variety of comput-
ers or collection of computers under a number of dif-
ferent operating systems. The computer could be, for
example, a personal computer, a mini computer,

3 EP 0 620 517 A1 4

mainframe computer or a computer running in a dis-
tributed network of other computers. Although the
specific choice of computer is often limited only by
disk and disk storage requirements, computers in the
IBM PS/2 (TM) series of computers in particular could
be used in the present invention. For additional infor-
mation on IBM’s PS/2 series of computers, the reader
is referred to Technical Reference Manual Personal
Systems/2 Model 50, 60 Systems IBM Corporation,
Part No. 68X2224 Order Number S68X-2224 and
Technical Reference Manual Personal Systems/2
(Model 80) IBM Corporation Part No. 68X 2256 Order
Number S68X-2254. One operating system which an
IBM PS/2 personal computer may run is IBM's OS/2
2.0 (TM) for more information on the IBM OS/2 2.0
Operating System the reader is referred to 0S/2 2.0
Technical Library, Programming Guide Vol. 1, 2, 3
Version 2.00 Order Nos. 10G6261, 10G6495,
10G6494.

In the alternative, the computer system might be
in the IBM RISC System/6000 (TM) line of computers
which run on the AIX (TM) operating system. The va-
rious models of the RISC System/6000 is described
in many publications of the IBM Corporation for exam-
ple, RISC System/6000, 7073 and 7016 POWERSsta-
tion and POWERserver Hardware Technical refer-
ence, Order No. SA23-2644-00. The AlX operating
system is described in General Concepts and Proce-
dure--AlX Version 3 for RISC System/6000 Order No.
SC23-2202-00 as well as other publications of the
IBM Corporation.

In FIG. 1, a computer 10, comprising a system
unit 11, a keyboard 12, a mouse 13 and a display 14
are depicted. The screen 16 of display device 14 is
used to present the visual changes to the data object.
The graphical user interface supported by the oper-
ating system allows the user to use a point and shoot
method of input by moving the pointer to an icon rep-
resenting a data object at a particular location on the
screen 16 and press one of the mouse buttons to per-
form a user command or selection.

FIG. 2 shows a block diagram of the components
of the personal computer shown in FIG. 1. The system
unit 11 includes a system bus or plurality of system
buses 21 to which various components are coupled
and by which communication between the various
components is accomplished. The microprocessor 22
is connected to the system bus 21 and is supported
by read only memory (ROM) 23 and random access
memory (RAM) 24 also connected to system bus 21.
A microprocessor in the IBM multimedia PS/2 series
of computers is one of the Intel family of microproces-
sors including the 386 or 486 microprocessors. How-
ever, other microprocessors including, but not limited
to, Motorola’s family of microprocessors such as the
68000, 68020 or the 68030 microprocessors and va-
rious Reduced Instruction Set Computer (RISC) mi-
croprocessors manufactured by IBM, Hewlett Pack-

10

15

20

25

30

35

40

45

50

55

ard, Sun, Intel, Motorola and others may be used in
the specific computer.

The ROM 23 contains among other code the Ba-
sic Input-Output system (BIOS) which controls basic
hardware operations such as the interaction and the
disk drives and the keyboard. The RAM 24 is the main
memory into which the operating system and applica-
tion programs are loaded. The memory management
chip 25 is connected to the system bus 21 and con-
trols direct memory access operations including,
passing data between the RAM 24 and hard disk drive
26 and floppy disk drive 27. The CD ROM 32 also cou-
pled to the system bus 21 is used to store a large
amount of data, e.g., a multimedia program or presen-
tation.

Also connected to this system bus 21 are various
I/0 controllers: The keyboard controller 28, the
mouse controller 29, the video controller 30, and the
audio controller 31. As might be expected, the key-
board controller 28 provides the hardware interface
for the keyboard 12, the mouse controller 29 provides
the hardware interface for mouse 13, the video con-
troller 30 is the hardware interface for the display 14,
and the audio controller 31 is the hardware interface
for the speakers 15a and 15b. Also coupled to the sys-
tem bus 21 is digital signal processor 33 which cor-
rects the sound produced by the speaker system and
is preferably incorporated into the audio controller 31.
The speakers 15a and 15b may be used to present
audio objects to the user. An I/O controller 40 such as
a Token Ring Adapter enables communication over a
network 46 to other similarly configured data proc-
essing systems.

One of the preferred implementations of the pres-
entinvention is as a set of instructions in a code mod-
ule resident in the random access memory. Until re-
quired by the computer system, a set of instructions
may be stored on a computer readable medium, for
example, the hard disk in hard disk drive 26, optical
disk in the CD ROM 32 or a floppy disk in the floppy
disk drive 27. As shown in the figure, the operating
system 50 and a software component responsible for
the provision of a graphical user interface (here
shown as Presentation Manager (1) 52) are resident
in RAM 24. In this example, the invention is embodied
in a font handler 54 which is an adjunct onto the op-
erating system or Presentation Manager software
component. Presentation Manager is a trademark for
IBM’s graphical user interface software, embedded in
the OS/2 operating system. Some other systems use
graphical user interface providing software which is
a stand alone piece of code. If the present invention
is implemented in a stand alone application which has
its own graphical user interface, a similar code mod-
ule would have to be developed for that particular ap-
plication.

The problems of the prior art graphical user inter-
faces are illustrated in FIGS. 3Aand 3B. An initial win-

5 EP 0 620 517 A1 6

dow 60 is shown before any font changes have taken
place. As shown, the font and subobjects within the
window are appropriately sized and positioned and
the graphical user interface has a pleasing appear-
ance. Nonetheless, the user has decided that he de-
sires a larger font. In FIG. 3B, the window 62 is shown
after a larger font has been dropped on client area 64
(The body of the window inside the border and below
the action bar is the client area - it is the workspace
for viewing, entering, and selecting information). As
shown, the font is too large for entry fields 66 and but-
tons 68. Buttons are screen elements displaying a
word or phrase that indicates a function that will be
performed if the button is selected (e.g. by mouse
cursor position and mouse button press). The text in-
formation in these control windows (hereinafter con-
trols) is clipped and information is lost. Further, the
appearance of the graphical user interface is not
pleasing and does not impart the needed information
to the user. Notice that the font is limited to the client
area and its children and is not extended to other text
containing objects such as the information line 69.

The example shown in FIGS. 3Aand 3B assumes
the font was dropped on the client area rather than on
a particular control. Dropping on the client, all of the
client’s children will also inherit the new font. If drop-
ped on a control, only that control would get the new
font, plus, of course, any children of the control. In
standard operation of OS/2, fonts are a presentation
parameter. Presentation parameters are inherited by
children unless the child has had its presentation
parameter already explicitly set.

The graphical user interface of the presentinven-
tion is depicted in FIGS. 4A and 4B. The window 70
in the graphical user interface depicted in FIG. 4A is
similar to that in FIG. 3A. Anew font is being dragged
from the font palette 71 and is about to be dropped on
the window 70 by pointer 73. The pointer 73 resem-
bles a pencil indicating that a new font is being drop-
ped. In FIG. 4B, the new font which is larger than the
prior font, has been dropped on the client area 74 of
the window 70. The window 70 and the client area 74,
the entry fields 76 and buttons 77 have all been re-
sized to accommodate the larger font. Further, the en-
try fields 76 and text 78 have been repositioned with-
in the larger client area 74.

In the invention, the font is flowed to all related
areas regardless of whether they are Presentation
Manager children or not. As an example, the frame
lines are not children of the client area, but they get
the new font because they are inherently related to
the client area. A font dropped anywhere within the cli-
ent area of a window with font support of the inven-
tion, whether on the client area or on any control with-
in the client, will flow the font to all controls in the cli-
ent and the client itself. And, or course, the font proc-
essing will cause the client and all the controls to re-
size and reposition to best display the new font.

10

15

20

25

30

35

40

45

50

55

The information line is just another text-based ad-
junct to the window. The user sees it as part of the
whole. Its text changes as the user moves the cursor
around the client area from one control to another.
Though in the Presentation Manager parent-child hi-
erarchy it is not a child of the client, it is considered
to be related to the client in the preferred embodiment
of the invention, and so itis treated as such by chang-
ing its font to match that of the client.

Note, however, that the text within the title bar 80
and action bar 82 have not been resized as these ob-
jects are not logically related to those within the client
area 74.

The only changes made to the title bar and action
bar as a result of a font change to the client is to
change their width due to a change in the width of the
frame window. This size change is not a result of the
font change, but rather solely as a result of the frame
size changing. The same thing happens when the
user resizes the frame with the mouse.

The OS/2 Font Palette 71 is a tool which is part
of the OS/2 2.0 operating system that is installed in
the System Setup folder. The System Setup folder is
found in the OS/2 System folder which is an object on
the Workplace Shell desktop. This tool is used to
change the font an object is using. The tool shows a
series of system declared fonts from which to choose.
If the font the user is looking for is not found within this
series, the user can press the Edit push button which
displays a dialogue requesting information about the
font in which the user is interested.

Once the desired font is available, the user can,
using the drag mouse button, drag a font and drop it
on the object that should use that font. When this oc-
curs, the Font Palette determines what object the
mouse is over and retrieves its Presentation Manager
window handle. With this window handle, the Presen-
tation Manager WinSetPresParam API is used with
the PP_FONTNAMESIZE option specifying the font
string associated with the one desired. The font string
is in the format pointsize.facename.emphasis which
is what is displayed in the list provided by the Font Pa-
lette.

Not only does the Font Palette support editing the
font shown but it also allows you to add additional
fonts to the system through this manner. The Edit font
dialogue provides an option for adding a font to the list
of known system fonts. This request prompts another
dialogue which requests the file name where the font
definitions exist.

While the Font Palette is the means used in the
08S/2 2.0 Workplace Shell for the user to select a new
font and indicate the window to which that font should
apply, its use is not required to enable the font
changes described in this application. Those skilled
in the art could conceive of several ways of command-
ing the operating system to change a font in its GUI.
In 0OS/2, the Presentation Manager notification of the

7 EP 0 620 517 A1 8

new font presentation parameter is done by the
WM_PRESPARAMCHANGED message, caused by
the issuance of the WinSetPresParam Presentation
Manager API.

The process by which a window is adjusted ac-
cording to a new font is depicted in the flow diagram
of FIG. 5. The process begins as the font is being
dragged from the font palette and dropped on the win-
dow, steps 100 and 102. When this occurs, the oper-
ating system determines what object the font was
dropped on and sets the font of the object to the new
fontin step 104. Next, the object on which the fontwas
dropped receives a WM_PRESPARAMCHANGED
message notifying it that its font has changed, step
106. This message is the OS/2 message, other oper-
ating systems and applications would have other syn-
tax to notify the object that its font had changed. At
this point in the process, the window repainting is halt-
ed in step 108. Painting is halted so that the user does
not see each control change its font, resize and pos-
ition itself as required, one after the other. This would
make the window flash and look confused until all the
controls had finished their processing and all was
sorted back out in the final arrangement. Painting is
enabled again once all of these calculations and
changes are finished, then refresh the display so that
the user sees only one repaint into the final, new font
appearance.

In step 110, a test is performed to determine
whether the object is the parent object within in a tree
of related objects. One example, is the client area
which is the parent object of all the controls and text
fields which appear within the client area. If the object
is not such a parent object, the object in step 112 re-
moves the font from itself so it can inherit the font
changes from the parent object and sets the parent
object to the new font.

If the object is the parent object of the particular
group of related objects, in step 114, all the child ob-
jects, e.g., controls, inherit the new font and are noti-
fied by the operating system that their font has
changed. Each control performs any special process-
ing which it requires to perform a font change, step
116. The parent object recalculates its own size and
position and all control size and position within the
main window based on the new font characteristics,
step 118. In step 120, the client area sets all sizes and
positions as calculated. Finally, in step 122, window
repainting is reenabled and the window is refreshed
to show the new sizes, position and font. The process
ends in step 124. The process by which child objects
of the parent object in the GUI adjust their appearance
in response to the parent object being set to a new
font is depicted in FIG. 6 as steps 114 and 116. The
process begins in step 130 as the parent object’s font
is changed. In step 132, the parent object is notified
with a WM_PRESPARAMCHANGED message. Step
134 begins the loop in which each of the information

10

15

20

25

30

35

40

45

50

55

lines, status lines and security lines are examined. A
testis performed in step 136 to determine whether the
font is different from the client areas object’s font. If
s0, the object is set to the new font in step 138. If not,
a second step is performed to determine whether the
new font is different from the current window font,
step 140. Step 136 relates only to the information, sta-
tus and security lines. Step 140 relates only to the cli-
ent area itself. In step 140, the client area checks to
see if the new font for the client area is the same or
different from the current font for the client area. If the
new font and the current window font are the same,
in step 142 the message is thrown away and the proc-
essing ends. If they are different, the font change
message is passed on to the child object, step 144.
All controls in the body of the child object inherit the
new font from the parent object and receive the font
change message in step 146. Finally, in step 148,
each child object performs this specific processing
for the new font and passes a font change message
onto the operating system. The process ends, step
150.

As discussed above, each of the child object’s
processing may differ depending on the class of the
object. Also, other objects in the GUI, which are not
adjusted because of the new font as they contain no
text or are not deemed to be related to the object on
which the font was dropped, must be adjusted in size
because of the objects which have changed, the re-
lated objects, due to the new font.

When a font change occurs, the affected objects
should resize and adjust other aspects as needed, to
reflect the new font to its best advantage. Certain
classes of controls need unique adjustments for a
new font size, as follows:

- Entry fields should adjust their height and

width to accommodate the new font.

- List boxes should adjust the height of each list
item, adjust the range and position of its scroll
bars, and scroll the list items if needed.

- Static text fields, radio buttons and check
boxes should grow or shrink both vertically and
horizontally so that the needed space to dis-
play the text in the new font is used.

- The height of any information line, status line
and/or security line should be adjusted.

- The height of the scroll arrows on scrollable
output fields and entry fields with scroll arrows
should be adjusted to reflect the new height of
the related control.

- The entry field and list portions of combo
boxes should adjust in the same manner as
stand alone controls of those types.

- Notebooks should adjust the width and height
of their tabs so all of the tab text remains visi-
ble.

- Containers should reflow their current view to
reflect the new font.

9 EP 0 620 517 A1 10

- Progress indicators should resize and respace
their tick marks so that any tick text is still prop-
erly displayed.

The changes performed by each object are de-
fined with font-based parameters. Each object knows
what to do given a "general" font change because
when created, the object was made size font specific.
For example, an entry field is defined by how many
average character widths it should contain; a list box
by how many lines of max character height it should
display. So, each control knows inherently what its
size is based on the current font. When a "particular"
font change occurs, it recalculates what its size
should now be based on the new font characteristics.

Once all of the controls have resized appropriate-
ly for the new font, they should be reflowed within the
window itself so that they are still properly spaced in
relation to each other. Non-sizeable windows should
also be resized to reflect this new flow of the controls.
Sizeable windows need to adjust the size and position
of their scroll bar sliders to reflect the new size of the
scrollable region.

By resizing controls affected by a font change to
their optimum size for that font, then reflowing them
within their window to retain optimum spatial align-
ment, the window after the font change will retain its
readability, usability and balanced appearance.

Apanel’s layout is described using tags in a panel
definition file. In Presentation Manager, a panel is de-
fined by specifying at what exact coordinates each
control is placed, and exactly how large it is in pels.
In the panel definition files, the panel is defined in
terms of general panel layout, such as columns and
rows, expandability, control relationships, related text
such as prompt, prefix and suffix, and the like. Each
control’s size is defined in character/font based terms
as described above.

With this information, the panel is dynamically
laid out at run time based on the general col-
umn/row/relationship layout, and based on the cur-
rent font and the length of the current text strings in
use for text controls (static text, output text, prompt
text, check box and radio button text...). The actual
text would change in different languages, for exam-
ple. Once these calculations are made, the controls
are set in terms that Presentation Manager can un-
derstand, i.e., located at exact coordinates and sized
in pels.

When a font change occurs, the window is redis-
played based on the column/row/relationship defini-
tions and the new font characteristics.

The dynamic creation of a graphical user inter-
face based on new parameters given to an operating
system at run time is discussed in the copending,
commonly assigned application filed August 19,
1991, Serial No. 07/747,167, entitled "Computer Sys-
tem for Dynamically Generating Display Screen Pan-
els Providing Interactive Interfaces for Application

10

15

20

25

30

35

40

45

50

55

Program Steps", to J. W. Malcolm, which is hereby in-
corporated by reference.

Each font and each window have certain parame-
ters which are used to determine the best graphical
user interface for the combination of the font and the
window. A Font Parameters Table and Windows Para-
meters Table are given below as an illustration of the
types of parameters which a graphical user interface
might use.

Font Parameters Table

AvCharw

MaxCharW

HUpperChar

HCharBox

TableWChar

Prop

The font parameters table includes parameters

for a particular font for the average character width,
the maximum character width, the height of the up-
percase characters, the height of the character box,
a table of the width of each character in the alphabet
for the font and whether the font is proportional or
nonproportional. All of these parameters will deter-
mine the optimum size for the affected controls for
objects within the graphical user interface.

Window Parameters Table

SzWin

PosWin

SzCony, SzCon,, SzCona...
PosCon,, PosCon,, PosCons...

The Window Parameter Table will have values for
the size of the window, the position of the window and
the graphical user interface and the size and position
of each of the controls or subobjects within the win-
dow. Each of these parameters may change when a
new font is dropped on an object in the window.

The actual objects which are considered "relat-
ed" is a design choice by the programmer. In the ex-
amples above, when the user drops a new font on the
client area of a window, it indicates a desire to change
the font of those aspects of the panel which share a
common factor, e.g., those that relate to data input
and output. Therefore, all of the parts of the client
area that relate to this should have their font changed,
thus keeping similar objects acting and looking like a
logical, integrated whole. Parts of the window that do
not share this common factor should not be changed
unless the user specifically drops a new font on them
as well.

In the preferred embodiment of the present inven-
tion, the text in the information line, status line and/or
security line should also inherit the new font if drop-
ped on the client area, since their role is to output data
to the user.

1" EP 0 620 517 A1 12

However, in response to the font being dropped
on an object in the client area, the action bar should
not inherit the new font. The action bar is primarily a
traversal technique for menu display, which is differ-
ent from the uses of text in the body panel. The font
of the title bar should not change. The user may de-
sire that title bars stay consistent throughout the sys-
tem, as it presents a system type datum. The height
of the horizontal and width of the vertical scroll bars
should not change, since these sizes are not text-
related.

If a new font is dropped on any object other than
one of those that is considered related and for which
special processing is provided, it will only get the de-
fault Presentation Manager processing. For the
frame, that means if it is dropped on any frame ele-
ment besides the frame itself, e.g., title bar or action
bar, only that object will reflect the new font. If it is
dropped on the frame (sizing border) itself, the
frame’s children will inherit the new font as well (but
will not resize and reposition themselves based on
the new font). In the explenary architecture, the client
area is not a child of the frame and dropping on the
frame has no effect on the client area or its objects.

A table of OS/2 functions which are used in proc-
ess described in FIGs. 5 and 6 follows below. Similar
functions in other operating systems could be used.
If the process were implemented in the GUI of a stand
alone application, some of the functions might need
to be created.

10

15

20

25

30

35

40

45

50

55

Table of OS/2 Functions

GpiQueryFontMetrics 116,118,148
GpiQueryWidthTable 116,118,148
WinCalcFrameRect 118
WinEnableWindowUpdate 108,122
WinlnvalidateRect 122
WinlsChild 110
WinlsWindowVisible 108
WinMapDialogPoints 118
WinQueryPresParam 136,140
WinQueryWindow 110
WinQueryWindowPos 116,118,148
WinRemovePresParam 112
WinSendMsg 116,148
WinSetPresParam 112,138
WinSetWindowPos 116,120,148
WinUpdateWindow 122

GpiQueryFontMetrics: returns the specifics about a
given font

GpiQueryWidthTable: returns a table of widths for ev-
ery character for a given font

WinCalcFrameRect: calculates what size a window
frame needs to be for a given size client area
WinEnableWindowUpdate: enables and disables
window repaints and refreshes

WininvalidateRect: sets an area as being in need of
being repainted

WinlsChild: queries if a given window is a child of an-
other

WinlsWindowVisible: returns if a window allows re-
freshing/repainting of its appearance
WinMapDlgPoints: translates values from pels to di-
alogue units

WinQueryWindow: returns the parent or owner of a
given window

WinQueryWindowPos: returns the size and position
of a given window

WinRemovePresParam: removes a presentation
parameter, such as a font, from a given window
WinSendMsg: sends a message with two parameters
to a given window

WinSetPresParam: sets a presentation parameter,
such as a font, for a given window
WinSetWindowPos: sets the size and position of a
given window

WinUpdateWindow: causes a window to repaint any
areas that have been marked as needing it

13 EP 0 620 517 A1 14

One of the requirements of the present invention
is that the related objects are known or can be deter-
mined by the system. The relationship of the objects
within a generalized window is shown in FIG. 7. The
main window, 200, has three child windows; the client
area 202, the frame control 204 and the frame line ob-
ject206. The client area further has a plurality of child
objects including entry fields 208, text fields 210 and
push buttons 212. The frame control object 204 has
title bar 214 and action bar 216 as child objects, and
the frame line object 206 has information line 218,
status line 220 and security line 222 as child objects.
In an operating system, such as 0OS/2, this sort of in-
formation is kept by the operating system. Thus, it is
relatively easy when a font is dropped on, for exam-
ple, an entry field 208, to go to the client area 202 to
determine all of the related child elements of the client
area 202.

However, the structure provided by the operating
system may not, in all cases, have the necessary
structure to carry out the present invention. For ex-
ample, there may be certain objects within the client
area which are not considered text elements or relat-
ed to other elements within the client area. A state-
ment would have to be added to the code which im-
plements the invention that all objects which are child
objects of the client area, except for a certain class of
objects, would inherit the font. Similarly, there may be
no root or master object which is apparent to all of the
related objects in a particular area of the window. For
example, the frame line object does not existin 0S/2.
Therefore, for the data structure used by the inven-
tion, these objects would have to be defined and in-
serted.

In a stand alone application or where too many
variations on the existing data structure of objects in
the operating system are required, it may be more
convenient to construct a table of the related ele-
ments which will be searched when a new font is
dropped on an object. For example, the table below
corresponds to FIG. 7.

10

15

20

25

30

35

40

45

50

55

Table

Main Window

Client Area
Entry Field 1
Entry Field 2
Entry Field 3
Text Field 1
Text Field 2
Text Field 3
Push Button 1
Push Button 2
Push Button 3

Frame Control
Title Bar
Action Bar

Frame Line
Information Line
Status Line

Security Line

Thus, the objects contained in the table can be
varied as the programmer deems appropriate. In this
case, the process refers to the table for the particular
window to learn to change the fonts in all the child ob-
jects of a second order object, such as the client area,
the frame control or the frame line object.

Alternatively, the table may resemble that below:
Client Area (EF1,EF2,EF3,TF1,TF2,TF3,PB1, PB2,
PB3)

Entry Field 1 (Client Area, EF1,EF2,EF3,TF1,TF2,
TF3,PB1, PB2,PB3)

Text Field 1 (Client Area, EF1,EF2,EF3,TF1,TF2,
TF3,PB1, PB2,PB3)

Status Line (Information Line, Security Line)

In this table, the code searches for the object on
which the font was dropped and finds a listing of the
related objects in the parentheses following the ob-
ject. In the table, EF1, for example, would represent
Entry Field 1, TF2 would represent Text Field 2; and
so forth. Note that in such table the "related" objects
do not have to be the same set of objects which the
operating system associates as child objects of a par-
ticular parent object in the graphical user interface. In-
stead, the programmer may decide on an intuitive ba-
sis what objects are related to a particular aesthetic
characteristic. Other tables and procedures for listing

15 EP 0 620 517 A1

and determining the related objects would occur to
one skilled in the art.

The embodiment above describes run time font
changes which flow the font only within the frame win-
dow on which the font was dropped.

The invention can also be used to flow a run time
font change between all or some of the windows of an
application, as shown in FIG. 8. The process begins
in step 250. All of the top-level frame windows in the
system are determined. Top-level frame windows are
those windows that are direct children of the desktop.
That is, they are not children of any other window.
They can be found by enumerating all direct children
of the desktop. Unseen windows of an application are
still descendants of the top-level frame or are in the
top-level frame’s ownership chain, and so the top-lev-
el frame can handle their font change. For each top-
level frame window found, query and compare its
process ID to that of the window which is propagating
its font change step 252. If they are the same, they are
in the same process, and probably in the same appli-
cation. Thus, in step 254, the system sends a private
message that would only be processed by members
of the same application, with a pointer to the new font
string as one of its parameters. If the windows do not
have the same ID, they are not in the same process,
and so should not receive the font, step 256.

If the window receiving this private message has
a font different from that to which it is being told to
change, step 258, it will issue a WinSetPresParam
call to itself, setting itself to use the new font, step
260. If it already has the requested font, no action
would be taken, step 256.

Those windows which needed to change to the
new font would then handle the font change as if the
user had dropped a font on them as described above.
First, the related child objects would be determined in
step 262 and the font would be changed in those ob-
jects in step 264. Part of the private message sent in
step 254 should include either the class of the object
on which the font was dropped or the class of the par-
entobject used to determine the related objects in the
first main window. In step 262, the receiving main win-
dow will use this information by consulting its own
data structures and tables to determine the related
child objects.

Claims

1. A method for changing a graphical user interface
display according to a user selection of a new dis-
play font, comprising the steps of:

in response to a user input, changing a font
for a first object of a first object class in the graph-
ical user interface to a new font;

automatically adjusting size and position
parameters for the first object according to the

10

15

20

25

30

35

40

45

50

55

16

font change and the first object class; and

presenting the first object according to the
adjusted size and position parameters and the
changed font.

Amethod according to claim 1 which further com-
prises the steps of:

determining a set of related objects in the
graphical user interface for the first object;

automatically adjusting size and position
parameters for each object of the set of related
objects; and

presenting the set of related objects ac-
cording to their respective size and position para-
meters and the changed font.

A method according to claim 2 wherein the size
and position parameters for each object of the set
of related objects are adjusted according to the
object class of the respective object.

A method according to claim 3, wherein object
size parameters are made font-specific when an
object is created, with reference to a non-font-
specific object class definition, for all classes of
object which can be affected by font changes,
thereby to facilitate adjustment of size parame-
ters when a new font is selected.

A method according to any one of claims 2 to 4
wherein the determining step is accomplished by
determining a set of child objects of a parent ob-
ject for the first object, the set of child objects be-
ing the set of related objects.

A method according to any one of the preceding
claims which further comprises the steps of:
determining a set of windows which belong
to a first process which owns the first object; and
adjusting size and position parameters for
corresponding sets of related objects within each
of the set of windows.

A method according to any one of the preceding
claims wherein the step of changing a font com-
prises the steps of:
grabbing and dragging a new font from a
font palette in the graphical user interface; and
dropping the new selected font over the
object.

A system for changing a graphical user interface
display following user selection of a new display
font, comprising:

means responsive to a user input for
changing a font for a first object of a first object
class displayed in the graphical user interface to
a new font;

10.

1.

12.

13.

14.

17 EP 0 620 517 A1

means for automatically adjusting a set of
size and position parameters for the first object
according to the new font and the first object
class; and

means for presenting the first object ac-
cording to the adjusted size and position parame-
ters and the new font.

A system according to claim 8 which further com-
prises:

means for determining a set of related ob-
jects in the graphical user interface for the first
object;

means for adjusting each respective set of
size and position parameters for each object of
the set of related objects; and

means for presenting the set of related ob-
jects according to their respective size and posi-
tion parameters and the new font.

A system according to claim 9 wherein the size
and position parameters for each object of the set
of related objects are adjusted according to the
object class of the respective object.

Asystem according to claim 10, having means for
storing non-font-specific size definitions for each
class of object which can be affected by font
changes, to facilitate adjustment when a new font
is selected of font-specific object size parame-
ters.

A system according to any one of claims 9 to 11,
wherein the means for determining includes
means for determining a set of child objects of a
parent object for the first object, the set of child
objects being the set of related objects.

A system according to any one of claims 8 to 12
which further comprises:

means for determining a set of windows
which belong to a first process which owns the
first object; and

means for adjusting size and position
parameters for corresponding sets of related ob-
jects within each of the set of windows.

A system according to any one of claims 8 to 13
wherein the means for changing a font compris-
es:

means for grabbing and dragging a new
font from a font palette in the graphical user in-
terface; and

means for dropping the new selected font
over the first object.

10

20

25

30

35

40

45

50

55

10

18

EP 0 620 517 A1

FIG. 1

11

EP 0 620 517 A1

OPERATING FONT
SYSTEM || HANDLER
%0
PRESENTATION
MANAGER RAM
52 24
Y
DIGITAL
SIGNAL
1 PROCESSOR
MEMORY MICRO- ROM o
MANAGEMENT PROCESSOR CONT.
2 22 23 40
21
—e —
CD ROM
32
HARD | | FLOPPY || KEYBOARD MOUSE VIDEO AUDIO
DISK DISK CONTROLLER | | CONTROLLER | | CONTROLLER | | CONTROLLER
26 27 28 29 30 31
/Y /Y
KEYBOARD MOUSE GRAPHIC
12 13 14 DISPLAY
SPEAKER| |SPEAKER
15A 158

FIG. 2

12

EP 0 620 517 A1

v Title o0
Menu | Menu | Menu
UserlD SAM
Name Steve Man
Department 621 |V
Phone 877-14070 60
OK Cancel Help
Information
PRIOR ART
FIG. 3A
v Title o |
Menu | Menu | Menu
UserlD S?—\IVI~7\66
Name [Steve
:)epartm 0)/ ¥‘7‘66 1
Phone [4U7U s
UR | l:ance|| / eip
Information\ \ \ 469
N% PRIOR ART

FIG. 3B

13

EP 0 620 517 A1

Title o0

v
Menu | Menu | Menu
~ UserlD SAM %
8 < 7 474
N Name Steve Man

) Department

™ Phone

877-

621 |V 76 j
_j 7 1

4070

OK

Cancel Help

\

1

IA

)

Informatior\\\é | o
77

v

Font Palatte - Palette o | [

14. Helv

10. System Proportional
12. Tms Rmn

18. Tms Rmn 10. Helv

8. Helv

24. Helv

12. Times New Roman

Edit font . . .

Help

FIG. 4A

14

EP 0 620 517 A1

gy "oid

0L uorewIoju|
=~ d|gH [8oUB) MO
(& 0/0%|-1/8 euoyd
o ~ 1 129 Juswineds(q
UBJ\ 8A8]S SWEeN
A%) NYS « (J]49SM)
\8 \Nw
| M{onusiy | nuspy T nuspy
O/ a T A

82IS JUO} M3U J0} MOJ[B 0} pauolSodal
'8 POZISBI S|0AJUOI S} PUB MOPUIM ‘PaSN JUO) MAN

NS 18}y

15

EP 0 620 517 A1

Coai >

Font dropped on client-related object 102
Y
Font set on dropped object _—104
v
Object receives WM_PRESPARAMCHANGED message |_— 106
v
Window repainting halted |~ 108
110 l
s
object the
client?
_—112

YES | Remove object font,

FIG. 5 set to client

-

Client-related objects' inherit changed font —

Each object performs ipecial font processing 116

Client recalculates a+ll sizes and positions _—~118

Client sets all si:es and positions _—~120

Painting enabled, windof/v appearance refreshed 122
v

End 124

16

EP 0 620 517 A1

WM_PRESPARAMCHANGED message [~ ">
notifies of font change
Y
—> Repeat for each frame line: 134
Y
136
Frame
line font different Y
from client's
‘o Set frame lineto "%
new font
Y
140
Is
client font
changing
?
FIG. 6 VES Throwaway |=
message
Let PM provide any default processing |~ '*
v
Client-related objects get new font |~ 146
v
Client-related objects process new font |_~148

End 150

17

EP 0 620 517 A1

MAIN WINDOW 200
jlz
CLIENT AREA (ROOT OBJECT)
l i l 210
~
TEXT FIELD 1]
208 212
yYyy S vyy 5
ENTRY FIELD 1 h PUSH BUTTON1'|-|
i . 1
Y
FRAME CONTROL (ROOT OBJECT) |~ 204
TITLEBAR |_—214 ACTION BAR |_—216
Y
FRAME LINE (ROOT OBJECT) 206
INFORMATION |_—218 STATUS |_—220 SECURITY |_—22
LINE LINE LINE

FIG. 7

18

EP 0 620 517 A1

Determine top-level frame windows ~ |_—250
For each window
Y
252
Process NO
ID match
? v
YES No change
next window
F'y
Usgs
 J
Send new font
! L,
S New
font different NO
from current
font?
YES
Set new font 260
Determine child objects _—262
Change font in child objects 264

FIG. 8

19

EPO FORM 1503 03.82 (P0O4CO1)

EP 0 620 517 A1

E
Q 0‘;""“" Patent EUROPEAN SEARCH REPORT Application Nember
ce EP 94 30 2629

DOCUMENTS CONSIDERED TO BE RELEVANT

Category Citation of document with indication, where appropriate, Relevant CLASSIFICATION OF THE
of relevant passages to claim APPLICATION (Int.CL5)
X IBM TECHNICAL DISCLOSURE BULLETIN 1,8 GO6F3/033
vol. 35, no. 7 , December 1992 , NEW YORK
us

pages 285 - 286

'SELECTING OF A USABLE FONT SIZE FOR THE
HOST SESSIONS'

* page 285, line 1 - line 26 *

Y 2,3,5-7,
9,10,
12-14
Y IBM TECHNICAL DISCLOSURE BULLETIN 2,3,5,6,
vol. 27, no. 12 , May 1985 , NEW YORK US |9,10,12,
page 7066 13

'UPDATING ATTRIBUTES OR DATA OF PARENT VIA
CHANGES TO THE CHILD'

* page 7066, line 1 - line 16 *

Y LEVENSON S. ET AL 'Now That I Have 0S/2 7,14
2.0 On My Computer What Do I Do Next ...'

1992 , VAN NOSTRAND REINHOLD , NEW YORK ;EgguumLpngﬁﬁns
* page 90, line 1 - line 9 * CHED -

A 4,11 GO6F

The present search report has been drawn up for all claims

Place of sesrch Date of completion of the search Exsniner
THE HAGUE 29 July 1994 Bailas, A
CATEGORY OF CITED DOCUMENTS T : theory or principle underlying the invention
E : earlier patent document, but published on, or
X : particularly relevant if taken alone after the filing date
Y : particularly relevant if combined with another D : document cited in the application
documnent of the same category L : document cited for other reasons
A : technological background
O : pon-written disclosure & : member of the same patent family, corresponding
P : intermediate document document

20

	bibliography
	description
	claims
	drawings
	search report

