a’ European Patent Office

Europaisches Patentamt ‘ ‘llm

Office européen des brevets @) Publication number: 0 622 714 A1
@) EUROPEAN PATENT APPLICATION
@1) Application number : 94303033.8 6D Int. c1.5: GOSB 19/417

@2) Date of filing : 27.04.94

Priority : 30.04.93 US 56007 @2 Inventor : Moore, Stephen F.
733 Knoliridge
Date of publication of application : Lewisville, TX 75067 (US)
02.11.94 Bulletin 94/44 Inventor : Byrd, Thomas E.

922 Thoreau Lane

Designated Contracting States : Allen, TX 75002 (US)

DE FR GB IT NL
Representative : Nettleton, John Victor et al

@1) Applicant : TEXAS INSTRUMENTS Abel & Imray
INCORPORATED Northumberland House

13500 North Central Expressway 303-306 High Holborn
Dallas Texas 75265 (US) London, WC1V 7LH (GB)

EP 0 622 714 A1

Integrated automation development system and method.

@ An integrated automation development system (10) for controlling and coordinating manufacturing
equipment (24) employs a plurality of server processes (14, 16, 22, 28, 34, 36). Each server process
includes a messaging manager (45) for receiving ASCIl messages, and an interpreter (43) for evaluating
the received ASCIl messages and identifying commands within the messages. The server process
further includes a command manager (41) for receiving and executing the commands, and a logic
controller (47) for managing the logic flow of the command execution by the command manager (41).
The servers may include additional commands (48) that enable them to serve as queue servers (34),
terminal servers (28), and other application-specific server processes.

10\,‘ Fr T T T T T Tt 1

EQUIPMENT
SERVER

FACTORY
EQUIPMENT

GRAPHICAL
CONTROL
CLIENT

TERMINAL
SERVER

______________________ FIG. 1

SEMICONDUCTOR
MANUFACTURING
SYSTEM (SMS)

Jouve, 18, rue Saint-Denis, 75001 PARIS

10

18

20

25

30

35

40

45

50

55

EP 0622 714 A1

TECHNICAL FIELD OF THE INVENTION

This invention relates in general to the field of automation systems. More particularly, the presentinvention
relates to an integrated automation development system and method.

BACKGROUND OF THE INVENTION

The task of automation characteristically requires the coordinated control of numerous entities to reach a
common goal. This task is complex because of the nature of the automation environment and requirements.
The automation entities may be real, such as factory equipment, local area networks, databases and user ter-
minals, or abstract, such as data, control software, and communication messages and protocols.

Afirst difficulty in automation integration is communication. Typically, the automation entities cannot com-
municate directly with one another and require interfaces for inter-entity communications. However, it is ap-
parent that the solution is not to formulate interface a for communications between entities X and Y, interface
B for communications between entities Y and Z, and interface y for communications between entities Z and
X, and so on. Such a system would require duplicitous efforts for initial system configuration and subsequent
reconfigurations.

The task of automation integration must also facilitate frequent system reconfigurations and modifications.
Equipment are often added or omitted from a processing line or cell, the automated processing lines or cells
may be frequently reconfigured, etc. Therefore, the automation system must easily accommodate these
changes.

Also typical of automation systems is that the tasks performed by many of the entities are done in parallel.
Therefore, the automation system must also accommodate parallel executions to satisfy this requirement.

SUMMARY OF THE INVENTION

In accordance with the present invention, an integrated automation development system and method are
provided which substantially eliminate or reduce disadvantages and problems associated with prior arrange-
ments and as defined on the claims.

In one aspect of the present invention, an integrated automation development system for controlling and
coordinating manufacturing equipment employs at least on server process which includes a messaging man-
ager for receiving messages, and an interpreter for evaluating the received messages and identifying com-
mands within the messages. The server process further includes a command manager for receiving and exe-
cuting the commands, and a logic controller for managing the logic flow of the command execution by the com-
mand manager. The servers may include additional application-specific commands that enable them to serve
as queue servers, terminal servers, and other application-specific server processes.

In another aspect of the present invention, a method for integrating an automation development system
for controlling and coordinating manufacturing equipment is provided. The method comprises the steps of
checking for and receiving messages from other server and client processes, evaluating received messages
including at least one command expressed in a text-based programming language, and recognizing the com-
mands in the messages. The commands are executed and the server process returns to checking for mes-
sages.

In yet another aspect of the present invention, an integrated automation development system includes a
control client for generating messages containing commands. An equipment server serving as an interface to
a manufacturing equipment receives the messages from the control client process, controls the manufacturing
equipment as directed by the commands in the messages, and generates messages in response thereto. A
queue server is further provided for enabling the routing of the messages between the control client and the
equipment server.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the present invention, reference may be made to the accompanying draw-
ings, in which:

Figure 1 is a simplified top level system block diagram of an embodiment of the invention;

Figure 2 is a diagram illustrating the components of an embodiment of a server shell module;

Figure 3 is a simplified diagram of the main server components;

Figure 4 is a simplified diagram illustrating the data structure of the dynamic variables;

Figure 5 is a simplified diagram illustrating the message-based communications protocol;

2

10

18

20

25

30

35

40

45

50

55

EP 0622 714 A1

Figure 6 is another simplified diagram illustrating the message-based communications protocol;
Figure 7 is a simplified data flow diagram illustrating the message-based communications process;
Figure 8 is a simplified flowchart of processing command messages;

Figure 9 is simplified flowchart of a basic server control flow;

Figure 10 is a simplified flowchart of server initialization;

Figure 11 is a simplified flowchart of server message processing;

Figure 12 is a simplified flowchart of server non-standard message processing;

Figure 13 is a simplified flowchart of server command message processing; and

Figure 14 is a simplified data flow diagram of distributed message communication.

DETAILED DESCRIPTION OF THE INVENTION

With reference to the drawings, FIG. 1 illustrates an embodiment of the integrated automation development
system and method, indicated generally at 10 and constructed according to the teaching of the present inven-
tion. As shown, the integrated automation development system 10 is generally based on a client-server model
that defines system modularity and the method of communication between modules. The system 10 is com-
prised of a group of cooperating tasks called clients and servers. In FIG. 1, a graphical control client 14 coop-
erates and functions with a SMS (semiconductor manufacturing system) server 16, an equipment server 22,
and aterminal server 28. Furthermore, additional servers - queue server 34 and time server 36 performs tasks
needed for the overall functions of the system.

A server generally manages and controls a real or abstract object or entity in the system. It presents a
high-level messaging interface to its clients by responding to command requests. For example, equipment ser-
ver 22 provides interfaces to a factory equipment 24, SMS server 16 provides interfaces to a factory host sys-
tem (the semiconductor manufacturing system 20), and terminal server 28 provides interfaces operator termi-
nals 30, and to application software running on the terminal 30.

On the other hand, the graphical control client 14 is a task within the system 10 that sends command re-
quests to the servers 16, 22, and 28 in order to access the functionality of the servers’ underlying object or
entity. Automation is therefore accomplished by coordinating and controlling a group of objects through their
servers. The control object is itself an abstract entity which is implemented as a client process.

In general, servers do not have prior knowledge of other servers which represent high level objects in the
system. For example, the equipment server 22 should not send commands to a factory host server 16 because
this would build unnecessary dependencies in the equipment server 22 on the particular factory host 16 and
its command syntax. Such integration activities should be handled by a control client, for example, the graphical
control client 14.

Referring to FIG. 2, the servers 16, 22, 28, 34 and 36 and client 14 can be represented by a general struc-
ture called a server 40. Each server 40 is created by adding application-specific code and commands 48 to
pre-existing software modules called server shells 42. These server shells 42 are executable files that are
configured with text files upon start-up to create unique application servers and clients. The server shells 42
are preferably configured to be application programs by loading commands expressed in an interpreted text-
based programming language or also called a script shell-like language at runtime or by linking C++ commands
at compile-time. Preferably, the server shells 42 include two basic building blocks: base code 44 and common
commands 46. Therefore, when a new application server is needed, its implementation begins with the server
shell 42 upon which application-specific code are be built.

Referring to FIG. 3, the server process 40 is shown with its various main functional components. The ser-
ver 40 includes the server shell 42 and the added application specific commands and code manager 48. The
server shell 42 itself includes many functional modules which perform basic tasks. The server shell 42 includes
a command manager or a common command module 41 which functions as a process-level operating system
for commands. The command manager 41 manages and control the execution of command requests and pro-
vide facilities for data storage and event logging. The server shells 42 are only foundations for building actual
application servers or clients, such as the equipment server 22, the terminal server 28, and queue server 34.
The server shells 42 contain commands that facilitate the development of special applications. This organiza-
tion contributes to the modularity and reconfigurability of the automation development system 10.

The server shell 42 also includes a script or shell-like language interpreter 43, allowing new commands
to be created at runtime in the script language. The script language may be a generic high-level shell-like code
generally understood by those familiar with the UNIX operating system environment. The script language may
include conditionals, looping constructs, expression evaluation, and environment variables. The use of the
script language rather than the C++ language, for example, eliminates the need to recompile and relink the
code prior to execution since the script language is interpreted line-by-line. During interpretation, the script lan-

3

10

18

20

25

30

35

40

45

50

55

EP 0622 714 A1

guage interpreter 43 essentially takes the entries in script language and translates them in to dynamic variable
structures that are understandable and accessible by the servers.

The server shell 42 further includes a messaging manager 45. The messaging manager 45 performs mes-
sage communications-related tasks such as message syntax validation and routing. The server shell 42 also
provides a shell logic controller 47 for managing the basic control and logic flow of the server 40. An additional
dynamic variable manager 49 serves to oversee the storage and access of the dynamic variable structure
shown in FIG. 4. The functions of the messaging manager 45, the shell server logic controller 47 and the dy-
namic variable manager are discussed in more detail below.

The added application-specific commands 48 perform actions on or change the state of the server or the
object it serves. Servers started from the same shell executable can also share runtime text segments or code,
thus reducing runtime memory usage. For example, eight operator interfaces that are created by loading con-
figuration files into the same terminal server shell executable use only one copy of the actual terminal server
shell code at runtime. Each process can maintain a separate data area in memory, but uses the same block
of executable code in memory.

Referring to FIG. 4, an exemplary dynamic variable data structure is shown. In the server 40, commands
share data through this internal hierarchy of dynamic symbolic text variables. By convention, the state of the
server 40 is defined in these variables. Programming in the integrated automation development system 10 thus
consists mainly of manipulating the dynamic variables and sending messages. The complexity of an algorithm
often depends on the structure of its underlying data. The dynamic variables 49 encourage the developer to
build data representations for which there are clear algorithms. The following is an example of dynamic vari-
ables expressed in the script language:

{
{ temp
loca=71
locb=42
locc=68
}
{ SyS
{ others
fr=qsrv
to=nullsrv
{ name
1=nanosrv
2=thermsrv
d=timer
4=smsgate
5=smssrv
6=nullsrv
T=tk6579
}
}
protocol=secs
}
name=equipa
}

The above example is graphically represented in FIG. 4. For example, the dynamic variable structure 49
shows that the name of the server is "EQUIPA" and that it has monitored and recorded some temperature or
"TEMP" measurements of three locations (LOCA, LOCB, and LOCC). The state of the dynamic variables 49

4

10

18

20

25

30

35

40

45

50

55

EP 0622 714 A1

also tells us that this equipment server may process messages in the SECS (SEMI Equipment Communications
Standard) format by the value of its "SYS>PROTOCOL" dynamic variable. Therefore, it may be seen that the
dynamic variables 49 provides an orderly and hierarchical organization of data or values for each server proc-
ess 40 that is easily accessible.

Referring to FIG. 5, the communications scheme between clients and servers is shown. The client 52
wants a resource 62 to do a specific task. The client 52 communicates this desire by sending a command re-
quest message 56 to server 54, who responds with a reply and an optional data message 58 or 60. All messages
are composed in readable ASCII strings. The data messages 60 are defined as those messages that are neither
commands nor replies. The data messages are used to send data to a client 52 after the reply 58 to the com-
mand message 56 has been sent. The server 54 thus represents an interface to the resource or object 62.
This command-driven exchange governs all actions within the automation development system 10. Therefore,
actions take place in or by the resource 62 as the result of incoming messages. All incoming messages are
first stored in a message queue. The messages are read from the queue on a FIFO (first-in-first-out) basis.
The management of the message queues in the system 10 is performed by the queue server 34, details of
which are described below.

Referring to FIG. 6, an alternative communication scheme 70 is illustrated. A client 72 communicates with
a server 74 by sending a command 76, and the server 74 responds with a reply 78, which may be reply message
58 or a data message 60 (FIG. 5). The server 74 may have the resources 80 to perform the task client 72 de-
manded, or it may act as a client to another server 82, which receives the command 86 and responds accord-
ingly with a reply 88 and appropriate actions performed by its resource 84. Additionally, the server 74 may
also have an interface to an entity or subsystem which does not employ the message protocol used by the
servers.

Having described the server shell basic functions, it is instructive to discuss certain servers that are built
upon the server shell. For example, the queue server 34 is a server 40 that is crucial to the operations of the
automation development system. To provide transparency in communications among all the client and server
processes in the system 10, the queue server 34 manages a table of named message queues, and oversees
communications within the integrated automation development system 10. The queue server 34 provides client
and server processes a low-level message interface that enables the processes to carry on higher-level com-
munications.

The primary function of the queue server is to associate ASCIl names, for example time server 36 and
SMS server 16, with queue identification numbers or keys assigned by the operating system, such as UNIX
or similar operating systems. This allows servers in the system to refer to each other by well known names
instead of queue identification numbers. Only the queue server 34 needs to store the table of queue names
and their corresponding operating system queue identification numbers.

Referring to FIG. 7, the messaging protocol is illustrated with a server A 90 and a server B 91. The servers
A and B both check in or register with the queue server 34 upon start up, as shown by arrows 92 and 93. The
queue server 34 then records the process or server names in a table and assigns a queue ID or identification
number to each of the servers 90 and 91, if necessary. The queue server 34 also creates a queue 94 and 95
for each server process 90 and 91 if it does not already exists, then returns the identification number of the
queues to the newly started process 90 and 91, as shown by arrows 96 and 97. The new processes A 90 and
B 91 may then use their respective queue 94 and 95 to receive messages. Accordingly, the use of queues iden-
tification numbers is transparent to the system.

When server A 90 wants to send a message to server B 91, for example, it asks the queue server 34 for
server B’s queue ID by providing server B’s queue name, as shown by arrow 98. The queue server 34 then
looks up server B’s name in its tables and returns the corresponding queue ID to server A 90, as shown by
arrow 99. Server A 90 can then use server B’s queue ID to send messages to the queue 95 of server B, as
shown by arrow 100. Each server process preferably keeps the name and corresponding ID information of other
server processes in a local table, so that it need not ask the queue server 34 each time a message must be
sent to the other processes.

Unless a process requests the queue server 34 to delete its queue from the system 10 when the server
terminates, the queue server 34 will keep the queue name and ID in its tables for future use. This allows a
process to terminate temporarily while still allowing other processes to place messages on its queue. When
a process is restarted and checks in with the queue server, it is assigned the existing queue ID. The process
can then read any messages that accumulated on its queue while it was down, and respond to them. Therefore,
it is preferable that only short-lived clients remove their queues when terminating.

Because the queue server 34 provides queue management for all servers and clients in the system 10, it
must be running as a background process before any other processes are started. The queue server 34 may
be started manually by entering the appropriate command on the command line, but it is preferable that the

5

10

18

20

25

30

35

40

45

50

55

EP 0622 714 A1

queue server 34 is started automatically whenever the CPU is started or rebooted.

Referring to FIG. 8 in addition to FIGS. 2 and 7, the basic flow for command message processing is shown.
Since virtually all actions in the system 10 are message-driven, server B 91, for example, first checks its queue
95 to detect messages arriving, as shown in block 101. The messages contain commands issued from a client
or another server to invoke an action. The server shell 42 of server B 91 decodes or parses the message into
fields, and locates the command specified in the message in a command list 102, as shown in blocks 103 and
104. The command list 102 represents all commands or actions that its server is capable of performing.

In addition, the command list 102 specifies the correct syntax of the command, including its parameters,
and the location of the code that performs the specified command’s task. Therefore, the server shell 42 verifies
command syntax in the message, if necessary, as shown in block 105. As discussed above, the messages
used in the integrated automation system 10 are composed in readable ASCII string with a well-defined yet
flexible format. The server shell 42 then routes message to command code based on a name or special routing
parameters. The command code is executed, using the message as input, as shown in block 106. After the
code is executed, the server shell 42 generates a reply message if necessary, as shown in block 107. The
reply message is a message returned to a client by a server as a response to the command message sent by
the client.

Messages between servers 54 and clients 52 are routed by queue names. The queue server 34 (FIG. 1)
manages queue name associations and is used by all other clients 52 and servers 54 to send messages to
one another. Within servers 54, messages are routed by command name or message context. When a server
54 receives a command message, the action taken is based upon the command name given.

A message context or "ctxt=" is a unique identifier placed in command messages from clients 52. This
message context identifier must be preserved by the servers 54, and be returned in any resulting reply or data
messages. The message context in the reply and data messages allows the client 52 to identify incoming re-
sults, even if several similar commands have been sent out to more than one server 54.

As discussed above, all messages in the automation development system 10 are preferably ASCII text
strings. These text strings can contain any data that can be represented in the string format. The individual
items of data in a message are separated by white spaces, which include SPACES, LINEFEEDS, CARRIAGE
RETURNS, and TABS.

These items of data are parameters or fields and fall into two categories: tagged and non-tagged, where tagged
parameters consist of a tag and the data or value, separated by an equal sign or =, and non-tagged parameters
are data items that do not contain equal signs.

All automation development system 10 messages must begin with a "fr" tagged parameter. In other words,
"fr=" must be the first three characters of any message. This is the only data in the messages that must have
a fixed position. The "fr" tag identifies the sender of the message and also identifies the message as an au-
tomation development system message in servers that must understand other message formats.

All message routing information is included within the text of a message. The "fr=" and "to=" tagged para-
meters specify routing information for communication between servers 54 and clients 52, and the "do=" and
"ctxt=" tagged parameters route messages to specific blocks of code within servers. In summary, the reserved
tag names and their functions are listed below:

10

18

20

25

30

35

40

45

50

55

EP 0622 714 A1

RESERVED TAG NAMES

fr Identifies sender and standard format.

to Identifies intended receiver.

do Identifies command to execute.

ctxt Identifies a particular Reply or Data
Message.

reply Identifies return code of a command.

command Identifies cmd that generated a Reply or
Data Message.

comment Explains a return code of a command.

RESERVED NON-TAGGED PARAMETERS

noreply Placed in Cmd Messages to suppress the
Reply Message.

nosyntax Placed in Cmd Messages to suppress
syntax checking.

Referring to FIG. 6, a simplified flowchart representing the server logic for command message processing
is shown. A server 54 must respond to incoming command messages from any client task 52. The server 54
has no prior knowledge of which clients 52 may send it commands. Incoming command messages include the
name of the sending client task specified by the "fr=" tag. Therefore, the server must be able to reply to named
tasks which are not known before runtime. This is accomplished through communication with the queue server
34 (FIG. 1), which manages named queues. Servers 54 and clients 52 must register its name with the queue
server upon start-up to make themselves known to the system 10. This is shown as CHECK IN in block 122.
If the check in was not successful, the server exits in block 126 and is not allowed to receive messages. If the
check in was successful, execution proceeds to block 128 where it waits for incoming command messages
from any clients.

As shown in block 130, when a server 54 responds to a command message by returning a reply message
or a data message to a client 52, it must preserve the message context if context was given in the command
message from the client. The server 54 then looks in its command list to determine it can execute the command,
as shown in block 132. If the command cannot be found in the command list, then an error reply message is
created, as shown in block 138. Else, the command is executed, and a reply is created, as shown in blocks
134 and 136. The command context that was preserved in block 130 is then included in the created reply mes-
sage, and the message is sent, as shown in blocks 140 and 142. There are also situations where reply mes-
sages are not required. For example, if the server 54 receives a command message that contains the non-
tagged parameter "noreply", it should process the command normally, but should not generate a reply message
for that command message. The server 54 stays in the loop waiting for command messages, executing the
commands, and returning reply messages until it exits, as shown in blocks 144 and 146. Upon exit, the server
process is terminated, and the queue server 34 (FIG. 1) may optionally delete the corresponding queue from
its queue tables.

FIG. 7 shows a more detailed representation of the server logic control flow. All the servers 54 perform
certain actions when they are first started (block 160). These actions allow initialization of the servers 54 at
start-up. This allows one executable file to be used for several different but similar applications, reducing the
amount of redundant code and time spend recompiling different versions of servers. As shown in block 162,
all server common commands 46 (FIG. 2), including user-specified commands, are created at start-up. Be-
cause these commands are created immediately after start-up, they can be called from the server shell com-
mand-line, or at any point in a start-up file. This is also were the command list is created.

As shown in block 164, the server shell sets software traps for pre-specified signals that are intercepted
by the server shell to allow the server to make a graceful exit. A graceful exit is one in which the server executes
any exit code defined by the server developer or the server shell. In addition, the servers perform a graceful
exit when they receive an exit command from a client.

In block 166, the shell dynamic variables are created. Each server 54 built upon the server shell 42 contains
some predefined dynamic variables. The dynamic variables are initialized before command-line arguments to
the server are processed, so their values may be overridden by command-line commands or start-up files, if

7

10

18

20

25

30

35

40

45

50

55

EP 0622 714 A1

necessary. Preferably, the dynamic variables that are initialized are the server’'s name as derived from the
command-line name of the process; the current working directory which contains the path of the directory from
which the process was started; the start-up filename variable which can be set on the command line to tell the
server shell to execute some start-up commands in a file; and the server shell version number to reflect the
version of the server shell this server is built upon.

The integrated automation development system servers also contain several default logs (not shown). The
names and attributes of these logs are assigned at this time, as shown in block 168. Preferably, the filename
and default attributes can be reset by command-line commands, or start-up commands. Subsequently in block
170, one or more commands may be entered on the operating system command line when the server process
is started and these commands are executed. If there are any errors in the command-line commands, the ser-
ver exits, as shown in blocks 172 and 174.

In block 176, the server shell checks in with the queue server to enable messaging. The check in process
is described above in conjunction with references to FIG. 7. Since the messages are managed and routed by
server names, each server must be unique to the system 10. If the queue server is not running, or the check-
in fails for any reason, an error message will be printed or displayed and the server terminates, as shown in
blocks 178 and 180.

As shown in block 182, if there is a command named srv_init, it is invoked at this point. The srv_init com-
mand is a location-specific and server-specific initialization hook command. Generally, the automation devel-
opment system servers 54 are created by adding to the server shell 42 user-specified commands that can be
invoked by clients. The user-specified commands are processed as the result of an incoming command mes-
sage, and have no effect on the server shell control logic. However, a special type of commands may be pro-
vided as a way for a server developer to add code to the server shell control logic in predefined locations in
the control flow. By default, these commands perform no action, and have no effect on server execution. These
special commands are executed when the server shell reaches a specific place in the flow of control. These
location-specific commands, or hook commands, are indicated in the flowcharts of FIGS. 7-10 as dotted and
dashed blocks.

If the dynamic variable containing the start-up filename was set on the command-line or by the srv_init
command, as shown in block 184, the server shell looks in the current working directory for the start-up file
named by the dynamic variable. Commands are then read from the file and executed until there are none left,
as shown in blocks 186 and 188.

All file access within a server is done in relation to the current working directory of the server. The current
working directory defaults to the directory from which the server was started. However, the current working
directory can be set to a different directory by setting the CWD dynamic variable with a command-line com-
mand, a srv_init command, or a command in a start-up file. After loading the start-up file, if necessary, the
server shell changes its actual current working directory to match the one specified by the CWD dynamic va-
riable, as shown in block 190. If the server shell cannot change to the specified directory, the server will ter-
minate and log an error message, as shown in blocks 192 and 194.

Once the server completes its initialization process, it enters a loop in which it reads a message from the
queue, processes it, then returns to read another message, as shown in block 196. FIGS. 8-10 shows the con-
trol logic for the message processing loop.

In FIG. 11, block 200 represents the initialization process that is shown in FIG. 7. If an alarm signal gen-
erated by a command is received while the server shell is waiting for a message, the hook command srv_alarm
is invoked, as shown in blocks 202 and 204. Server Shell then continues waiting for a message by checking
the queue, as shown in block 2086. If an alarm signal is received at this time, it returns to block 204 where the
srv_alarm hook command is invoked. Otherwise, if there are no messages in the queue, as shown in block
210, the srv_reverr hook command is invoked, as shown in block 212. By default, the server shell waits indef-
initely for a message to arrive on the queue. When a message arrives, flow continues and the message is proc-
essed if possible.

However, if a dynamic variable is defined which specifies that the server should not wait forever for mes-
sages, the server checks the message queue once, and processes the received message if one was waiting.
If not, the server shell tries to invoke the srv_reverr hook command. This procedure is used to allow for servers
that block on devices in addition to the message queue, such as the terminal server 28 (FIG. 1). If this dynamic
variable is not defined and an error occurs while trying to read a message from the queue, the server shell
invokes srv-reverr, if it exists, logs a message to the error log, and returns to wait for another message if it is
not told to exit. Preferably, provisions may be made so that if a specified number of errors occur consecutively,
the server shell is to write a message to the error log and terminate.

Subsequently, if a message is received as shown in block 210, the message is checked to determine
whether it is in the correct automation development system format. The correct message format is preferably

10

18

20

25

30

35

40

45

50

55

EP 0622 714 A1

defined as a message which begins with the tag "fr". If the incoming message is determined to be a non-au-
tomation development system message in block 214, it is treated and processed as a non-standard format mes-
sage in block 216, which continues in FIG. 12 and is discussed below. If the message is of the correct format,
the server shell looks for a "to" tag in the message, as shown in block 218. If the "to" tag exists in the message,
but the value of the "to" parameter does not match the name of this receiving server, then the server shell in-
vokes the hook command srv_baddr, if it is defined, as shown in blocks 220 and 222. If the "to" tag value is
the same as the server name, or there is no srv_baddr hook defined, then the message is processed normally.
The srv_baddr hook command is used by the queue server 34 (FIG. 1) to route messages to other CPU’s.

To process the message, itis parsed into tagged and non-tagged parameters, as shown in block 224. Pars-
ing allows commands written in the C++ language and Script language to access the message parameters. If
an error occurs while parsing the message, due to mismatched quotes, a reply message indicating the error
is returned to the client, as shown in blocks 226 and 228. The server shell then invokes the hook command
srv_parseerr, if it is defined, as shown in block 230.

If the message parsing was completed without an error, and a "reply" tag is found in the incoming message,
it is treated as a reply message, as shown in block 234. If the message also contains a "ctxt" parameter, the
server shell then looks in a waiting list for an entry with a matching context value. If an entry is found, the com-
mand associated with the entry is invoked, as shown in block 240. If there is not a "ctxt" parameter in the mes-
sage, or the "ctxt" in the message does not exist in the waiting list, the server shell invokes the hook command
srv_reply, if it exists as shown in block 238. If it does not exist, the message is discarded without execution
of the command in the message.

A command message is defined as a message that contains a "do" tag but no "reply" tag. Therefore, if no
"reply" tag is found in block 234, then the server shell looks for the "do" tag and parameter, as shown in block
242. If the "do" tag and parameter exist, then it is a command message, and the processing is shown in block
244 and in FIG. 13. Command message processing is described in detail below in conjunction with FIG. 13.

If a message does not contain a "do" or a "reply" tag, it is assumed to be a data message. The processing
of data messages are shown in block 246. The server shell looks for a "ctxt" parameter in the message, and
checks the waiting list for an entry with the same context parameter, as shown in block 248. If the message
does not have a "ctxt" tag, or it contains a "ctxt" tag that does not exist in the waiting list, then the server shell
invokes a hook command srv_data, if it exists, as shown in block 250. If the srv_data command does not exist,
the message is discarded and ignored. If an entry with a matching context value is found, the command as-
sociated with the entry is executed, as shown in block 252.

The server shell continues processing messages until it is terminated with an exit signal or an "exit" com-
mand from a client. The exit command preferably sets an exit flag within the server shell. The exit flag is
checked at the end of each message processing loop, as shown in block 254. If it has been set, the server
shell invokes a srv_exit hook command, if it exists, then terminates, as shown in block 256.

Referring to FIG. 12, the processing of non-standard format messages 216 is shown. When a non-standard
format message is received, the server shell preferably checks a specific dynamic variable, for example
SYS>PROTOCOL (shown in FIG. 4), to decide how to process the message. The SYS>PROTOCOL dynamic
variable may indicate that the message is in, for example, the SECS (SEMI Equipment Communications Stan-
dard) format or the ASCII format, as shown in blocks 260 and 264. If this variable doesn’t exist or had no value,
the message is passed to a hook command srv-msg, if it exists, as shown in block 268. If srv_msg does not
exist, the message is discarded and ignored.

If the SYS>PROTOCOL dynamic variable is set to SECS, then the server shell processes the message
by invoking a hook command sxdecode. The sxdecode hook command extracts data from the SECS message
and stores them in dynamic variables. If the SYS>PROTOCOL dynamic variable has been set to ASCII, the
server shell executes the cut hook command to process the message. The cut command extracts data from
ASCII messages and stores the extracted data in dynamic variables. In both instances, the format of the SECS
and ASCIl messages must have been previously defined. Both commands are also defined in the equipment
server shell for SECS and ASCII message processing.

After a non-standard format message has been decoded by sxdecode or cut, the server shell checks the
waiting list for an entry that directs the message to a command for processing, as shown in block 270. If an
entry is found, the corresponding command is invoked, as shown in block 272. If no context entry is found and
srv_msg is defined, srv_msg invoked to process the message, as shown in block 268. Execution then returns
to block 254 in FIG. 11.

If a standard format message contains a "do" tag, but no "reply" tag, it is assumed to be a command mes-
sage. Referring to FIG. 13, the command message processing 244 is shown. The server shell preferably as-
sumes that the "do" tag identifies the command to be executed. It looks through the server’s command list for
a command whose name matches the value of the "do" tag, as shown in block 280. If the command is not found

9

10

18

20

25

30

35

40

45

50

55

EP 0622 714 A1

in the server’s command list, the server shell will execute a hook command srv_command, if it exists, as shown
in blocks 282 and 284. If srv_command does not exist, the server shell will build an error reply message and
send it to the client, as shown in block 286.

If the command identified by the "do" tag is found in the command list, the syntax of the command message
is checked against the syntax string stored in the command list, as shown in block 288. However, if a non-
tagged parameter "nosyntax" exists in the incoming message, or a dynamic variable nosyntax exists, then syn-
tax checking is not performed. If a syntax error is detected, an error reply message will be returned to the client
by the server shell and the command is not executed, as shown in blocks 290 and 286. If the command message
syntax is correct, the server shell invokes the code of the command, as shown in block 292. The command
code can be written in the C++ or Script language. When C++ commands are invoked, the precompiled C++
function attached to the command is called. When a Script language command is invoked, the Script language
code is interpreted line-by-line.

Whether written in C++ or script, command code must return an integer value and optional string data.
The returned integer and the string data are used to construct a reply message that is returned to the client.
If the command message that invoked the command includes a "noreply" parameter, then a reply is not needed
and is not sent to the client, as shown in block 294. The "noreply" parameter is used when a particular com-
mand’s successful completion is not crucial to the client. If a reply is needed and the command message that
invoked the command includes a "ctxt" parameter, the server shell includes the context tag and its value in
the resulting reply message. Execution then returns to block 254 in FIG. 11.

Provisions are also provided in the automation development system 10 for communication with entities
that were not created by the automation development system 10. Since the queue server does not have control
over these queues, it must be told what names to assign to these queues. The queue server thus maintains a
fixed key table or file that records the names of predefined queues and their corresponding keys or IDs and
an automatic queue table that records the queue names and keys of servers that have checked in. Once a
queue key has been registered in one of the key tables, it can be referenced by name just like any other queue
in the system.

The queue server further supports message sending and receiving between clients and servers on sep-
arate CPUs. Each CPU may be running a separate automation development system, each with a queue server
and an additional process called a net server. The queue server is used to send messages to the other CPUs
through a network, while the net server is used to receive messages from the network and deliver them to
the destination processes.

FIG. 14 illustrates the process by which distributed messages are delivered. A server A running on CPU1
wishes to send a message to a server B running on CPU2:

1. Server A asks the queue server for server B’s queue ID, as shown by arrow 301.

2. Since the queue server does not find server B in the list of automatic queues, it looks for it in the fixed

keys file.

3. The queue server finds server B in the fixed keys file and sends the key having the queue server’s

queue value, for example 9657, to server A, as shown by arrow 302.

4. Server A sends a message to queue 9657, as shown by arrow 303.

5. The queue server on CPU1 receives the message from server A, but notices that the "to" tag does not

match its queue value.

6. The queue server looks in arouting table for server B. The routing table is preferably a dynamic variable

structure that contains names of processes and the remote machine on which they exit.

7. The queue server finds server B and the name of server B’'s CPU in the routing table and sends the

message from server A across the network to CPU2, as shown by arrow 304.

8. The net process on CPU2 receives the message from the network, as shown by arrow 305.

9. The net process registers server A with CPU2’s queue server, as shown by arrow 306.

10. The net process asks CPU2’s queue server for server B’s queue ID. The queue server returns the

queue ID, for example 5003, that server B was assigned when it checked in, as shown by arrow 307.

11. The net process sends the message to server B, as shown by arrow 308.

12. Server B receives the message, just as if it were sent from a local process.

Besides the queue server 34, the integrated automation development system 10 may also need a time
server 36 (FIG. 1) to coordinate time-specific or time-dependent activities for servers and clients. For example,
Timer may be used to send a maintenance command message every 24 hours or it may be used to send a
"timeout" message in 30 seconds. The time server is a server’s link to a clock or timekeeping device. The time
server also must be run in the background like the queue server.

The equipment server 22 (FIG. 1) provides methods or server commands for defining a server interface
to a specific type of manufacturing equipment. The equipment server includes all of the code or commands

10

10

18

20

25

30

35

40

45

50

55

EP 0622 714 A1

of the server shell, plus additional commands that provide the functionality required to interface with the man-
ufacturing equipment. In addition to the equipment server commands that allow definition and use of an equip-
ment server, the equipment server also defines two special commands named sxdecode and cut described
above that process SECS and ASCIl messages received from the manufacturing equipment. The equipment
server further preferably provides logging of data from the equipment.

Each piece of equipment served by an equipment server must be assigned a unique SECS identification
number or ID. SECS equipment requires that this ID be placed in all messages to and from equipment, so the
equipment server uses it to separate and identify incoming SECS messages. The equipment server includes
several commands for routing, decoding, encoding, and sending SECS messages. Please refer to relevant
SECS documentation for a detailed discussion of the SECS message formats.

The graphical control client 14 of FIG. 1 may be implemented as an automation control server that employs
the Sequential Function Chart or SFC notation. The SFC notation is derived from an international standard
for graphical representation of control systems, as defined by the International Electrotechnical Commission.
The graphical control client 14 then provides and defines the control flow of the automation development sys-
tem. It provides commands for defining and debugging a control application. The control application definition
is then used to coordinate the servers and clients in the system to perform the application.

Other server processes may also be implemented in the integrated automation development system 10
to perform interface functions with other entities, such as databases. Servers may be implemented to facilitate
integration, such as a debug server that monitors certain actions and functions to detect miscoding in the sys-
tem, a talk server that provides developers with a command-line interface to all other servers in the system,
and a SFC editor that provides SFC editing capabilities. As discussed above, all such servers are implemented
by adding application-specific commands to the basic code and commands of the server shell 42 (FIG. 2), so
that the underlying control flow logic, messaging management, command management, script interpretation,
and dynamic variable management are already in place. Therefore, automation integration is made easier, and
implementation and modifications may be done more quickly.

Although the present invention has been described in detail, it should be understood that various changes,
substitutions and alterations can be made thereto without departing from the spirit and scope of the present
invention as defined by the appended claims.

Claims

1. Anintegrated automation development system for controlling and coordinating manufacturing equipment,
said system comprising at least one server process, comprising:
a messaging manager for receiving messages;
an interpreter for evaluating said received messages including commands expressed in a text-based pro-
gramming language, said interpreter recognizing said commands in said messages;
a command manager for receiving and executing said commands; and a logic controller for managing the
logic flow of said command execution by said command manager.

2. The integrated automation development system, as set forth in claim 1, wherein said interpreter further
recognizes dynamic variables in an inpt from a user, said dynamic variables being structured hierarchically
and used to store data values during command execution by said command manager or supplying values
needed by said command manager for command execution.

3. Theintegrated automation development system, as set forth in claim 1 or claim 2, wherein said logic con-
troller directs said command manager to check for incoming messages, parse said messages, find the
commands in said messages, check the syntax of the commands, execute the commands, generate a
reply message and said logic controller further directs said messaging manager to send said reply mes-
sage.

4. The integrated automation development system, as set forth in any preceding claim, wherein said appli-
cation-specific command manager executes application-specific commands for controlling and interfac-
ing with said manufacturing equipment, and said logic controller directs said command manager to check
for incoming messages, parse said messages, identify the format of said messages as being SECS, proc-
ess said SECS messages, and continue checking for messages.

5. The integrated automation development system, as set forth in any preceding claim, wherein said appli-

11

10

18

20

25

30

35

40

45

50

55

10.

1.

12.

13.

14.

15.

16.

EP 0622 714 A1

cation-specific command manager executes application-specific commands for managing message rout-
ing between said server processes.

The integrated automation development system, as set forth in claim 5, wherein said message routing
managing application-specific command manager maintains a list of existing server process names and
corresponding message queue addresses.

The integrated automation development system, as set forth in any preceding claim, wherein said appli-
cation-specific command manager executes application-specific commands for interfacing with a user
terminal.

The integrated automation development system, as set forth in any of claims 1 to 6, wherein said appli-
cation-specific command manager executes application-specific commands for interfacing with a host
manufacturing computer system.

The integrated automation development system as set forth in any preceding claim further comprising a
control client for generating messages;

a terminal server coupled to a developer interface terminal for receiving developer input and displaying
system status, said terminal server further generating and receiving messages; and

a queue server for enabling the routing of said messages between said control client, equipment server,
and terminal server.

The system, as set forth in any preceding claim, wherein said interpreter further recognizes dynamic va-
riables in said ASCII user input, said dynamic variables being structured hierarchically and used to store
data values during command execution by said command manager or supplying values needed by said
command manager for command execution.

The system, as set forth in claim 9 or claim 10, wherein each client and server further comprising a mes-
sage queue for receiving ASCIl messages, and said logic controller directs said command manager to
check said message queue for incoming messages, parse said messages, identify the format of said mes-
sages, process said messages in response to said identified message format, and continue checking said
message queue for messages.

A method for integrating an automation development system for controlling and coordinating manufactur-
ing equipment, said system comprising a plurality of server processes, the method comprising the steps
of:

checking for and receiving messages from other server processes;

evaluating said received user input composing at least one command expressed in a text-based program-
ming language, and recognizing said commands in said messages;

executing said commands; and

continuing to check for messages.

The method, as set forth in claim 12, further comprising the steps of recognizing dynamic variables in
said messages, structuring said dynamic variables hierarchically, and using said dynamic variables to
store data values during command execution or to supply values needed for command execution.

The method, as set forth in claim 12 or claim 13, further comprising the steps of parsing said messages,
finding the commands in said messages, checking the syntax of the commands, executing the commands,
generating a reply message, and directing said reply message to a proper destination.

The method, as set forth in any of claim 12 to 14, further comprising the steps of checking a message
queue for incoming messages, parsing said messages, identifying the format of said messages, process-
ing said messages in response to said identified message format, and continuing to check said message
queue for messages.

The method, as set forth in any of claims 12 to 15, further comprising the steps of executing application-
specific commands for controlling and interfacing with said manufacturing equipment, checking for incom-
ing messages, parsing said messages, identifying the format of said messages as being SECS, process-
ing said SECS messages, and continuing to check for messages.

12

10

18

20

25

30

35

40

45

50

55

EP 0622 714 A1

17. The method, as set forth in any of claims 12 to 16, further comprising the steps of executing application-
specific commands for managing message routing between said server processes, and maintaining a list
of existing server process names and corresponding message queue addresses.

13

EP 0 622 714 A1

bt e e L 1
10_\ : 34 |
: FACTORY
: EQUIPMENT
i 36 \
| GRAPHICAL 24
: % CONTROL
: CLIENT 28
I
|
! TERMINAL
: SERVER
I
I
T FIG. 1
\
SEMICONDUCTOR
MANUFACTURING 30
SYSTEM (SMS)

40 al -7 448
A " APPLICATION | |
| SPECIFIC__|
|_COMMANDS T 7] 45
COMMON
COMMANDS FliG. 2
424 T 44
BASE CODE
TEmEQUIPA
LOCA=71 LOCB=42 LOCC=68 PROTOCOL=SECS
OTHERS

FR=QSRV TO=NULLSRV NAME

N

FIG. 4 S

1=NANOSRV © o0 o0 7=TK6579
14

EP 0 622 714 A1

APPLICATION
SPECIFIC COMMAND
MANAGER

SHELL LOGIC
CONTROLLER

SCRIPT
LANGUAGE
INTERPRETER

DYNAMIC
VARIABLE
MANAGER

COMMAND
MANAGER

MESSAGING
MANAGER

FIG. & -
52 5 commann MESSAGES SC
e 98 | REPLY MESSAGES SRR
DATA MESSAGES ;
60 |- 64
|
r— = L i |
| RESOURCE P62
e e o o= o -l
70\ FIG. 6
80~ RESOURCE 1 84~ RESOURCE |
72 R T
76 [74 86 ' 82

COMMAND / —_——~ " commanp /
CLIENT _((SERVER) (SERVER
REPLY REPLY

/8 88

15

90

CHECK
QUEUE

101~

!

PARSE
MESSAGE

103~

!

FIND
COMMAND

104~

!

CHECK

1057 SYNTAX

!

EXECUTE
COMMAND

!

SEND
REPLY

S

INQUIRY

ABOUT B

EP 0 622 714 A1

34

MESSAGE
FR=A TO=B

FIG.

CHECK

IN
93
100

COMMAND LIST

97

QUEUE
No. B

SERVER
(&

5105

102

¥

NAME: ADD
SYNTAX: ADD NUML=%d NUM2=%d
CODE: ADD()

> NAME: SUB
| SYNTAX: SUB NUML=%d NUM2=%d
_—~"" | CODE: SUB()

i NAME: TOTAL

e SYNTAX: TOTAL
CODE: TOTAL()

FIG. 8

16

EP 0 622 714 A1

START SERVER }—120
!
CHECK IN 122
124 1 /26
NOLT™ ey
YES
WAIT FOR
coMmmanp 128
MESSAGE
!
STORE MESSAGE | -130
CONTEXT | /38
132 " CreaTe
COMMAND ERROR
IN SERVER REPLY
MESSAGE
EXECUTE
COMMAND 134
v
CREATE
COMMAND REPLY 136
2
PUT CONTEXT
IN REPLY |-140
Y
SEND REPLY
MESSAGE |>-142
144
NO
YES
EXIT 146 FIC
FIG. 9

17

[StarT SErer 160
LCREATE COMMON COMMANDS}~ 162
[SET SicNaL TRaPs | 164
v
CREATE SHELL | 166
DYNAMIC VARIABLES
[SET (oG opTioNs 168
L_EXECUTE COMMAND LINE |~ 170
172
ERROR 12> ol T
N
CHECK {:OWITH 74
QUEUE SERVER ™-176
180
EXIT
4182
START UP
COMMANDS
YES
’ —
PROCESS COMMANDS _ ~_g¢
iE 188
MOR
%@
'NO
CHANGE CURRENT
WORKING DIRECTORY {190
EXIT

RECEIVE MESSAGES

EP 0 622 714 A1

INITIALIZE |-~200
2104
L s glarm_
206 0 | FIG. 11
y
| CHECK QUEUE |
208
ALARMS_YES
RECEIVED,”
210 "0 222
Nl S reverr]
PROCESSING |.-216
NON~-STANDARD
FORMAT
MESSAGES

224

18

)
PARSE MESSAGE
I ,] 228 230
226))
RO e AR
"""""""""" T 242
!
| |
i 2&38 i 246
! —<7C—r~~! [PROCESS
r 1
: LSy bl comviand || p=mm— -/--,
| I || MESSAGE |
' 240 ! !
I EXECUTE COMMAND |~ =232 | |
A : 3 I
| i
250 EXECUTE | |
274 ! COMMAND | 1
| VR, __._._‘___

-

Ly

Isxdecodel
a—— |

.

EP 0 622 714 A1

PROCESSING
NON-STANDARD

FORMAT MESSAGES

3

EXECUTE COMMAND

¢

PROCESSING
COMMAND
MESSAGES

214~y

FIG. 12

IN SERVER

|
b———

286
/

EXECUTE
COMMAND

SEND ERROR
REPLY

294

NEEDED
296

YES)

SEND COMMAND

REPLY

19

et}

4

A ~-274

FIG. 13

srv_command|
- e oum o]

EP 0 622 714 A1

CPU1
FIXED KEYS FILE

NAME=THRMSRV KEY=301
NAME=B KEY=9657
301 302 :

R YO VI GONNECT B,
9657 QUEUE ROUTING TABLE
SERVER A Jeeesdeeec. Y080,
O FR=A T0=B CMD=GET\ SERVER SMSSRV=CPU3
/ B=CPU2

303 :
L ~304
NETWORK
L ~305
308
SERVER B \

FR=A TO=B CMD=GET

307-~ CONNECT
5003 306

CPU2

FIG. 14

20

EPO FORM 1503 03.82 (P04CO1)

D)

EP 0 622 714 A1

Europecan Patent

EUROPEAN SEARCH REPORT
Office

Application Number

EP 94 30 3033

DOCUMENTS CONSIDERED TO BE RELEVANT
Category Citation of document with indication, where appropriate, Relevant CLASSIFICATION OF THE
of relevant passages to claim APPLICATION (Int.CL.5)
Y EP-A-0 162 670 (BRITISH AEROSPACE PUBLIC |1,3,12, | GO5B19/417
LIMITED COMPANY) 27 November 1985 14,15
* page 3, paragraph 1 - page 4, last
paragraph *
* page 8, last paragraph - page 12,
paragraph 3 *
* figures 1,2 *
A 4-9,16,
17
A AT AUTOMATISIERUNGSTECHNIK, 1,3,12,
vol.39, no.10, October 1991, MUNCHEN, DE |14,15
pages 344 - 353, XP000265596
HEINRICH WEBER 'Monolithische
Programmierung - ein Verfahren zur
Programmierung verteilter heterogener
Automatisierungssysteme'
* page 350, right column, last paragraph -
page 352, left column, paragraph 3 *
A |PROCEEDINGS OF THE INDUSTRIAL COMPUTING |1-17 IEGHNICAL FIELDS,
vol.2, 23 October 1992, HOUSTON, TEXAS,USA GO5SB
pages 367 - 374, XP000344870
H.MATSUURA 'SEMICONDUCTOR CIM STANDARD
SOLUTION'
* see the whole document *
The present search report has been drawn up for all claims
Place of search Date of completion of the search Examiner
THE HAGUE 18 August 1994 Nettesheim, J
CATEGORY OF CITED DOCUMENTS T : theory or principle underlying the invention
E : earlier patent document, but published on, or
X : particularly relevant if taken alone after the filing date
Y : particularly rel if combined with anoth D : document cited in the application
document of the same category L : document cited for other reasons
A : technological background
O : non-written disclosure & : member of the same patent family, corresponding
P : intermediate document document

21

	bibliography
	description
	claims
	drawings
	search report

