

① Veröffentlichungsnummer: 0 626 492 A2

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 94103378.9

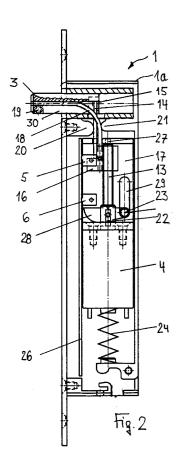
2 Anmeldetag: 06.03.94

(51) Int. CI.⁵: **E05B 47/02**, G08B 13/00, H02K 7/06

30 Priorität: 25.05.93 DE 4317365

Veröffentlichungstag der Anmeldung: 30.11.94 Patentblatt 94/48

Benannte Vertragsstaaten:
AT BE CH DE DK ES FR GB IT LI LU NL PT SE


71 Anmelder: Fritz Fuss GmbH & Co. Johannes-Mauthe-Strasse 14 D-72458 Albstadt (DE)

Erfinder: Künzel, Reiner
 Reinhold-Maier-Strasse 5/1
 D-72336 Balingen-Frommern (DE)

Vertreter: Weber, Otto Ernst, Dipl.-Phys. et al Weber & Heim Hofbrunnstrasse 36 D-81479 München (DE)

(54) Gesteuerte Riegelbetätigungsvorrichtung.

Es wird eine Riegelbetätigungsvorrichtung, die von einer Schalteinrichtung einer Einbruchmeldeanlage gesteuert werden kann, beschrieben. Die Stelleinrichtung weist einen Gleichstromelektromotor mit Links-Rechtslauf auf, dessen Drehrichtung durch Polaritätsumwandlung steuerbar ist. Der Riegel ist quer zur Motorwelle ausgerichtet. Über ein Getriebe wird die Motordrehung in eine Längsbewegung umgesetzt. Diese wird über eine biegsame Welle oder über einen Kniehebel auf den Riegel übertragen.

20

Die Erfindung betrifft eine Riegelbetätigungsvorrichtung, mit einer einen Sperriegel und eine elektrische Stelleinrichtung aufweisenden Sperreinheit, wobei die Sperreinrichtung einen Gleichstromelekromotor mit Links-Rechtslauf aufweist, dessen Drehrichtung durch Polaritätsumschaltung steuerbar ist, und wobei ein Getriebe zur Umsetzung der Motordrehung in eine Langsbewegung entlang der Motordrehachse vorhanden ist.

Derartige Riegelbetätigungsvorrichtungen dienen in Verbindung mit einer Einbruchmeldeanlage dazu, das Öffnen einer Tür zu verhindern, wenn die Alarmanlage scharf geschaltet ist. Nur wenn sich die Alarmanlage im Unscharf-Zustand befindet, ist ein Zurückschieben des Riegels und damit ein Öffnen der Tür möglich. Bekannt ist, den Sperriegel mit einem mechanischen Schlüsselschloß zu betätigen. Es sind ferner auch Betätigungen mit Hilfe von Elektromagneten bekannt, wobei ein Elektromagnet zum Öffnen und ein weiterer Elektromagnet zum Schließen des Riegels erforderlich sind.

Aus der DE 36 31 043 C1 ist eine gattungsgemäße Vorrichtung, insbesondere für Kraftfahrzeug-Türschlösser, bekannt, der einen reversiblen Elektromotor aufweist. Dieser treibt über eine Kupplung einen Spindelantrieb für den Riegel an. Eine derartige Vorrichtung eignet sich aufgrund ihrer Dimensionierung und Konstruktion nicht für den Einbau in eine übliche Tür oder einen Türrahmen eines Gehäudes

Der Erfindung liegt die **Aufgabe** zugrunde, eine Riegelbetätigungsvorrichtung der eingangs genannten Art zu schaffen, welche besonders sicher und zuverlässig arbeitet und in eine übliche Tür oder einen üblichen Türrahmen eingebaut werden kann.

Diese Aufgabe wird alternativ dadurch gelöst, daß der Riegel quer zur Motorwelle ausgerichtet und daß eine biegsame Welle oder ein Kniehebel zwischen dem Getriebe und dem Riegel vorhanden ist, mit welcher bzw. mit welchem die Längsbewegung in eine Querbewegung umgesetzt wird.

Die Erfindung hat den Vorteil, daß die einzelnen Komponenten geringe geometrische Abmessungen aufweisen können und damit zum Einbau in alle gängigen Türrahmen und Türblätter geeignet sind. In Verbindung mit einer Alarmanlage kann auf den Einbau eines allseitigen Flächenschutzes und/oder aufwendige Elektronik zur Sabotageüberwachung bei der Stelleinrichtung verzichtet werden, da die Scharf-/Unscharfschaltung über das separate Bedienteil erfolgt.

Eine bevorzugte Weiterbildung der Erfindung besteht darin, daß das Getriebe einen Spindelantrieb aufweist, der von der Welle des Elektromotors angetrieben wird, daß der Spindelantrieb auf ein Ende der biegsamen Welle wirkt und daß das andere Ende am Riegel befestigt ist. Auf diese Weise wird eine zwangsgeführte Umlenkung der Längsbewegung in eine Riegelquerbewegung erreicht

In einer weiteren vorteilhaften Weiterbildung sind gehäusefeste Führungsmittel, bevorzugt beabstandete Bolzen, vorgesehen, welche die Umlenkung der biegsamen Welle erleichtern.

Alternativ wird eine zwangsgeführte Umlenkung der Längsbewegung in eine Riegelquerbewegung dadurch erreicht, daß der Spindelantrieb auf zwei gelenkig verbundene Hebelarme wirkt, wobei einer der Hebelarme orstfest und der andere am Riegel angelenkt ist (Kniehebel).

Eine bevorzugte Weiterbildung der Erfindung besteht darin, daß Mittel zur mechanischen Notentriegelung im Gefahrenfall auch bei Stromausfall oder Funktionsausfall der Stelleinrichtung vorhanden sind. So kann der Riegel im Notfall mit Hilfe eines Werkzeugs entriegelt werden.

Es ist besonders vorteilhaft,daß der Riegel eine Längsnut zur Aufnahme der biegsamen Welle aufweist, wenn sich der Riegel in einer Riegelführung befindet.

Um zu verhindern, daß sich ein Unberechtigter durch gewaltsames Zurückschieben des Riegels Zugang verschafft, ist es vorteilhaft, daß eine lösbare mechanische Blockiervorrichtung für den Riegel in seiner ausgefahrenen Position vorhanden ist.

Beonders einfach und zuverlässig ist es, daß die Blockiervorrichtung vom Spindelantrieb gesteuert wird. Die Bewegung des Spindelantriebs bei der Riegelbetätigung wird dabei gleichzeitig zur Betätigung der Blockiervorrichtung benutzt.

Dies erfolgt bevorzugt dadurch, daß die Blokkiervorrichtung einen Blockierstift aufweist, der von einem auf der Spindel verschiebbaren Gleitstück bewegt wird.

Die Notentriegelung kann auf einfache Weise dadurch gewährleistet werden, daß der Motor und das Getriebe als eine Einheit zusammengefaßt sind, beispielsweise auf einer Montageplatte, daß zur Notentriegelung diese Einheit in Richtung der Motorwelle vom Riegel weg in einem Gehäuse verschiebbar angeordnet ist, daß der Riegel separat im Gehäuse verschiebbar angeordnet ist, und daß eine Haltevorrichtung vorhanden ist, welche die Einheit lösbar in einer Betriebsposition hält.

Als vorteilhaft erweist es sich, daß die Haltevorrichtung eine Feder ist, die sich am Gehäuse abstützt.

Eine vorteilhafte Weiterbildung besteht im Zusammenhang mit der Notentriegelung darin, der daß ein von außen betätigbarer Nockenhebel zur Verschiebung der Einheit aus Motor, Getriebe und gegebenenfalls Montageplatte vorhanden ist.

Es ist besonders zweckmäßig, daß der Sperriegel einen runden Querschnitt aufweist und tür- bzw. türrahmenseitig eine entsprechende runde Büchse

50

20

25

30

zur Aufnahme des Sperriegels vorhanden ist. Der runde Querschnitt hat den Vorteil, daß die Büchse problemlos mit einem üblichen Bohrwerkzeug eingebaut werden kann. Der Querschnitt kann hierbei sowohl kreisrund als auch oval sein.

Die Betriebssicherheit wird ferner dadurch noch weiter erhöht, daß eine Stromüberwachung und/oder eine Drehmomentüberwachung zum Schutz gegen einen Festsitz des Elektromotors vorhanden ist.

Eine andere vorteilhafte Ausgestaltung der Erfindung besteht darin, daß schalteinrichtungsseitig eine Codiervorrichtung und stelleinrichtungsseitig eine Decodiervorrichtung sowie eine Auswerteschaltung vorhanden sind, und daß eine Motoransteuerung ausschließlich dann erfolgt, wenn am Elektromotor eine in der Schalteinrichtung angegebene Codierung anliegt.

Durch diese Maßnahme erfolgt nur bei Übereinstimmung der Codierung an der Alarmzentrale einerseits und an der Stelleinrichtung andererseits eine Bestromung des Gleichstrommotors. Andernfalls wird die Stelleinrichtung nicht aktiviert.

Es erweist sich als vorteilhaft, daß die Codierung mittels eines der Motorversorgungsspannung überlagerten elektrischen Signals erfolgt. Auf diese Weise können separate Übertragungswege für die Codierung entfallen.

Es ist darüber hinaus vorteilhaft, daß Stellungssensoren zum Erfassen der Endlagen des Sperriegels vorhanden sind.

Nachfolgend wird die Erfindung anhand von zwei in der Zeichnung dargestellten Ausführungsbeispielen weiter beschrieben. Es zeigen:

Fig. 1 schematisch eine Tür mit einer Riegelbetätigungsvorrichtung in Verbindung mit einer Alarmzentrale;

Fig. 2 bis 4 schematisch einen Querschnitt durch eine Stelleinrichtung der Riegelbetätigungsvorrichtung gemäß Figur 1 in drei verschiedenen Betriebszuständen; und

Fig. 5 schematisch einen Querschnitt durch eine weitere Stelleinrichtung.

In Fig. 1 ist mit 1 eine Stelleinrichtung für einen Sperriegel 3 bezeichnet, welche in eine Zarge 2 einer Tür eingebaut ist. Die zugehörigen Teile sind in der Zeichnung in einem teilweisen Querschnitt wiedergegeben. In ein Türblatt 8 ist bündig eine Büchse 11 mit einem Flansch 7 zur Aufnahme des Sperriegels 3 eingebaut, der sich in der Fig. 1 in der ausgefahrenen Sperrstellung (Endstellung) in der Büchse 11 befindet.

Der Sperriegel 3 wird von einem Gleichstromelektromotor 4 angetrieben, welcher über eine Leitung 12 von einer Alarmzentrale 10 einer Einbruchmeldeanlage angesteuert wird. Die Scharfschaltung bzw. Unscharfschaltung der Alarmanlage erfolgt mit Hilfe eines separaten Bedienteils 9, welches sich außerhalb des von der Alarmanlage geschützten Bereichs befindet.

Ist die Bedingung der Zwangsläufigkeit der Alarmanlage erfüllt, kann die Scharfschaltung der Alarmanlage am Bedienteil 9 erfolgen. Wenn die Scharfschaltung von der Alarmzentrale 10 erkannt ist, wird der Elektromotor 4 in der Stelleinrichtung 1 von der Alarmzentrale 10 aus bestromt und in die dargestellte Endstellung ausgefahren. Das Türblatt 8 ist damit verriegelt. Ein Öffnen der Tür ist erst dann möglich, wenn zuvor die Alarmanlage am Bedienteil 9 aus- bzw. unscharf geschaltet wurde.

Gemäß Fig. 2 weist die Stelleinrichtung 1 ein Gehäuse 1a auf, das in dem dargestellten Beispiel aus stabilem Zink-Druckguß besteht und in eine Zarge 2 einbaubar ist. Der Sperriegel 3 weist hier einen kreisrunden Querschnitt auf. Die Fig. 2 zeigt den Sperriegel im eingefahrenen Zustand. Der Elektromotor 4 ist auf einer Montageplatte 17 befestigt, die im inneren der Stelleinrichtung 1 angebracht ist. Der Elektromotor 4 weist eine Welle 22 auf, die über ein Getriebe mit dem Sperriegel 3 verbunden ist, durch welches die Drehbewegung in eine Riegelquerbewegung umgelenkt wird.

Die Motorwelle 22 ist hierzu über eine Kupplung 15 mit einer Spindel 13 verbunden ist. Das andere Ende der Spindel 13 ist in einer Führungsbuchse 27 gelagert. Auf der Spindel 13 sitzt ein Führungsstück 16 zur Aufnahme eines Endes einer biegsamen Welle 18. Das Führungsstück 16 ist ein Gleitstück mit Innengewinde. Der Spindelantrieb, gebildet durch die Spindel 13 und das Führungsstück 16, setzt die Drehbewegung des Elektromotors 4 in eine Translationsbewegung des Führungsstück und der an ihr angebrachten biegsamen Welle 18 um. Hierzu wird das Führungsstück 16 in einer Führung geführt, die z.B. einen mechanischen Anschlag aufweisen kann. Befindet sich das Führungsstück 16 in der Endlage - Sperriegel 3 ausgefahren -, so wird das gewaltsame Eindrücken des Sperriegels 3 verhindert. Das andere Ende der biegsamen Welle 18 ist an ein Klemmstück 19, welches mit dem Sperriegel 3 verbunden ist, ange-

Mit 20 und 21 sind Führungselemente bezeichnet, die zur Führung der biegsamen Welle 18 dienen. Diese können im einfachsten Fall Rundbolzen sein, die vertikal versetzt links und rechts am Gehäuse 1a befestigt sind und so eine Führung der biegsamen Welle 18 bilden.

Mit 26 ist eine Leiterplatte bezeichnet, die z.B. Elektronikkomponenten zur Steuerung des Elektromotors 4 aufweist. Zum elektrischen Verbinden der Elektronikkomponenten ist eine Zuleitung 25 vorgesehen, die durch den Gehäuseboden eingeführt

wird

In der in Fig. 2 gezeigten Ausführungsform ist die gesamte Anordnung bestehend aus Motor 4 und Montageplatte 17 sowie Welle 22, Spindel 13 und Führungsstück mit Führungsbuchse 27 vertikal beweglich eingebaut. Im Normalzustand ist diese Anordnung vertikal verriegelt und kann nicht bewegt werden. Für eine Notentriegelung z.B. bei Spannungsausfall oder Funktionsausfall kann mittels eines Spezialwerkzeugs die Vorrichtung 1 mechanisch entriegelt werden. Hierzu befindet sich am Außengehäuse 1a eine Bohrung oder Aussparung 23, in die extern ein Spezialwerkzeug eingeführt werden kann. Bei Betätigung der Notentriegelung wird die gesamte Motoraufnahme, Montageplatte 17, Welle 22 usw. gegen eine Feder 24 gedrückt, die zwischen Bodenplatte des Gehäuses 1a und Motor 4 vorgesehen ist, und der Sperriegel 3 wird auf diese Weise eingefahren.

Die biegsame Welle 18 ist sowohl auf Druck wie auch auf Zug beanspruchbar. Durch den Spindelantrieb 13, 16 wird die biegsame Welle 18 in Richtung der Spindel 13 bzw. der koaxialen Motorwelle 22 bewegt. Da die biegsame Welle einerseits am Sperriegel 3 befestigt ist und andererseits über die Führungselemente 20,21 um 90 Grad umgelenkt wird, wird die Längsbewegung des Führungsstücks 16 in eine Querbewegung des Sperriegels 3 umgelenkt. Je nach Drehrichtung des Motors 4 bewirkt der Sperriegel so eine Ver- oder Entriegelung der Vorrichtung. Bei Aufwärtsbewegung des Führungsstücks 16 wird die biegsame Welle 18 mit einem Druck beaufschlagt und schiebt dabei den Sperriegel nach außen. Bei Abwärtsbewegung des Führungsstücks 16 wird die biegsame Welle 18 mit Zug beaufschlagt und bewegt dabei den Sperrriegel 3 nach innen.

Die biegsame Welle kann aus jedem flexiblen Material gefertigt sein. z.B. kann Rundmaterial aus Nylon, runder Federstahl oder ein flacher Federstahl verwendet werden. Ebenso sind andere Materialien mit ähnlichen Eigenschaften denkbar wie z.B. ein flexibler Draht mit entsprechender Steifigkeit und Flexibilität.

Die beiden Endlagen des Sperriegels 3 werden von Stellungssensoren 5, 6 überwacht, die von der Alarmzentrale 10 abgefragt und ausgewertet werden. Diese Stellungssensoren 5, 6 können z.B. berührungslos arbeitende Gabel- oder Reflexions-Lichtschranken oder kapazitive bzw. induktive Näherungsschalter sein.

Die beiden Endlagen des Führungsstücks 16 bzw. des Sperriegels 3 (Fig. 5) werden von Stellungssensoren 5, 6 überwacht, die von der Alarmzentrale 10 abgefragt und ausgewertet werden.

Eine Überwachungseinheit 64 (Fig. 5) wertet beispielsweise über eine Drehmomentüberwachung oder eine Stromüberwachung den Motorbetrieb aus, um diesen zum Beispiel gegen ein Festsitzen zu schützen. Ferner ist eine Decodiervorrichtung 65 (Fig.5) vorhanden, welche decodierte Signale von der Alarmzentrale 10 entschlüsselt und bewertet. Nur wenn ein zulässiger Code übertragen wird, erfolgt eine Bestromung des Gleichsrommotors 4. Ein Links- bzw. Rechtslauf des Gleichstrommotors 4 und damit entgegengesetzte Riegelbewegungen werden durch Anlegen unterschiedlicher Polarität der Stromversorgung erreicht.

Wie die Teilschnitt-Darstellung des Riegels 3 veranschaulicht, weist der Riegel 3 an seiner dem Spindelantrieb 13, 16 zugewandten Seite eine Längsnut 30 auf. Sie nimmt die biegsame Welle 18 innerhalb einer Riegelführung 31 auf. Die Form der Riegelführung 31 kann daher der Außenkontur des Riegels 3 entsprechen.

Befindet sich der Riegel 3 in der Endlage, ist er durch eine vom Spindelantrieb 13, 16 gesteuerte Blockiervorrichtung gegen ein Zurückschieben gesichert. Ein am Führungsstück 16 befestigter Blokkierstift 14 bewegt sich mit dem Führungsstück 16 hinter den Riegel 3 bzw. in eine Ausnehmung 15 im Riegel 3. Bei umgekehrter Bewegung des Spindelantriebs 13, 16 wird die Blockierung aufgehoben.

Figur 3 zeigt eine Notentriegelung, bei welcher die Montageplatte einschließlich der darauf angeordneten Komponenten mittels eines Nockenhebels 28 aus der in Fig. 2 gezeigten Betriebsposition nach unten geschoben ist. Da hierbei selbstätig die Blockiervorrichtung 14, 15 für den Riegel gelöst wird, zieht ihn die biegsame Welle in das Gehäuse 1a zurück. Der Zugriff zum Nockenhebel 28 erfolgt über die Aussparung 23. Der Spindelantrieb 13, 16 wird dabei nicht betätigt. Im Notentriegelungszustand legt sich der Nockenhebel 28 spreizend vor die Montageplatte 17 und verhindert auf diese Weise, daß sie von der Feder 24 in die Betriebsposition und die Sperrstellung des Riegels 3 zurück gedrückt wird.

Fig. 4 zeigt den Riegel 3 in seiner zurückgefahrenen Position, in welche er durch Betätigung des Motors 4 und des Spindelantriebs 13, 16 im üblichen Betriebsmodus gebracht wurde.

In Fig. 5 sind gleiche Teile wie in den Fig. 2 bis 4 mit gleichen Bezugszeichen versehen. Beim Ausführungsbeispiel gemäß Fig. 5 ist der Elektromotor 4 an einem Zapfen 54 schwenkbar gelagert, wobei der Zapfen 54 senkrecht zur Motorwelle 55 verläuft. Die Motorwelle 55 ist mit einem Spindelantrieb 13, 16 verbunden. Zwischen dem Spindelantrieb 13, 16 und dem Sperrriegel 3 befindet sich ein Kniehebel 53, bestehend aus zwei gelenkig verbundenen Hebelarmen 57, 58, an dessen Verbindungsgelenk 59 das Führungsstück 16 angelenkt ist. Die beiden Hebelarme 57, 58 sind über Zapfen 60, 61 am Gehäuse 1a bzw. am Sperriegel

10

15

25

35

40

50

55

3 angelenkt, wobei die Zapfen 60, 61 parallel zur Achse des Verbindungsgelenks 59 und zum Zapfen 54 am Elektromotor 4 verlaufen.

Durch den Spindelantrieb 13, 16 wird das Verbindungsgelenk 59 in Richtung der Spindel 13 bzw. der koaxialen Motorwelle 55 bewegt. Da die Spindel 13 bzw. die Motorwelle 55 unter einem Winkel zur gedachten Verbindungslinie zwischen den beiden Lagerzapfen 60, 61 der Hebelarme 57, 58 verläuft, bewirken die beiden Hebelarme 57, 58 eine Längsverschiebung des Sperriegels 3.

Patentansprüche

1. Riegelbetätigungsvorrichtung, mit einer einen Sperriegel und eine elektrische Stelleinrichtung aufweisenden Sperreinheit,

wobei die Stelleinrichtung (1) einen Gleichstromelektromotor (4) mit Links-Rechtslauf aufweist, dessen Drehrichtung durch Polaritätsumschaltung steuerbar ist, und wobei ein Getriebe zur Umsetzung der Motordrehung in eine Längsbewegung entlang der Motorachse vorhanden ist,

dadurch gekennzeichnet,

daß der Riegel (3) quer zur Motorwelle (22) ausgerichtet ist, und daß ein Kniehebel (53) oder eine biegsame Welle (18) zwischen dem Getriebe und dem Riegel (3) vorhanden ist, mit welchem bzw. mit welcher die Längsbewegung in eine Querbewegung umgesetzt wird.

2. Riegelbetätigungsvorrichtung nach Anspruch 1, dadurch **gekennzeichnet,**

daß das Getriebe einen von der Motorwelle (15) angetriebenen Spindelantrieb (13,16) als Getriebe aufweist, und daß die biegsame Welle (18) einerseits mit dem Spindelantrieb (13,16) und andereseits mit dem Riegel (3) verbunden ist.

- Riegelbetätigungsvorrichtung nach Anspruch 1 oder 2, daß der Riegel (3) eine Längsnut (30) zur Aufnahme der biegsamen Welle (18) aufweist, wenn sich der Riegel (3) in einer Riegelführung (31) befindet.
- Riegelbetätigungsvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,

daß eine gehäusefeste Umlenkung für die biegsame Welle (18) vorhanden ist.

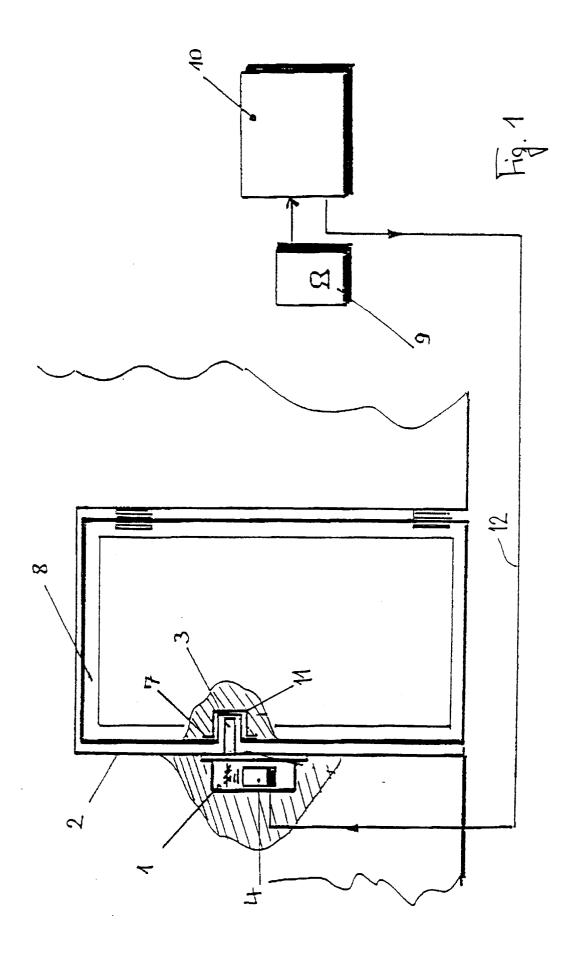
 Riegelbetätigungsvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,

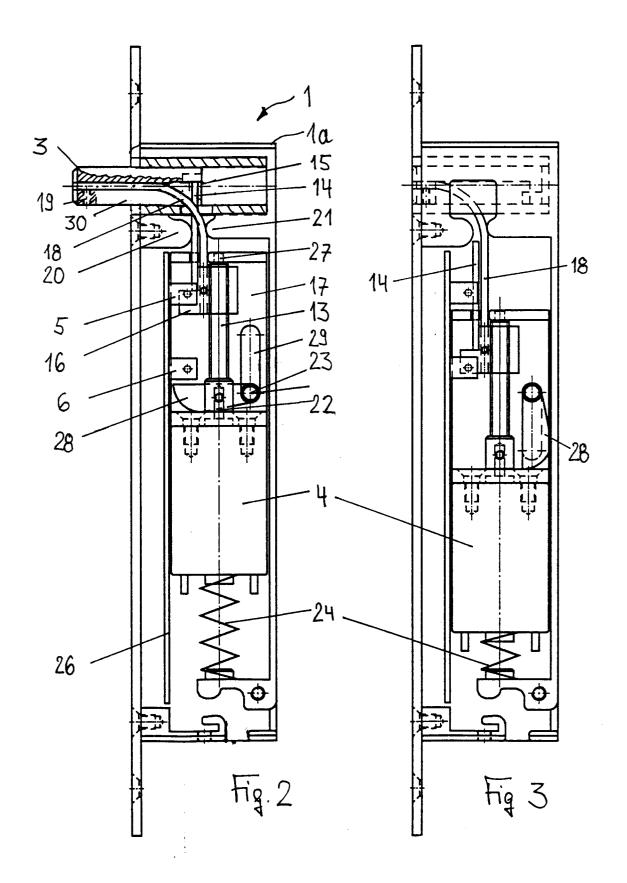
daß eine lösbare mechanische Blockiervorrichtung für den Riegel (3) in seiner ausgefahrenen

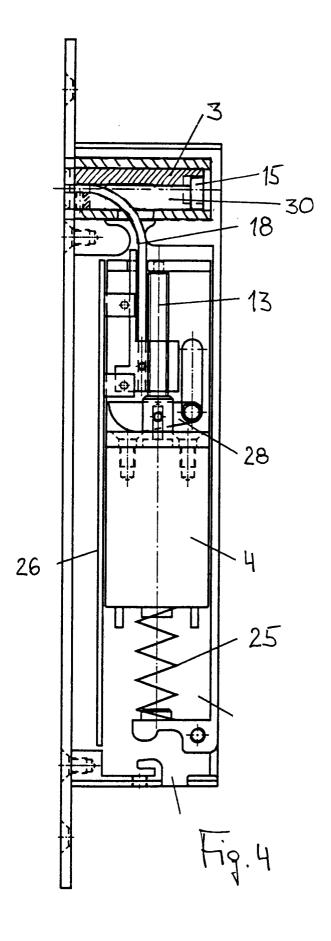
Position vorhanden ist.

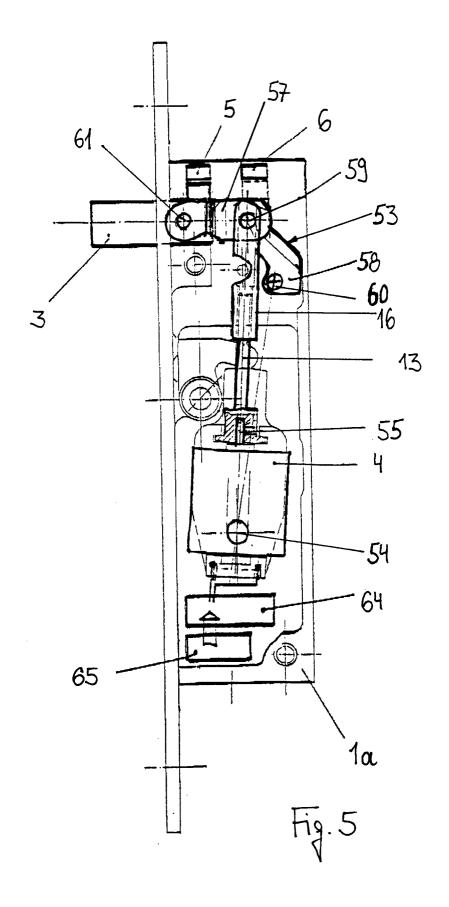
6. Riegelbetätigungsvorrichtung nach Anspruch 5, dadurch **gekennzeichnet**, daß die Blockiervorrichtung vom Spindelantrieb (13,16) gesteuert wird.

 Riegelbetätigungsvorrichtung nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß die Blockiervorrichtung einen Blockierstift (14), aufweist, der von einem auf der Spindel (13) verschiebbaren Gleitstück (16) bewegt wird.


8. Riegelbetätigungsvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,


daß der Motor (4) und das Getriebe auf einer Montageplatte (17) angeordnet sind, daß zur Notentriegelung die Montageplatte (17) in Richtung der Motorwelle (22) weg vom Riegel (3) in einem Gehäuse (1a) verschiebbar angeordnet ist, daß der Riegel (3) separat im Gehäuse (1a) verschiebbar angeordnet ist, und daß eine Halte-Vorrichtung vorhanden ist, welche den Motor (4), das Getriebe und die Montageplatte (17) lösbar in einer Betriebsposition hält.


30 9. Riegelbetätigungsvorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß die Haltevorrichtung eine Feder (12) ist, die sich am Gehäuse (1a) abstützt.


10. Riegelbetätigungsvorrichtung nach Anspruch 8, dadurch **gekennzeichnet.**

daß ein von außen betätigbarer Nockenhebel (28) zur Verschiebung des Motors (4), des Getriebes und der Montageplatte (17) vorhanden ist.

