[0001] The present invention relates to a process for upgrading a hydrocarbonaceous feedstock
substantially boiling in the gasoline range, to produce a gasoline blending pool having
an enhanced octane content and a reduced aromatics content.
[0002] One of the main objects in nowaday's oil refining is to produce gasolines fulfilling
the increasing environmental demands on product quality and having a high octane number.
[0003] EP-A-0 553 931 describes one such process already proposed for obtaining an octane-enhanced
gasoline.
[0004] This means for gasoline that the octane specification has now to be established without
lead-containing additives, less aromatics, in particular benzene, less olefins and
lower gasoline vapour pressure.
[0005] Object of the present invention is to provide a process for the preparation of gasolines
fulfilling both the increasing environmental demands on product quality and the high
octane requirement.
[0006] It has now been found that gasolines can be produced having a high octane number
and a considerably reduced aromatics content, in particular benzene, when use is made
of an upgrading process comprising a specific sequence of process steps.
[0007] Accordingly, the present invention relates to a process for producing a gasoline
blending pool having an enhanced octane content and a reduced aromatics content, which
process comprises:
a) subjecting a hydrocarbonaceous feedstock substantially boiling in the gasoline
range to a separation treatment and recovering therefrom a first hydrocarbon feed
stream comprising C6 and smaller hydrocarbons and a second hydrocarbon feed stream comprising C6 and greater hydrocarbons;
b) subjecting at least part of the second hydrocarbon feed stream to a separation
treatment wherein normal paraffins and optionally mono-isoparaffins are separated
from di-isoparaffins;
c) recovering therefrom a first separation effluent stream comprising normal paraffins
and optionally mono-isoparaffins and a second separation effluent stream comprising
di-isoparaffins;
d) subjecting at least part of the first separation effluent stream to a reforming
step to produce a reformate;
e) subjecting at least part of the reformate obtained to a hydrogenation step; and
f) passing the second separation effluent stream from step c) to a gasoline blending
pool.
[0008] In this way a direct octane enhancement of the resultant gasoline blending pool is
established whilst a substantial reduction of aromatics content, in particular benzene,
is realized. In refineries with restriction on production of gasoline due to octane
and/or capacity limitations, this octane enhancement can permit increased gasoline
production.
[0009] The two hydrocarbon feed streams which are derived from the feedstock in step a)
can suitably be obtained by distillation. Suitably, the two hydrocarbon feed streams
are adjacent fractions obtained by distillation. Depending, of course, on the sharpness
of the cutting points of the fractions chosen in the distillation some overlap may
occur among the adjacent fractions.
[0010] Preferably, the separation treatment in step a) is carried out in such a way that
the first hydrocarbon feed stream substantially comprises C
5 and smaller hydrocarbons. If the first hydrocarbon feed stream substantially comprises
C
5 and smaller hydrocarbons said feed stream does not need to be subjected to an isomerisation
process but can advantageously directly be introduced in the gasoline blending pool.
Suitably, at least part of the feedstock to be upgraded can be subjected to the hydrogenation
in step e) before being subjected to the separation treatment in step a).
[0011] The hydrocarbonaceous feedstock boiling in the gasoline range can suitably be obtained
by distillation of crude or by catalytic cracking although it may be obtained by other
cracking processes such as thermal cracking, delayed coking, visbreaking and flexicoking.
Such gasoline feedstocks usually contain unacceptable levels of sulphur and nitrogen
and benefit from a hydrotreatment before they are subjected to the process according
to the present invention.
[0012] Suitably, the process according to the present invention is carried out in such a
way that in step b) both the normal paraffins and mono-isoparaffins (mono-branched
paraffins) are separated from the di-isoparaffins (di-branched paraffins).
[0013] This is suitably established by passing at least part of the second hydrocarbon feed
stream to a separation zone comprising a shape-selective separatory molecular sieve
having a pore size intermediate 5.5 x 5.5 to 4.5 x 4.5 Å, but excluding 4.5 x 4.5
Å, the pore size being sufficient to permit entry of normal paraffins and mono-isoparaffins
but restrictive to prohibit entry of di-isoparaffins, other multi-branched paraffins,
cyclic paraffins and aromatic hydrocarbons.
[0014] In this way the normal paraffins and mono-isoparaffins can selectively be separated
from the di-isoparaffins.
[0015] Subsequently, the first separation effluent stream comprising both normal paraffins
and mono-isoparaffins and the second separation effluent stream comprising di-isoparaffins
can be recovered.
[0016] Subsequently, at least part of said first separation effluent is subjected to the
reforming step. Preferably, substantially the entire first separation effluent stream
is subjected to the reforming stream, although also part thereof may be used as a
preferred chemical feedstock. For instance, as a feedstock for a highly selective
(dehydro)cyclization process.
[0017] Preferably, the normal paraffins are firstly separated from the mono-isoparaffins
and di-isoparaffins, whereas the mono-isoparaffins are subsequently separated from
the di-isoparaffins. To this end use can be made of a multiple select adsorbent molecular
sieve system having particular separatory qualities.
[0018] Preferably, the multiple separatory sieve system to be used comprises a first molecular
sieve having a pore size of 4.5 x 4.5 Å or smaller and being shaped to permit adsorption
of normal paraffins in a selective manner vis-a-vis mono-isoparaffins, di-isoparaffins,
other multi-branched paraffins, cyclic paraffins and aromatic hydrocarbons and a second
molecular sieve having a pore size intermediate 5.5 x 5.5 to 4.5 x 4.5 Å, but excluding
4.5 x 4.5 Å, being selected to permit adsorption of mono-isoparaffins (and any remaining
normal paraffins) in deference to di-isoparaffins, other multi-branched paraffins,
cyclic paraffins and aromatic hydrocarbons which can be passed directly to a refinery
gasoline blending pool.
[0019] In operation, at least part of the second hydrocarbon feed stream is firstly contacted
with the first shape-selective separatory molecular sieve as defined hereinabove to
produce a first separation effluent stream comprising the normal paraffins and a second
separation effluent stream comprising both mono- and di-isoparaffins. The latter separation
effluent stream is subsequently contacted with the second shape-selective separatory
molecular sieve as described hereinabove.
[0020] Subsequently, a third separation effluent stream comprising mono-isoparaffins can
be recovered and a fourth separation effluent stream comprising di-isoparaffins can
be recovered. At least part of the first and third separation effluents can be subjected
to the reforming step.
[0021] Preferably, substantially the entire first and third separation effluent streams
are subjected to the reforming step. In another embodiment of the present invention
at least part of the first and third separation effluent streams may suitably be used
as a preferred chemical feedstock as mentioned hereinbefore.
[0022] The multiple select adsorbent molecular sieve system as described hereinabove comprises
at least two molecular sieves. These can be arranged in separate vessels, or they
can be arranged in a stacked flow scheme within one vessel.
[0023] This first molecular sieve can be a calcium 5 Å zeolite or any other sieve of similar
pore dimensions. It is not necessary to size the first sieve to adsorb all of the
normal paraffins, but it is preferred so that the second molecular sieve does not
have to function as a normal paraffin adsorption sieve.
[0024] The second molecular sieve in this process sequence is exemplified by a molecular
sieve which has eight and ten member rings and pore dimensions intermediate 5.5 x
5.5 and 4.5 x 4.5 Å, but excluding 4.5 x 4.5 Å.
[0025] The preferred second molecular sieve of this invention is exemplified by a ferrierite
molecular sieve. It is preferred that the ferrierite sieve be present in a hydrogen
form, but it alternatively can be exchanged with a cation of an alkali metal, or alkaline
earth metal or transition metal cation.
[0026] The second molecular sieves of this invention include ferrierite and other analogous
shape-selective materials with pore openings intermediate in dimensions to those of
the calcium 5 Å zeolite and ZSM-5. Other examples of crystalline sieves include aluminophosphates,
silicoaluminophosphates, and borosilicates.
[0027] The aluminophosphate, silicoaluminophosphate and borosilicate molecular sieves which
can be used as a second molecular sieve will have a pore opening intermediate 5.5
x 5.5 and 4.5 x 4.5 Å, but excluding 4.5 x 4.5 Å.
[0028] It is feasible that the second molecular sieve comprises a large pore zeolite that
has been ion exchanged with cations to diminish the effective pore size of the sieve
to within the aforementioned range of dimensions.
[0029] When applying multiple select adsorbent molecular sieve systems, the sequence of
the sieves, whether in discrete vessels or in a stacked variety, is very important.
If the sieves are interchanged the process loses effectiveness because the larger
sieve will rapidly fill with normal paraffins, prohibiting the efficient adsorption
of mono-isoparaffins.
[0030] The respective sieves applied in a multiple select adsorbent molecular sieve system
should be arranged in a process sequence to first provide adequate adsorption of the
normal paraffin hydrocarbons, and then, adsorption of the mono-isoparaffins. Each
of these respective sieves can be provided with a common desorbent stream or each
sieve may have its own desorbent stream. The desorbent is preferably a gaseous material
such as a hydrogen gas stream.
[0031] Suitably, at least part of the reformate obtained in step d) is subjected to a separation
treatment from which a light fraction comprising C
6 and smaller hydrocarbons and a heavy fraction comprising C
6 and greater hydrocarbons are recovered.
[0032] Subsequently, at least part of the light fraction and optionally at least part of
the heavy fraction are subjected to the hydrogenation in step e). Suitably, C
5 and smaller hydrocarbons are separated from the light fraction before the latter
is subjected to the hydrogenation in step e).
[0033] In the hydrogenation step any conventional hydrogenation catalyst can be applied.
Exemplary of such a catalyst is a catalyst comprising at least one component of a
Group VIII and/or Group VIb metal on a silica-alumina-containing carrier. Preferably,
use is of a platinum component on an amorphous silica-alumina carrier. The hydrogenation
step can suitably be carried out under conventional hydrogenation conditions. Typically
the hydrogenation is carried out at a temperature between 150 to 300 °C and a partial
hydrogen pressure of between 10 to 30 bar.
[0034] Suitably, at least part of the light and heavy fraction is recovered. In another
attractive embodiment of the process according to the present invention at least part
of the light and heavy fraction is subjected to a separation treatment wherein normal
paraffins and optionally mono-isoparaffins are separated from di-isoparaffins, and
whereby a first hydrocarbon product stream comprising normal paraffins and optionally
mono-isoparaffins and a second hydrocarbon product stream comprising di-isoparaffins
is recovered. At least part of the first hydrocarbon product stream may be used as
preferred chemical feedstock as mentioned hereinbefore.
[0035] Suitably, the separation treatment is carried out in such a way that both the normal
paraffins and mono-isoparaffins are separated from the di-isoparaffins. This is suitably
established by passing at least part of the light and heavy fraction to a separation
zone comprising a shape-selective separatory molecular sieve having a pore size intermediate
5.5 x 5.5 to 4.5 x 4.5 Å but excluding 4.5 x 4.5 Å, the pore size being sufficient
to permit entry of normal paraffins and mono-isoparaffins but restrictive to prohibit
entry of di-isoparaffins.
[0036] In this way the normal paraffins and mono-isoparaffins can selectively be separated
from the di-isoparaffins, other multi-branched paraffins, cyclic paraffins and aromatic
hydrocarbons.
[0037] Subsequently, a first hydrocarbon product stream comprising both normal paraffins
and mono-isoparaffins and a second hydrocarbon product stream comprising di-isoparaffins
can be recovered.
[0038] Suitably, the separation treatment is carried out in such a way that the normal paraffins
are firstly separated from the mono-isoparaffins and di-isoparaffins, whereas the
mono-isoparaffins are subsequently separated from the di-isoparaffins. To this end
use can be made of a multiple select adsorbent molecular sieve system as described
hereinbefore.
[0039] When use is made of such a multiple select adsorbent molecular sieve system upstream
the reforming step, at least part of the light and heavy fraction is passed to the
first molecular sieve.
[0040] When use is made of a multiple select adsorbent molecular sieve system both upstream
and downstream of the reforming step, firstly initially present normal and mono-isoparaffins
are separated from di-isoparaffins, whereas subsequently normal paraffins and mono-isoparaffins
which have been produced in the reforming step, are separated from di-isoparaffins.
[0041] The application of a multiple select adsorbent molecular sieve system both upstream
and downstream of the reforming step is very attractive since it offers product flexibility
together with product quality.
[0042] Hence, in a preferred embodiment of the present invention a multiple select adsorbent
molecular sieve system is applied both upstream and downstream the reforming step.
[0043] The separation treatments upstream and downstream of the reforming step wherein the
normal paraffins and optionally the mono-isoparaffins are separated from di-isoparaffins
are preferably carried out in the same separation zone.
[0044] Suitably, the light fraction comprising C
6 and smaller hydrocarbons and the heavy fraction comprising C
6 and greater hydrocarbons have been obtained from the reformate by means of distillation.
[0045] Suitably, the light and the heavy fraction are adjacent fractions obtained by distillation.
Depending, of course, on the sharpness of the cutting points of the fractions chosen
in the distillation some overlap may occur among the adjacent fractions.
[0046] In another embodiment of the present invention the reformate obtained in step d)
is firstly subjected to a separation treatment wherein a gaseous fraction is separated
from a liquid fraction, whereafter the liquid fraction is separated into the light
fraction comprising C
6 and smaller hydrocarbons and the heavy fraction comprising C
6 and greater hydrocarbons.
[0047] In the reforming step any conventional reforming catalyst can be applied. Preferably,
in the reforming step a catalyst is applied having a substantial (dehydro)cyclization
selectivity. Exemplary of such a catalyst is a platinum-containing catalyst with platinum
present in for instance a range of 0.005 wt% to 10.0 wt%.
[0048] The catalytic metals associated with the reforming function are preferably noble
metals from Group VIII of the Periodic Table of elements, such as platinum and palladium.
The reforming catalyst can be present per se or it may be mixed with a binder material.
[0049] It is well appreciated that the application of noble metal(s)-containing reforming
catalysts normally requires a pretreatment in the form of a catalytic hydrotreatment
of the feedstock to be upgraded. In this way nitrogen-compounds and sulphur-compounds
can be removed from the feedstock which compounds would otherwise reduce the performance
of the reforming catalyst considerably.
[0050] The reforming step can suitably be carried out under conventional reforming conditions.
Typically the process is carried out at a temperature from 450 to 550
0C and a pressure of 3 to 20 bar. The reaction section in which the reforming step
is to be performed can suitably be separated into several stages or reactors.
[0051] The present invention will now be illustrated by means of the Example.
Example
[0052] A process according to the present invention is carried out in accordance with the
flow diagram as schematically shown in Figure 1.
[0053] A hydrocarbonaceous feedstock substantially boiling in the gasoline range and having
the properties as set out in Table 1 is introduced via a line 1 and a line 1a into
a distillation column 2 in which the feedstock is separated into two hydrocarbon feed
streams. A first hydrocarbon feed stream comprising C
5 and smaller hydrocarbons is withdrawn via a line 3 and introduced into a gasoline
blending pool 4. A second hydrocarbon feed stream comprising C
5 and greater hydrocarbons is withdrawn via a line 5, and passed to a separation zone
6 which contains two molecular sieves 7 and 8. Molecular sieve #1 (7) is a commercial
zeolite having a pore size from 4.5 to 4.5 Å or smaller. Molecular sieve 8, referred
to as molecular sieve #2, has a pore size of 5.5 x 5.5 to 4.5 x 4.5 Å, but excludes
4.5 x 4.5 Å. The first molecular sieve 7 selectively adsorbs normal paraffins in preference
to mono-isoparaffins, di-isoparaffins, other multi-branched paraffins, cyclic paraffins
and aromatic hydrocarbons. A fraction comprising normal paraffins is withdrawn via
a line 9 and introduced into a reforming reactor 10. The separation effluent stream
substantially freed from normal paraffins is withdrawn via a line 11 and contacted
with molecular sieve #2(8). In this molecular sieve, mono-isoparaffins are adsorbed
while di-isoparaffins and other multi-branched paraffins, and cyclic paraffins are
passed through the sieve without adsorption. A fraction comprising mono-isoparaffins
is withdrawn via a line 12 and introduced in the reforming reactor 10. The remaining
separation effluent (di-isoparaffins fraction) which is now substantially freed from
normal paraffins and mono-isoparaffins is withdrawn via a line 13 and introduced in
the gasoline blending pool 4. In the reforming step use is made of a commercially
available highly selective (dehydro)cyclization catalyst under typical semi-regenerative
reforming conditions. The reformate obtained is subsequently withdrawn via a line
14 and introduced into a distillation column 15. In the distillation column 15 the
reformate is separated into a gaseous fraction and a liquid fraction. The gaseous
fraction is withdrawn via a line 16, the liquid fraction is withdrawn via a line 17.
The liquid fraction is subsequently passed to a distillation column 18. In the distillation
column 18 the liquid fraction is separated into a first fraction comprising C
5 and smaller hydrocarbons, a second fraction comprising C
6 and C
7 hydrocarbons and a third fraction comprising C
7 and greater hydrocarbons. The first fraction is withdrawn from the distillation column
18 via a line 19 and introduced into the gasoline blending pool 4. The second fraction
is passed to a hydrogenation unit 20 via line 21. A hydrogen stream is introduced
into the hydrogenation unit 20 via a line 22. The hydrogenated product obtained from
the hydrogenation unit 20 is then co-processed with the feedstock to be upgraded via
lines 23 and 1a. The third fraction is withdrawn from the distillation column 18 via
a line 24 and introduced into the gasoline blending pool 4.
[0054] 100 pbw of the feedstock in line 1 yields the various product fractions in the following
quantities:
11.7 pbw first hydrocarbon feed stream (line 3)
107.3 pbw second hydrocarbon feed stream (line 5)
21.6 pbw normal paraffins fraction (line 9)
85.7 pbw a first part separation effluent stream (line 11)
23.3 pbm a mono-isoparaffins fraction (line 12)
62.4 pbw di-isoparaffins fraction (line 13)
44.9 pbw reformate fraction (line 14)
5.8 pbw gaseous fraction (line 16)
39.1 pbw liquid fraction (line 17)
1.4 pbw first fraction (line 19)
18.1 pbw second fraction (line 21)
0.9 pbw hydrogen stream (line 22)
19.0 pbw hydrogenated product stream (line 23)
19.6 pbw third fraction (line 24)
[0055] In the blending gasoline pool 4, 5.3 pbw of butane 17.5 pbw of MTBE are added to
the gasoline obtained via a line 25. In this way 117.9 pbw of an overall gasoline
is obtained having the maximum allowable RVP specification. The overall gasoline obtained
in the blending pool 4 has the properties as set out in Table 2.
[0056] From Table 2 it is clear that a very attractive gasoline, in terms of octane number
and content of aromatics, in particular benzene, can be obtained by applying the present
invention. In conventional upgrading processes gasolines are obtained having a considerable
higher content of aromatics, in particular benzene.
Table 1
| C (%wt) |
85.2 |
| H (%wt) |
14.8 |
| S (ppmw) |
< 1 |
| d (15/4) |
0.731 |
| I.B.P. |
56 |
| 10% wt rec. |
64 |
| 30% " " |
92 |
| 50% " " |
106 |
| 70% " " |
127 |
| 90% " " |
149 |
| F.B.P. |
197 |
| RON |
55.7 |
| naphthenes " |
27.2 |
| aromatics " |
10.3 |
Table 2
| Gasoline properties: |
| RON |
95.0 |
| total aromatics (%vol) |
23.2 |
| benzene (%vol) |
1.1 |
| naphthenes (%vol) |
37.5 |
| RVP (kPa) |
60 |
1. Process for producing a gasoline blending pool having an enhanced octane content and
a reduced aromatics content, which process comprises:
a) subjecting a hydrocarbonaceous feedstock substantially boiling in the gasoline
range to a separation treatment and recovering therefrom a first hydrocarbon feed
stream comprising C6 and smaller hydrocarbons and a second hydrocarbon feed stream comprising C6 and greater hydrocarbons;
b) subjecting at least part of the second hydrocarbon feed stream
to a separation treatment wherein normal paraffins and optionally mono-isoparaffins
are separated from di-isoparaffins;
c) recovering therefrom a first separation effluent stream comprising normal paraffins
and optionally mono-isoparaffins and a second separation effluent stream comprising
di-isoparaffins;
d) subjecting at least part of the first separation effluent stream to a reforming
step to produce a reformate;
e) subjecting at least part of the reformate obtained to a hydrogenation step; and
f) passing the second separation effluent stream from step c) to a gasoline blending
pool.
2. Process according to claim 1, wherein in step b) both the normal paraffins and mono-isoparaffins
are separated from the di-isoparaffins, and at least part of the normal paraffins
and mono-isoparaffins so obtained is subjected to the reforming step.
3. Process according to claim 2, wherein firstly the normal paraffins are separated from
the isoparaffins, and subsequently the mono-isoparaffins are separated from the di-isoparaffins.
4. Process according to any one of claims 1-3, wherein at least part of the reformate
stream obtained in step d) is separated into a light fraction comprising C6 and smaller hydrocarbons and a heavy fraction comprising C6 and greater hydrocarbons, whereby at least part of the light fraction and at least
part of the heavy fraction is subjected to the hydrogenation in step e).
5. Process according to claim 4, wherein at least part of the reformate is firstly separated
into a gaseous fraction and a liquid fraction, whereafter the liquid fraction is separated
into the light fraction comprising C6 and smaller hydrocarbons and the heavy fraction comprising C6 and greater hydrocarbons.
6. Process according to claim 4 or 5 wherein at least part of the light fraction and
at least part of the heavy fraction is subjected to a separation treatment wherein
normal paraffins and optionally mono-isoparaffins are separated from di-isoparaffins,
and whereby a first hydrocarbon product stream comprising normal paraffins and optionally
mono-isoparaffins and a second hydrocarbon product stream comprising di-isoparaffins
is recovered, which second hydrocarbon product stream is passed to the gasoline blending
pool
7. Process according to claim 6, wherein the separation treatment is carried out in such
a way that both the normal paraffins and mono-isoparaffins are separated from the
di-isoparaffins.
1. Verfahren zur Herstellung eines Benzingemischpools mit einem verbesserten Oktangehalt
und einem verminderten Aromatengehalt, welches Verfahren umfaßt:
a) Vornahme einer Auftrennung an einem im wesentlichen im Benzinbereich siedenden
Kohlenwasserstoffeinsatzmaterial und daraus Gewinnen eines ersten Kohlenwasserstoffbeschickungsstroms,
umfassend C6 und kleinere Kohlenwasserstoffe, und eines zweiten Kohlenwasserstoffbeschickungsstroms,
umfassend C6 und größere Kohlenwasserstoffe;
b) Vornahme einer Auftrennung an wenigstens einem Teil des zweiten Kohlenwasserstoffbeschickungsstroms,
in der Normalparaffine und gegebenenfalls Monoisoparaffine von Diisoparaffinen getrennt
werden;
c) Gewinnen eines ersten Auftrennungsabstroms, umfassend Normalparaffine und gegebenenfalls
Monoisoparaffine, und eines zweiten Auftrennungsabstroms, umfassend Diisoparaffine,
daraus;
d) Vornahme einer Reformierstufe an wenigstens einem Teil des ersten Auftrennungsabstroms,
um ein Reformat zu produzieren;
e) Vornahme einer Hydrierstufe an wenigstens einem Teil des erhaltenen Reformats;
und
f) Überführen des zweiten Auftrennungsabstroms aus Stufe c) in einen Benzingemischpool.
2. Verfahren nach Anspruch 1, worin in Stufe b) sowohl die Normalparaffine als auch die
Monoisoparaffine von den Diisoparaffinen abgetrennt werden und wenigstens ein Teil
der so erhaltenen Normalparaffine und Monoisoparaffine der Reformierstufe unterzogen
werden.
3. Verfahren nach Anspruch 2, worin zuerst die Normalparaffine von den Isoparaffinen
abgetrennt werden und anschließend die Monoisoparaffine von den Diisoparaffinen abgetrennt
werden.
4. Verfahren nach einem der Ansprüche 1-3, worin wenigstens ein Teil des in Stufe d)
erhaltenen Reformatstroms in eine leichte Fraktion mit C6 und kleineren Kohlenwasserstoffen und eine schwere Fraktion mit C6 und größeren Kohlenwasserstoffen aufgetrennt wird, wobei wenigstens ein Teil der
leichten Fraktion und wenigstens ein Teil der schweren Fraktion der Hydrierung in
Stufe e) unterzogen werden.
5. Verfahren nach Anspruch 4, worin wenigstens ein Teil des Reformats zunächst in eine
gasförmige Fraktion und eine flüssige Fraktion aufgetrennt wird, wonach die flüssige
Fraktion in die leichte Fraktion mit C6 und kleineren Kohlenwasserstoffen und die schwere Fraktion mit C6 und größeren Kohlenwasserstoffen aufgetrennt wird.
6. Verfahren nach Anspruch 4 oder 5, worin wenigstens ein Teil der leichten Fraktion
und wenigstens ein Teil der schweren Fraktion einer Auftrennung unterzogen werden,
worin Normalparaffine und gegebenenfalls Monoisoparaffine von Diisoparaffinen abgetrennt
werden, und wobei ein erster Kohlenwasserstoffproduktstrom mit Normalparaffinen und
gegebenenfalls Monoisoparaffinen und ein zweiter Kohlenwasserstoffproduktstrom mit
Diisoparaffinen gewonnen werden, welcher zweite Kohlenwasserstoffproduktstrom in den
Benzingemischpool übergeführt wird.
7. Verfahren nach Anspruch 6, worin die Auftrennung auf solche Weise durchgeführt wird,
daß sowohl die Normalparaffine als auch die Monoisoparaffine von den Diisoparaffinen
abgetrennt werden.
1. Procédé de production d'une masse de mélange pour essence possédant une teneur en
octane améliorée et une teneur en composés aromatiques réduite, lequel procédé consiste
à :
a) soumettre une charge de départ hydrocarbonée bouillant sensiblement dans la plage
de l'essence à un traitement de séparation et en récupérer un premier courant de charge
d'hydrocarbures comprenant des hydrocarbures en C6 et moins et un second courant de charge d'hydrocarbures comprenant des hydrocarbures
en C6 et plus,
b) soumettre au moins une partie du second courant de charge d'hydrocarbures à un
traitement de séparation au cours duquel les paraffines normales et éventuellement
des monoisoparaffines sont séparées d'avec des diisoparaffines,
c) en récupérer un premier courant d'effluent de séparation comprenant des paraffines
normales et éventuellement des monoisoparaffines et un second courant d'effluent de
séparation comprenant des diisoparaffines,
d) soumettre au moins une partie du premier courant d'effluent de séparation à une
étape de reformage pour produire un reformat,
e) soumettre au moins une partie du reformat obtenu à une étape d'hydrogénation et
f) faire passer le second courant d'effluent de séparation de l'étape c) à la masse
de mélange pour essence.
2. Procédé suivant la revendication 1, caractérisé en ce qu'au cours de l'étape b), on
sépare tant les paraffines normales que les monoisoparaffines d'avec les diisoparaffines
et on soumet au moins une partie des paraffines normales et des monoisoparaffines
ainsi obtenues à l'étape de reformage.
3. Procédé suivant la revendication 2, caractérisé en ce que l'on sépare en premier lieu
les paraffines normales d'avec les isoparaffines et ensuite on sépare les monoisoparaffines
d'avec les diisoparaffines.
4. Procédé suivant l'une quelconque des revendications 1 à 3, caractérisé en ce que l'on
sépare au moins une partie du courant de reformat obtenu dans l'étape d) en une fraction
légère comprenant des hydrocarbures en C6 et moins et en une fraction lourde comprenant des hydrocarbures en C6 et plus, où on soumet au moins une partie de la fraction légère et au moins une partie
de la fraction lourde à l'hydrogénation dans l'étape e).
5. Procédé suivant la revendication 4, caractérisé en ce que l'on sépare en premier lieu
au moins une partie du reformat en une fraction gazeuse et une fraction liquide, puis
on sépare la fraction liquide en une fraction légère comprenant des hydrocarbures
en C6 et moins et en une fraction lourde comprenant des hydrocarbures en C6 et plus.
6. Procédé suivant la revendication 4 ou 5, caractérisé en ce que l'on soumet au moins
une partie de la fraction légère et au moins une partie de la fraction lourde à un
traitement de séparation au cours duquel on sépare des paraffines normales et éventuellement
des monoisoparaffines d'avec des diisoparaffines et en ce que l'on récupère un premier
courant d'hydrocarbures produits comprenant des paraffines normales et éventuellement
des monoisoparaffines et un second courant d'hydrocarbures produits comprenant des
diisoparaffines, lequel second courant d'hydrocarbures produits est envoyé dans la
masse de mélange pour essence.
7. Procédé suivant la revendication 6, caractérisé en ce que l'on entreprend le traitement
de séparation en une manière telle que tant les paraffines normales que les monoisoparaffines
soient séparées d'avec les diisoparaffines.