
J
Europaisches Patentamt

European Patent Office

Office europeen des brevets © Publication number:

E U R O P E A N PATENT A P P L I C A T I O N

0 6 3 2 3 6 5 A 2

© Application number: 94110010.9 © Int. CI.6: G06F 3 / 0 6

@ Date of filing: 28.06.94

® Priority: 30.06.93 US 86334 15817 N.E. 178th Place
Woodinville,

@ Date of publication of application: Washington 98072 (US)
04.01.95 Bulletin 95/01 lnventor: Fergusonj Robert

„ 2910 9th Avenue West
(§*) Designated Contracting States: „ „,

DE FR GB Seattle,
Washington 98119 (US)

© Applicant: MICROSOFT CORPORATION
One Microsoft Way
Redmond ® Representative: Patentanwalte Grunecker,
Washington 98052-6399 (US) Kinkeldey, Stockmair & Partner

Maximilianstrasse 58
@ Inventor: Zbikowski, Mark D-80538 Munchen (DE)

Modified buddy system for managing disk space.

CM
<

CO
oo

CM
oo
CO

© A modified buddy system is adopted for man-
aging disk space in a disk storage. The modified
buddy system uses a minimal amount of memory
space and provides very quick access to extents
within the disk space. The modified buddy system

utilizes a tree structure of nodes, wherein each node
represents an extent of disk space. A bitmap is
provided for holding state bits for each of the nodes
in the tree structure. The bitmap is organized to
preserve locality of reference.

Data Processing System

Memory ^ Keyboard ~'8 Moi.se ^20 Video
Storage Display

~_24 Operating System

Figure 1

Rank Xerox (UK) Business Services
(3. 10/3.09/3.3.4)

1 EP 0 632 365 A2 2

Technical Field

The present invention relates generally to data
processing systems and, more particularly, to a
modified buddy system for managing disk space in
a data processing system.

Background of the Invention

Free space on disk has generally been man-
aged in one of three ways. In a first approach, the
allocation of a disk space for a file has been
described by a linked list of sectors allocated to
the file. In a second approach, a bitmap has been
provided to monitor which sectors of disk space
have been allocated. A bit is provided in the bitmap
for each sector. The value of the bit associated
with the sector specifies whether the sector has
been allocated or not. In a third approach, alloca-
tion is performed on extents (i.e., a contiguous set
of sectors on the disk). As such, space is allocated
in ranges of adjacent sectors rather than in individ-
ual sectors.

Summary of the Invention

In accordance with a first aspect of the present
invention, a method is practiced in a data process-
ing system having disk storage with disk space of
a given size. In this method, disk space is man-
aged by initially modeling the disk space as a tree
structure having multiple levels of nodes wherein
the levels successively decrease from a top level
to a bottom level. Each node in each level repre-
sents an extent of the disk space and, for each
level, nodes within the level represent extents of a
like size. The size of the extents represented by
the nodes decreases with decreasing level, but the
number of nodes increases with decreasing level.
The sum of the sizes of the nodes for each succes-
sive level equals the given size of the disk space.
Each node in each level represents an extent of the
disk space and, for each level, nodes within the
level represent extents of a like size. Each node in
each level other than the bottom level is a parent
node having links connecting the parent node to
the child nodes in a next successive level. The
child nodes are siblings of each other. The child
nodes represent extents that are subdivisions of
the extent represented by the parent node. State
information about each node is stored in the bitmap
that specifies whether the extent represented by
the node is known to be at least partially allocated
or not. The bitmap of the tree structure is used to
manage the disk space.

The state information may constitute at least
one state bit for each node in the tree structure.
The bitmap is preferably an ordered bitmap where

the state bits for the nodes are ordered in a
breadth first fashion beginning with the top level
and continuing in breadth first fashion for each
successive level. Ordering the bitmap in this fash-

5 ion provides locality of reference for sibling nodes
and parent nodes.

Brief Description of the Drawings

io Figure 1 is a block diagram of a data process-
ing system suitable for practicing a preferred em-
bodiment of the present invention.

Figure 2 is a flow chart illustrating steps per-
formed to implement the preferred embodiment of

75 the present invention.
Figure 3A is an illustrative tree structure used

in the preferred embodiment of the present inven-
tion.

Figure 3B is an illustrative bitmap for the tree
20 structure of Figure 3A.

Figure 4 is a flow chart illustrating the steps
performed in a test function of the preferred em-
bodiment of the present invention.

Figure 5 is a flow chart illustrating the steps
25 performed in an allocate function of the preferred

embodiment of the present invention.
Figure 6 is a flow chart of the steps performed

in a deallocate function in the preferred embodi-
ment of the present invention.

30 Figure 7 is a flow chart illustrating the steps
performed by a find function in the preferred em-
bodiment of the present invention.

Detailed Description of the Invention
35

In the preferred embodiment of the present
invention, disk space is modeled as a tree structure
of nodes, wherein each node of the tree represents
an extent of disk space and has an associated

40 state. The state information for each node is stored
in a bitmap that is ordered in a fashion that exploits
locality of reference. The bitmap is ordered in a
fashion corresponding to the tree structure so that
the bitmap holds state bits for siblings in adjacent

45 locations. The use of the tree structure and bitmap
within the preferred embodiment of the present
invention allows free disk space to be quickly lo-
cated and allocated. Moreover, the overhead asso-
ciated with using the tree structure and bitmap is

50 minimal because memory space is not wasted by
the bitmap and tree structure.

Figure 1 is a block diagram of a data process-
ing system 10 that is suitable for implementing the
preferred embodiment of the present invention. The

55 data processing system 10 includes a central pro-
cessing unit (CPU) 12 that has access to a memory
14 and disk storage 16. The preferred embodiment
of the present invention manages the free space on

2

3 EP 0 632 365 A2 4

disk in the disk storage 16 by adopting a modified
buddy system that will be described in more detail
below. The data processing system 10 also in-
cludes a keyboard 18, a mouse 20 and a video
display 22.

The preferred embodiment of the present in-
vention is implemented in an operating system 24
held in memory 14. Those skilled in the art will
appreciate that the present invention need not be
implemented in an operating system but may also
be implemented in separate code modules that
work in conjunction with an operating system. Fig-
ure 2 is a flow chart showing the steps performed
by the operating system 24 to build the tree struc-
ture and bitmap for implementing the modified
buddy system of the preferred embodiment of the
present invention. Figure 2 will be described in
conjunction with Figures 3A and 3B. Initially, the
available disk space and disk storage 16 (Figure 1)
is logically partitioned into a tree structure like that
shown in Figure 3A (step 26 in Figure 2). The top
level of the tree structure 32 (Figure 3A) is the root
node 34 of the tree structure. It represents an
extent of the entire available disk space in disk
storage 16 (i.e., 4K in Figure 3A). The next level of
the tree structure 32 holds nodes that represent
smaller extents of disk space. The extents repre-
sented by this node constitute a complete subdivi-
sion of the extent represented by root node 34. In
the example shown in Figure 3A, nodes 36 and 38
represent extents of one-half of the available disk
space (i.e., 2K of the available 4K of disk space).
The next level of the tree structure 32 holds nodes
40, 42, 44 and 46 which represent smaller extents
than represented by nodes 36 and 38 from the
previous level. Specifically, the extents represented
by nodes 40 and 42 represent a complete subdivi-
sion of the extent represented by node 36, and the
extents represented by nodes 44 and 46 represent
a complete subdivision of the extent represented
by node 38. Each of the nodes at this bottom level
40, 42, 44 and 46 is 1K in size and represents an
extent that is the smallest-sized unit of allocation
available for disk storage 16.

Each of the nodes of the tree structure 32
includes logical links that connect the nodes be-
tween successive levels. For example, node 34 is
connected by links 47 to nodes 36 and 38. Node
34 is referred to as a parent node and 36 and 38
are referred to as child nodes. At each level of the
structure 32, the extents represented by the child
nodes constitute a complete subdivision of the ex-
tent represented by the parent node. Nodes 36 and
38 are siblings of each other. The sibling nodes are
also known as buddies in that they represent ex-
tents that are subdivisions of a same extent (repre-
sented by the parent node). The "buddy system"
is a well-known approach to allocating/deallocating

memory space by exploiting the notion of buddies.
It should be appreciated that the tree structure

shown in Figure 3A is merely illustrative and each
parent node may include more than two children

5 nodes.
Each node 34, 36, 38, 40, 42, 44 and 46 in the

tree structure 32 is assigned a state. This state is
represented by a bit. A "1 " value for the state bit of
a node indicates that the extent represented by the

io node is known to be either allocated or partially
allocated. In contrast, a "0" value for the state bit
of a node indicates that the extent represented by
the node is not known to be allocated or partially
allocated. Initially, all of the nodes have a state bit

is with a value of "0". The state bits are stored in a
bit map 48 (Figure 3B) that is ordered according to
the tree structure. This bitmap 48 holds all of the
state bits for the nodes of the tree structure 32
(Figure 3A). The bits in the bitmap 48 are ordered

20 in a breadth first fashion beginning with the root
node 34. Thus, bit 1 (Figure 3B) of the bitmap 48
holds the state information for the root node 34. Bit
2 holds the state information for node 36, and bit 3
holds the state information for node 38. Similarly,

25 bit 4 of bitmap 48 holds the state information for
node 40 and bits 5, 6 and 7 hold the state informa-
tion for nodes 42, 44 and 46, respectively. This
organization allows the state bits for child nodes to
be quickly located when one knows the bit position

30 of the parent and vice versa. In particular, for any
non-leaf node n (whose state bit is at position n in
the bitmap), its children are at positions 2n and
2n + 1 in the bitmap.

In order to utilize the tree structure 32 and
35 bitmap 48, the operating system 24 supports an

allocate function, a deallocate function, a find func-
tion and a test function. Each of these functions
operate on a node in the tree structure 32 and will
be described in more detail below. The discussion

40 of these functions will focus initially on the test
function because the test function is used by se-
lected ones of the other functions.

Figure 4 is a flow chart of the steps performed
by the test function for a binary tree implementa-

45 tion. It should be appreciated that this function may
be generated to work for N-ary trees where each
has N children. The test function tests whether an
extent represented by a node is free or not. The
node to be tested is passed as a parameter to the

50 test function. The operating system 24 initially
checks whether the node in question has a state bit
with a value of "1 ", which indicates that the extent
represented by the node is known to be allocated
or partially allocated (step 50 in Figure 4). If the

55 state bit of the node has a value of "1 ", the test
function returns a result that the extent represented
by the node is not free (step 52 in Figure 4). If, on
the other hand, the state bit of the node has a

3

5 EP 0 632 365 A2 6

value of "0", it is unknown whether the extent
represented by the node is free. The node may
have a state bit with a value of "0" and already be
allocated because its parent or other ancestor has
already been allocated or, alternatively, the extent
represented by the node may be free. The test
function next checks whether the node is the root
node (step 54). If the node is the root node, since it
has a state bit with a value of "0", the extent
represented by the node is free (it does not have a
parent that can be allocated), and the test function
returns an indication that the extent represented by
the node is free (step 56).

If the node is not the root node, the test func-
tion examines the value of the state bit of sibling
nodes (step 58). For example, if the state of node
36 (Figure 3A) is being examined, node 38 is its
only sibling node, and the state of the node 38 is
examined in step 58 of Figure 4. The test function
checks whether any sibling node has a state bit
with a value of "1 " (step 60). In the more general-
ized test function, the state bits for all of the
siblings are examined until a sibling with a state bit
having a value of "1 " is found or until all of the
state bits for the siblings have been examined. If
any sibling node has a state bit with a value of "1 ",
the extent represented by the parent node is not
completely allocated. Accordingly, the test function
returns an indication that the extent represented by
the node in question is free (step 62).

If the state bits of all of the sibling nodes have
a value of "0", the process continues up the tree
structure 32 by considering the parent node as the
current node (step 64) and repeating the previously
described steps beginning with step 50.

As mentioned above, the operating system 24
supports the allocate function. The allocate function
allocates free space (i.e., extents) in the disk space
of disk storage 16. Figure 5 is a flow chart of the
steps performed by the allocation function. The
state bit for the node represents the extent to be
allocated is assigned a value of "1 " (step 76 in
Figure 5). A determination is then made whether
the node has a parent node (step 78). If the node
does not have a parent node, no further steps need
to be performed. In contrast, if the node has a
parent node, the value of the state bit of the parent
node is examined to determine if the parent node
is marked (i.e., has a value of "1 ") as allocated or
partially allocated (step 80). If the parent node is
already marked as allocated or partially allocated,
no further steps need to be performed. However,
when the parent node has not been marked as
allocated or partially allocated, the state bit of the
parent node must be updated to have a value of
"1 " to indicate that at least a portion of the extent
represented by the parent node is known to be
allocated (step 82). This process then continues up

the tree structure 32 by considering the parent
node as the current node (step 84). The above-
described steps beginning at step 78 are then
repeated. Since at least a portion of each of the

5 parent nodes has been allocated, the state bits
held in the bitmap 48 must be updated to a value
of "1 " by the above-described function.

The operating system 24 also supports a deal-
locate function that deallocates an extent of disk

io space in disk storage 16. The node representing
the extent to be deallocated is passed as a param-
eter to the deallocate function. Figure 6 is a flow
chart of the deallocation function supported by the
operating system 24. When an extent represented

is by a node is to be deallocated, the state bit of the
node is marked to have a value of a "0" (step 86 in
Figure 6). Since the extent represented by the
node may be the only portion of the extent repre-
sented by the parent node or the extents repre-

20 sented by other ancestor nodes which is allocated,
a determination must be made whether the parent
and ancestor nodes should also have their state
bits updated to assume a value of "0". The pro-
cess of updating the state bits of the parent node

25 and ancestor nodes begins by checking whether
the node is the root node (step 88). If the node is
the root node, it has no parent node or ancestor
nodes and, therefore, no further steps are required.
In contrast, if the node is not the root node, the

30 state bits of the sibling nodes are examined (step
90). If the state bit for any sibling node is "1 " (i.e.,
all the state bits for the sibling nodes are not "0"),
the state bit of the parent node cannot be updated
because the extent that the parent node represents

35 is known to be at least partially allocated. If the
state bits for all of the sibling nodes have values of
"0", the extent represented by the parent node
must necessarily be free because all of the extents
represented by the children nodes are not allo-

40 cated or partially allocated. Accordingly, the state
bit of the parent node is changed to a value of "0"
(step 92). This process then continues for the addi-
tional ancestors by considering the parent node as
the current node and repeating the above-de-

45 scribed steps beginning with step 88. In this fash-
ion all of the ancestors are updated as needed.

The operating system 24 additionally supports
the find function, which finds a free node within the
tree structure 32 (Figure 3A). Figure 7 is a flow

50 chart of the steps performed by the find function.
The search performed by the find function begins
by looking at the state bit of a next node at the
level of the tree that has the desired size extent
(step 96). In particular, if the desired amount of

55 disk space does not match the size of any of the
extents represented by the nodes of the tree struc-
ture 32, the closest matching extent which is larger
than that needed is selected in step 96. This extent

4

7 EP 0 632 365 A2 8

size will be referred hereinafter to as the "desired
size". At the level of the tree having the desired
size extent of disk space, the find function deter-
mines if there is a node at the level having a state
bit with a value of "0" (step 98). If there is not a
node at the level having a state bit with a value of
"0", there is not an extent of the desired size
available.

However, if there is a node at the level having
a state bit with a value of "0", the sibling nodes of
the node are examined to determine if any of the
sibling nodes have a state bit with a value of "1 "
(step 100). If any of the sibling nodes have a state
bit with a value of "1 ", the extent represented by
the node is returned by the find function and uti-
lized (step 102). If, on the other hand, the state bits
for all of the sibling nodes have values of "1 ", the
state bit of the parent node is examined (step 104).
In particular, a determination is made whether the
state bit of the parent node has a value of "1 " (step
106). If the parent node has a state bit with a value
of "1 ", it is noted that the subtree beginning with
the parent node as its root does not need to be
further examined (step 108), and the search for a
free node continues again at step 96. If the state bit
of the parent node does have a value of "1 " and
the parent node is not the root node (step 112), the
above-described steps are repeated beginning at
step 100 by examining the sibling nodes of the
parent node. If the parent node is the root node
(see step 112), the find function returns the extent
represented by the current node as being free
(step 110).

In the above discussion of the find function, it
is apparent that the test function may be directly
integrated into the find function. Integrating the test
function and the find function allows an efficiency
gain by enabling the algorithm to skip examination
of large numbers of nodes that might otherwise
have to be tested.

The above-described find function is designed
to locate the first extent in a level of the tree
structure that is free. By slightly modifying the
approach adopted in the find function, it is possible
to create a function that looks for extents that are
free and located near a given location on the disk.
The modification concerns where the search pro-
cess begins. Instead of looking at the first extent in
the target level of the tree, the modified approach
looks first at the node that is nearest to the desired
location. When searching for possibly free extents,
the modified approach walks outward from the
nearest node to examine other near nodes and
tests the extents represented by the near nodes to
see if they are free. The first free extent that is
found is the nearest extent that is free.

While the present invention has been de-
scribed with reference to a preferred embodiment

thereof, those skilled in the art will appreciate that
various changes in form and detail may be made
without departing from the scope of the present
invention as defined in the appended claims. For

5 example, the tree structure 32 used in the present
invention need not be a binary tree. Each parent
node may have more than two children nodes.
Furthermore, the allocated or partially allocated
state need not be associated with a "1 " bit value;

io rather, the meanings of a "1 " bit value and a "0"
bit value may be swapped.

Claims

is 1. In a data processing system having disk stor-
age with disk space of a given size, a method
of managing the disk space, comprising the
steps of:

(a) modeling the disk space as a tree struc-
20 ture having multiple successively decreas-

ing levels of nodes ranging from a top level
to a bottom level, wherein each node repre-
sents an extent of the disk space and, for
each level, nodes within the level represent

25 extents of a like size, each node in each
level other than the bottom level is a parent
node having links connecting the parent
node to child nodes, that are siblings, in a
next successive level, the extents repre-

30 sented by the child nodes constitute a com-
plete subdivision of the extent represented
by the parent node, the size of the extents
represented by the nodes decreases in
each successive level and the sum of the

35 sizes of the extents represented by the
nodes for each successive level equals the
given size of the disk space;
(b) storing state information about each
node in a bitmap that specifies whether the

40 extent represented by the node is known to
be at least partially allocated or not; and
(c) using the bitmap and the tree structure
to manage the disk space.

45 2. The method recited in claim 1 wherein the
step of using the bitmap and the tree structure
to manage the disk space further comprises
the step of allocating an extent of the disk
space represented by a node.

50
3. The method recited in claim 2 wherein the

step of allocating an extent of the disk space
represented by the node further comprises the
steps of:

55 (i) updating the state information that is
stored in the bitmap about the node to
specify that the extent represented by the
node is known to be at least partially al-

5

9 EP 0 632 365 A2 10

located;
(ii) examining the state information that is
stored in the bitmap about a parent node of
the node to determine whether the extent
represented by the parent node is known to 5
be at least partially allocated or not;
(iii) where it is determined that the extent
represented by the parent node is not
known to be at least partially allocated, up-
dating the state information that is stored in 10
the bitmap about the parent node to specify
that the extent represented by the parent
node is known to be at least partially al-
located; and
(iv) where it is determined that the extent is
represented by the parent node is known to
be at least partially allocated, maintaining
the state information that is stored in the
bitmap about the parent node.

20
4. The method recited in claim 3, further compris-

ing the steps of:
(v) denoting the parent node as a current
node;
(vi) determining whether there is an addi- 25
tional parent node for the current node;
(vii) where there is the additional parent
node for the current node, examining the
state information that is stored in the bitmap
about the additional parent node to deter- 30
mine whether the extent represented by the
additional parent node is known to be at
least partially allocated or not;
(viii) where there is no additional parent
node for the current node or where there is 35
the additional extent represented by the
parent node for the current node and the
additional parent node is known to be at
least partially allocated, maintaining the
state information stored in the bitmap; and 40
(ix) where there is the additional parent
node for the current node and the extent
represented by the additional parent node is
not known to be at least partially allocated,
updating the state information that is stored 45
in the bitmap about the additional parent
node to specify that the extent represented
by the additional parent node is known to
be at least partially allocated.

50
5. The method recited in claim 4, further compris-

ing the steps of:
(x) denoting the additional parent node as
the current node;
(xi) determining whether there is a new ad- 55
ditional parent node for the current node;
and

(xii) where there is the new additional parent
node, repeating steps (vii) - (ix) using the
new additional parent node as the additional
parent node.

6. The method recited in claim 1 wherein the
step of using the bitmap and the tree structure
to manage the disk space further comprises
the step of deallocating an extent of the disk
space represented by one of the nodes.

7. The method recited in claim 6 wherein the
step of deallocating an extent of the disk space
represented by a node further comprises the
steps of:

(i) updating the state information that is
stored in the bitmap about the node to
indicate that the extent represented by the
node is not known to be at least partially
allocated;
(ii) determining if the node has at least one
sibling node; and
(iii) if the node has at least one sibling node,
examining the state information that is
stored in the bitmap about each sibling
node to determine if each of the extents
represented by the sibling nodes is not
known to be at least partially allocated and
where it is determined that each of the
extents represented by the sibling nodes is
not known to be at least partially allocated,
updating the state information stored in the
bitmap about the parent node to specify the
extent represented by the parent node is
not known to be at least partially allocated.

8. The method recited in claim 1 wherein the
step of modeling allocation of the disk space
as the tree structure having multiple succes-
sively decreasing levels of nodes further com-
prises the step of providing the top level to the
tree structure which consists of a single node
representing an extent comprising all of the
disk space.

9. The method recited in claim 1 wherein the
step of modeling the disk space as the tree
structure having multiple successively decreas-
ing levels of nodes further comprises the step
of providing the bottom level of the tree struc-
ture, which comprises nodes that represent
extents which are each a disk sector in size.

10. The method recited in claim 1 wherein the
step of using the bitmap and the tree structure
to manage the disk space further comprises
the steps of:

6

11 EP 0 632 365 A2 12

(i) allocating the extent of disk space repre-
sented by one of the nodes in the tree
structure to hold information; and
(ii) and updating the state information held
in the bitmap to specify that the allocated
extent is known to be at least partially al-
located.

11. The method recited in claim 1 wherein the
step of using the bitmap and the tree structure
to manage the disk space further comprises
the steps of:

(i) deallocating an extent of disk space re-
presented by one of the nodes in the tree
structure; and
(ii) updating the state information held in the
bitmap to specify that the deallocated extent
node is not known to be at least partially
allocated.

12. In a data processing system having disk stor-
age with disk space of a given size, a method
comprising the steps of:

(a) modeling the disk space as a tree struc-
ture having multiple successively decreas-
ing levels of nodes ranging from a top level
to a bottom level, wherein each node repre-
sents an extent of the disk space, and for
each level, nodes within the level represent
extents of a like size, each node in each
level other than the bottom level is a parent
node having links connecting the parent
node to child nodes, that are siblings, in a
next successive level, the extents repre-
sented by the child nodes constitute a com-
plete subdivision of the extent represented
by the parent node, the size of the extents
represented by the nodes decreases in
each successive level and the sum of the
sizes of the extents represented by the
nodes for each successive level equals the
given size of the disk space;
(b) storing at least one state bit for each
node in an ordered bitmap where the state
bits for the nodes are ordered in a breadth
first fashion beginning with the top level and
continuing in breadth first fashion for each
successive level, wherein the state bit for
each node specifies whether the extent re-
presented by the node is known to at least
partially allocated; and
(c) using the bitmap and the tree structure
to manage the disk space.

13. The method recited in claim 12 wherein the
step of using the bitmap and the tree structure
to manage the disk space further comprises
the step of allocating an extent represented by

one of the nodes.

14. The method recited in claim 13 wherein the
step of allocating the extent represented by the

5 node further comprises the steps of:
(i) updating the state bit that is stored in the
bitmap about the node to specify that the
extent represented by the node is known to
be at least partially allocated;

io (ii) examining the state bit that is stored in
the bitmap about a parent node of the node
to determine whether the extent represented
by the parent node is known to be at least
partially allocated or not;

is (iii) where it is determined that the extent
represented by the parent node is not
known to be at least partially allocated, up-
dating the state bit that is stored in the
bitmap about the parent node to specify

20 that the extent represented by the parent
node is known to be at least partially al-
located; and
(iv) where it is determined that the extent
represented by the parent node is known to

25 be at least partially allocated, maintaining
the state bit that is stored in the bitmap
about the parent node.

15. The method recited in claim 14, further com-
30 prising the steps of:

(v) denoting the parent node as a current
node;
(vi) determining whether there is an addi-
tional parent node for the current node;

35 (v) where there is the additional parent node
for the current node, examining the state bit
that is stored in the bitmap about the addi-
tional parent node to determine whether the
extent represented by the additional parent

40 node is known to be at least partially al-
located or not;
(vi) where there is no additional parent node
for the current node or whether there is the
additional parent node for the current node

45 and the extent represented by the additional
parent node is known to be at least partially
allocated, maintaining the state bit stored in
the bitmap; and
(vii) where there is the additional parent

50 node for the current node and the extent
represented by the additional parent node is
not known to be at least partially allocated,
updating the state bit that is stored in the
bitmap about the additional parent node to

55 specify that the extent represented by the
additional parent node is known to be at
least partially allocated.

7

13 EP 0 632 365 A2 14

16. The method recited in claim 15, further com-
prising the steps of:

(viii) denoting the additional parent node as
the current node;
(ix) determining whether there is a new ad-
ditional parent node for the current node;
and
(x) where there is the new additional parent
node repeat steps (v) - (x) using the new
additional parent node as the additional par-
ent node.

17. The method recited in claim 12 wherein the
step of using the bitmap and the tree structure
to manage the disk space further comprises
the step of deallocating an extent of the disk
space represented by one of the nodes.

18. The method recited in claim 17, further com-
prising the steps of:

(i) updating the state bit that is stored in the
bitmap about the node to indicate that the
extent represented by the node is not
known to be at least partially allocated;
(ii) determining if the node has at least one
sibling node; and
(iii) if the node has at least one sibling node,
examining the state bit that is stored in the
bitmap about each sibling node to deter-
mine if each of the extents represented by
the sibling nodes is known to be at least
partially allocated and updating the state bit
stored in the bitmap about the parent node
to specify the extent represented by the
parent node is not known to be at least
partially allocated.

19. The method recited in claim 12 wherein the
step of storing the state bit for each node in
the ordered bitmap further comprises the step
of storing the state bit for a node immediately
next to the state bit for a sibling node in the
ordered bitmap.

20. The method recited in claim 12 wherein the
step of modeling the disk space as the tree
structure further comprises the step of model-
ing the disk space as a binary tree structure.

21. The method as recited in claim 20 wherein the
size of the nodes decreases in each succes-
sive level by one-half.

22. The method recited in claim 12 wherein the
step of modeling the disk space as the tree
structure having multiple successively decreas-
ing levels of nodes further comprises the step
of providing the top level of the tree structure

which consists of a single node representing
an extent comprising all of the disk space.

23. The method recited in claim 12 wherein the
5 step of modeling the disk space as the tree

structure having multiple successively decreas-
ing levels of nodes further comprises the step
of providing the bottom level to the tree struc-
ture, which comprises nodes representing ex-

io tents that are a disk sector in size.

24. In a data processing system having disk stor-
age with disk space of a given size, a method
of locating free disk space in the disk storage,

is comprising the steps of:
(a) modeling the disk space as a tree struc-
ture having multiple successively decreas-
ing levels of nodes ranging from a top level
to a bottom level, wherein each node repre-

20 sents an extent of the disk space and, for
each level, nodes within the level represent
extents of a like size, each node in each
level other than the bottom level is a parent
node having links connecting the parent

25 node to child nodes that are siblings in a
next successive level, the extents repre-
sented by the child nodes constitute a com-
plete subdivision of the extent represented
by the parent node, the size of the extents

30 represented by the nodes decreases in
each successive level and the sum of the
sizes of the extents represented by the
nodes for each successive level equals the
given size of the disk space;

35 (b) storing state information about each
node in a bitmap that specifies whether the
extent is known to be at least partially al-
located or not;
(c) examining the state information in the

40 bitmap about a selected one of the nodes in
the tree structure that represents an extent
of disk space of a desired size;
(d) where the state information in the bitmap
about the selected node specifies that the

45 extent represented by the selected node is
not known to be at least partially allocated,

(i) examining the state information in the
bitmap about each sibling of the selected
node to determine if any of the siblings

50 are known to be at least partially al-
located; and
(ii) where any sibling is known to be at
least partially allocated, concluding that
the selected node is free.

55
25. The method recited in claim 24, further com-

prising the steps, of where the state informa-
tion about the selected node specifies that the

8

15 EP 0 632 365 A2 16

extent represented by the selected node is
known to be at least partially allocated and
additional nodes exist in the tree structure at
the same level as the selected node, designat-
ing a next node in the tree structure, at the 5
same level as the selected node, as the se-
lected node and repeating the method begin-
ning with step (d).

26. The method recited in claim 25, further com- 10
prising the step of storing state information in
the bitmap in a breadth first fashion according
to ordering of the nodes in the tree structure
beginning with the top level and continuing in
breadth first fashion for each successive level is
of nodes.

27. The method recited in claim 26 wherein the
next node is a node which has its state in-
formation in the bitmap immediately adjacent 20
to the selected node.

28. The method recited in claim 26 wherein the
next node is a node which has its state in-
formation stored closest in the bitmap to state 25
information for a predetermined node among
the nodes of the same level as the selected
node and having state information that has not
yet been examined in the method.

30
29. The method recited in claim 24, the method

further comprising the steps of, where it is
determined that none of the sibling nodes are
known to be at least partially allocated:

examining state information in the bitmap 35
about a parent node of the selected node to
determine whether the parent node is known to
be at least partially allocated; and

where the patent node is not known to be
at least partially allocated, designating the par- 40
ent node as the selected node and repeating
the method beginning with step (d).

30. The method recited in claim 29, further com-
prising the steps of, where it is determined that 45
the parent node is known to be at least par-
tially allocated, designating a next node in the
tree structure at the same level as the selected
node, other than the selected node and the
siblings of the selected node, as the selected so
node and repeating the method beginning with
step (d).

9

EP 0 632 365 A2

Begin

Y
Logically Partition

Available Space
Into Tree Structure

V

Assign State To
Each Node

26

28

Store State Bits
In Bitmap That

Is Ordered
According To
Tree Structure

F i g u r e 2

EP 0 632 365 A2

12

EP 0 632 365 A2

30
\

13

EP 0 632 365 A2

NO

v

Examine State
Of Sibling Nodes

62 Extent Represented
By Node Is

Free

YES

. ^ A r e ^ < ^ —
/^Sib l ing N o d e s N ^
Marked As Allocated

v Or Partially y
\ ^ Allocated y —

\ ^ 9 /

Return

NO

Y

Set Node ^
To Parent Node

F i g u r e 4

14

EP 0 632 365 A2

Begin

Place Node In
Allocated Or

Partially Allocated
State

76

YES

Return

v

Make Parent Node 84
Current Node

F i g u r e 5

15

EP 0 632 365 A2

Consider Parent
Node Current Node

94

F i g u r e 6

16

EP 0 632 365 A2

Begin

<

V
Examine Next Node

At Level Of Tree 96
With The Desired

Size Block Of Space

102^ Use Extent
Represented By

The Node

Return

NO

Examine State Bit
Of Parent Node

Note That Subtree
Need Not Be Further

Examined And
Advance To First

Node In Level
Outside Of
The Subtree

104

Use Extent
Represented By

The Node

F i g u r e 7

17

	bibliography
	description
	claims
	drawings

