

1) Publication number:

0 635 621 A1

(12)

EUROPEAN PATENT APPLICATION

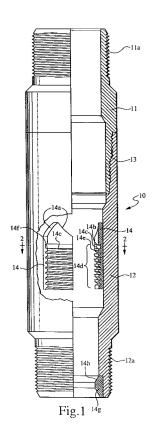
21 Application number: 94202413.4

(51) Int. Cl.6: **E21B** 23/02

2 Date of filing: 11.07.91

This application was filed on 23 - 08 - 1994 as a divisional application to the application mentioned under INID code 60.

- Priority: 25.07.90 US 557668
- 43 Date of publication of application: 25.01.95 Bulletin 95/04
- © Publication number of the earlier application in accordance with Art.76 EPC: **0 468 668**
- Designated Contracting States: **DE GB NL**


- Applicant: HALLIBURTON COMPANY P.O. Box 819052 Dallas, Texas 75381-9052 (US)
- Inventor: Dollison, William W. 4206 Alta Vista Lane Dallas, Texas 75229 (US)
- (4) Representative: Wain, Christopher Paul et al A.A. THORNTON & CO.
 Northumberland House
 303-306 High Holborn
 London WC1V 7LE (GB)

(4) A lock mandrel.

⑤ A lock mandrel for use in a locking system to releasably position well flow control devices in a flow conduit of a well.

A lock mandrel (15) and a landing nipple (10) are mounted in a conduit. The lock mandrel has a longitudinal flow passage (15a) therethrough, and includes

- (a) an upper mandrel (17) with openings (18);
- (b) helically profiled segment means (19) to locate the locking mandrel in the landing nipple, which segment means are radially moveable in the openings;
- (c) a support (22) mounted in a first position in said mandrel, in which position the profiled segment means (19) are expanded, and is slidably moveable to a second position, in which the profiled segment means are in a retracted position;
- (d) a lower body (26) with a metal sealing surface (26a);
- (e) means (24) swivelably connected to the upper mandrel; and
- (f) force transmitting means (W) for transmitting force between the upper mandrel and said lower body.

15

20

40

50

55

This invention relates to a lock mandrel, and, in particular, to a lock mandrel for use in a locking system useful to releasably position well flow control devices in a flow conduit of a well.

Known locking systems are described in US patents nos. 2,673,614 (to Ira A. Miller) and 3,208,531 (to Jack W. Tamplen). In both these systems, the running tool moves the lock mandrel downwardly into sealing and locking engagement with a compatible landing nipple in a well flow conduit.

Our European application 91306289.9 describes and claims a rotary locking system which comprises:

- (a) a landing nipple having connecting means for connecting the nipple in a conduit, first locking means and a metal seat;
- (b) lock mandrel means having a metal sealing surface which is sealingly engageable with the metal seat in the landing nipple and second locking means; and
- (c) running tool means having a connector assembly; wherein the connector assembly of the running tool means is engageable with the lock mandrel means and rotatable to rotate the lock mandrel means to bring the second locking means into engagement with the first locking means of the landing nipple, and to bring the metal seat into seal with the sealing surface; and said connecting assembly is releasable from engagement with said lock mandrel means on application of a rotating force by said running tool means on said lock mandrel means.

This application, which is divided therefrom, relates to a lock mandrel suitable for use with such systems, and, in particular, a lock mandrel arranged for releasable locking engagement with a compatible landing nipple in a conduit, said lock mandrel having a longitudinal flow passage therethrough and being characterised in that it includes:

- (a) an upper mandrel having openings therein;
- (b) helically profiled segment means for rotatably orienting and locking said locking mandrel in said landing nipple, said segment means being mounted for radial movement in each said opening;
- (c) a support slidably mounted and releasably positioned in a first position in said mandrel for expanding said profiled segment means, said support being longitudinally moveable to a second position permitting said profiled segment means to be moved to a retracted position;
- (d) a lower body having a metal sealing surface thereon;
- (e) means swivelably connecting said lower body to said upper mandrel; and
- (f) force transmitting means (W) between said upper mandrel and said body.

In order to locate the lock mandrel in a well, the lock mandrel is connected to a well flow control device and a rotary running tool, to be lowered into the well conduit and landing nipple located therein. As the lock mandrel moves downwardly into the landing nipple, the lock mandrel orienting surfaces engage the landing nipple orienting surfaces, orienting the lock mandrel segments to be moved downwardly between the landing nipple segments until the lock mandrel metal sealing surface engages the landing nipple metal seat. Repeated downward impact on the running tool operates the running tool to rotate the rotary lock mandrel and segments into locking engagement with the landing nipple segments, sealingly engaging the lock mandrel metal seal surface with the landing nipple metal seat and disconnecting the running tool from the lock mandrel. The lock mandrel may be unlocked for retrieval from the landing nipple by engaging and moving a releasably positioned support holding the lock mandrel segments in an expanded position to a position permitting the segments to be moved to a retracted position.

The invention will now be illustrated by description of a locking system of which the present invention forms a part, with reference to the accompanying drawings, wherein:

Fig. 1 is a sectioned drawing in elevation showing a landing nipple in a locking system.

Fig. 2 is a cross sectional drawing along cutting plane line 2-2 of Fig. 1, showing the landing nipple in further detail.

Fig. 3 is a sectioned drawing in elevation showing an embodiment of a rotary lock mandrel in accordance with the invention.

Fig. 4 is a drawing in cross-section of the lock mandrel, along line 4-4 of Fig. 3, through the lock mandrel segments and support.

Fig. 5 shows a cross-sectional view of the lock mandrel, along line 5-5 of Fig. 3, through the swivel connection in the lock mandrel.

Fig. 6 is an almost completely sectioned drawing in elevation of a rotary running tool.

Fig. 7 is an elevational view from line 7-7 of a portion of the rotary running tool of Fig. 6.

Fig. 8 is a drawing of a cross-section along line 8-8 of Fig. 6 showing the pin which limits rotation of the anvil in the running tool connector.

Fig. 9 is a cross-sectional drawing taken along line 9-9 of Fig. 6 showing the rotational connection between the running tool anvil and connector.

Fig. 10 is a view along line 10-10 of the lower end of the running tool of Fig. 6 with the anvil in lugs expanded position.

Fig. 11 is also a view along line 10-10 of the lower end of the running tool of Fig. 6 showing the anvil rotated to lugs retractable position.

10

25

Fig. 12 is a partially sectioned drawing in elevation showing the rotary lock mandrel sealingly engaged and locked in the landing nipple.

3

Fig. 1 shows a landing nipple 10 having an upper body 11 and a lower body 12 which are connected together with a sealing thread 13. The upper and lower bodies have means 11a and 12a for connection into a well flow conduit. A number of helically profiled segments 14 are positioned as shown 120° apart in lower body 12 (see also Fig. 2). A thread profile is shown on each segment, but any helical profile could be used. Each segment is 60° wide and has camming surfaces 14a, a groove 14b, which has a lower side 14c and a helically profiled section 14d, which has a bore 14e. The lower groove sides 14c are in the same horizontal plane. On each segment, the same helix and same profile is cut starting from the point of intersection 14f (for a right hand helix) of the lower groove side 14c and the bore 14d at the edge of each segment. An insert 14g having a sealing surface 14h is connected in the lower end of lower body 12 by welding or brazing.

Figure 3 shows a rotary lock mandrel 15 having a longitudinal flow passage 15a and a half clutch driven member 16 on its upper end. The driven member is connected in segment mandrel 17, which has a number of window like openings 18. Mounted on each opening is a radially moveable circular segment 19 having an orientor 20 with camming surfaces 20a and a helically profiled section 21. The upper ends of circular segments 19 are in the same horizontal plane and the same helix and same profile is cut on each profiled section 21 so as to rotatively engage the segments 14 of landing nipple 12 when the upper ends of segments 19 are positioned in the same horizontal plane with the lower side 14c of grooves 14b in landing nipple segments 14.

Slidably mounted in mandrel 17 is a support 22 which is releasably positioned in the mandrel by shearable member 23 while holding segments 19 in the expanded position -- see also Fig. 4. The support has external recesses 22a and 22b and an internal groove 22c.

A groove 17a around lower mandrel 17 houses a split ring 24 which swivelably connects a body connector 25 on the key mandrel -- see also Fig. 5. Captured between a shoulder on the mandrel and the upper end of the body connector is a belleville spring washer W which is useful to transmit downward force from the key mandrel to connector 25 and into body 26 connected to 25. Body 26 has metal sealing surface 26a and a connection 26b for attachment of a well flow control.

The rotary running tool 27 of Fig. 6 has a through flow passage 27a and connector 28 connected to a housing 29. The connector has a

connection 28a for connecting tool 27 to a well servicing tool string and a fishing flange 28b. Slidably mounted in the housing is an anvil 30 and a spring 31 biasing the anvil downwardly. As shown in Fig. 7, a helical slot 29a has been cut in the housing and a lug 32, with camming surfaces 32a and 32b, has been slidably mounted in the slot and connected to the anvil.

Mounted around and cooperable with the lower anvil is a rotary connector assembly 33, useful to connect running tool 27 to rotary lock mandrel 15. The lower anvil has been provided with at least one groove around 30a, which is semi-circular in cross-section and a number of support surfaces 30b also shown in Figs. 10 and 11. A slot 30c (see Fig. 8) is provided around the anvil and grooves 30d are provided between support surfaces 30b (Figs. 10 and 11) into which lugs 34f may be retracted.

Connector assembly 33 includes a collet 34 having a hole 34a, at least one internal groove 34b, which is semi-circular in cross-section, a lower hole 34c, a half clutch driving member 34d with a number of slots and a number of fingers 34e, each finger having a lug 34f, which is engageable with an anvil support surface 30b.

To position the collet for limited rotation around and connect it on the anvil, a number of balls 35 have been introduced through collet hole 34c into grooves 30a and 34b --see also Fig. 9. A pin 36 has been installed in hole 34a and extends into anvil slot 30c. Slot 30c limits rotation of the pin and collet to 60° around the anvil between lugs expanded position where lugs 34f engage support surfaces 30b and lugs retractable position where surfaces 30b are between lugs 34f. Pin 36 and a plug 37 in hole 34c are retained by a cover 38 connected on the collet. A shearable member 39 threaded through the collet into a hole in the anvil, releasably positions anvil support surfaces 30b under lugs 34f, holding the lugs in expanded position.

To utilize the rotary lock system of this invention, a flow control device to be installed in landing nipple 10 in a well flow conduit is connected on rotary lock mandrel 15. Rotary running tool 27 is connected on a string of well serving tools which include a jar and in the lock mandrel support groove 22c by removing shearable member 39, turning collet 34 on anvil 30 to position support surfaces 30b between lugs 34f and inserting the running tool collet into passage 15a in rotary lock mandrel 15. After running tool driving member 34d engages driven member 16 and collet lugs 34f expand into support groove 22c, connector assembly 33 is rotated on anvil 30 positioning surfaces 30b under lugs 34f to hold the lugs expanded in the support groove connecting the rotary running tool to the rotary lock mandrel. Member 39 is reinserted.

55

10

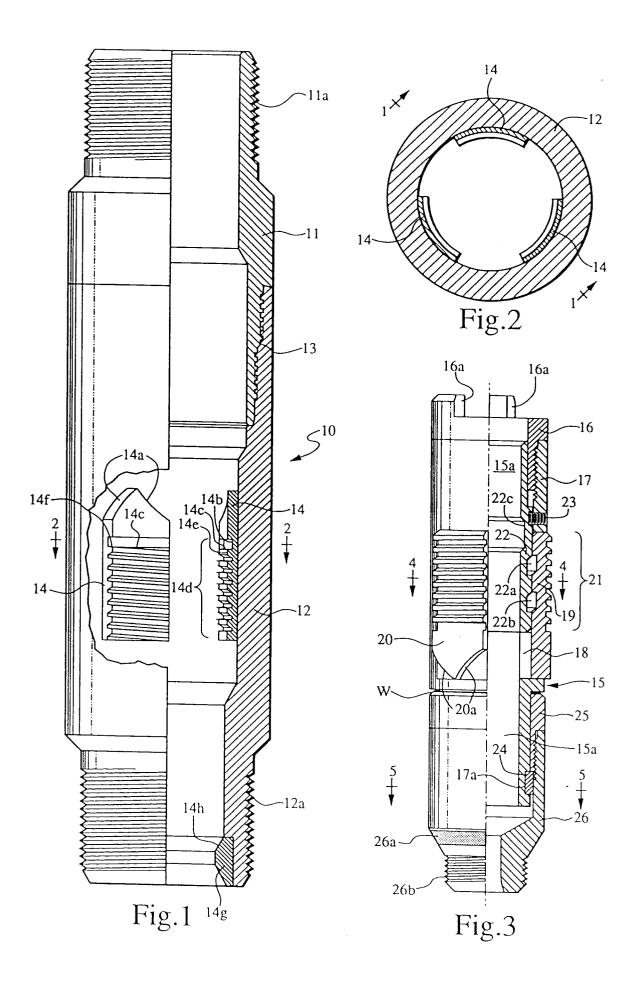
25

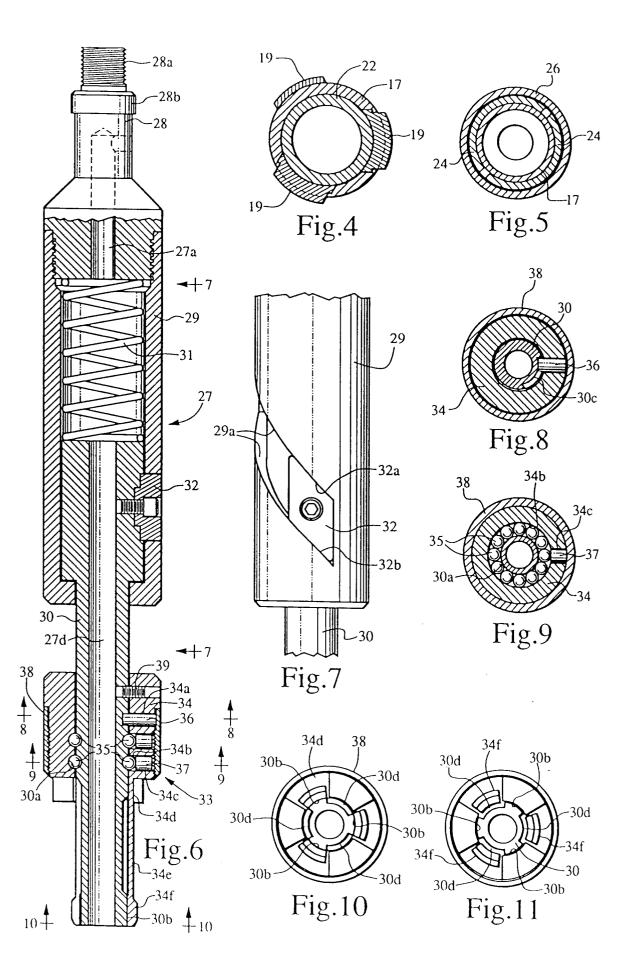
35

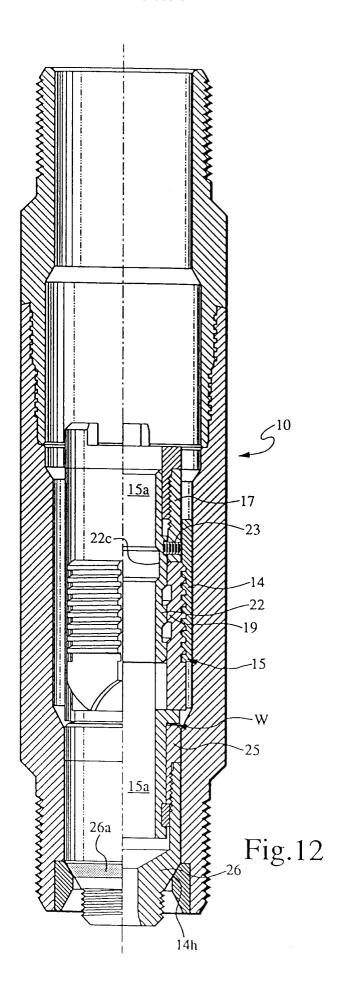
The running tool and lock mandrel are now lowered into the well conduit and on entry into the landing nipple, lock mandrel orientor camming surfaces 20a engage landing nipple segment camming surfaces 14a and turn the lock mandrel so the lock mandrel segments 19 can be moved down between landing nipple segments 14 until metal seal surface 26a on lock mandrel body 26 engages landing nipple metal sealing surface 14h. Unflexed washer W positions segments 19 to be rotated into engagement with segments 14.

Now application of downward jar impact on rotary running tool 27 moves housing 29 downwardly on anvil 30, compressing spring 31, engaging helical slot 29a with lug camming surface 32a and applying torque to the anvil. Repeated application of downward impact on the running tool rotates the lock mandrel segments 19 into engagement with landing nipple segments 14 through running tool driving member 34d and lock mandrel driven member 16. As segments 19 are rotated into segments 14, downward force acting on the segment mandrel 17 is transmitted through flexed washer W, connector 25 and into body 26 to sealingly engage metal sealing surface 26a with landing nipple sealing surface 14h on insert 14g. When the lock mandrel is rotated to engage the landing nipple, metal sealing surface 26a does not rotate on sealing surface 14h as body 26 may rotate on segment mandrel 17. Lock mandrel 15 is now locked in sealing engagement in landing nipple 10 with support 22 positioning segments 19 in expanded position.

Continued downward impact on the running tool will eventually shear member 39 and rotate the anvil 60° positioning anvil grooves 30d under lugs 34f as shown in Fig. 11. Raising running tool 27 will retract lugs 34f into grooves 30d and from support groove 22c, permitting the running tool to be retrieved from the well conduit back to surface. Twoway flow may now occur through the flow control and mandrel flow passage 15a (see Fig. 12).


When it is desirable to retrieve the flow control and lock mandrel 15 from landing nipple 10, a conventional pulling tool is connected to well servicing tools including a jar, lowered into the well conduit and the pulling tool is operated to connect into groove 22c in the lock mandrel support. Upward impact forces delivered to the pulling tool by the jar will shear lock mandrel shearable member 23 and move support 22 upwardly until the mandrel segments 19 are cammed into support recesses 22a and 22b and into retracted position. The lock mandrel and flow control may now be retrieved from the landing nipple and flow conduit.


Claims


- A lock mandrel (15) arranged for releasable locking engagement with a compatible landing nipple (10) in a conduit, said lock mandrel having a longitudinal flow passage (15a) therethrough and being characterised in that it includes:
 - (a) an upper mandrel (17) having openings (18) therein;
 - (b) helically profiled segment means (19) for rotatably orienting and locking said locking mandrel in said landing nipple, said segment means being mounted for radial movement in each said opening;
 - (c) a support (22) slidably mounted and releasably positioned in a first position in said mandrel for expanding said profiled segment means (19), said support being longitudinally moveable to a second position permitting said profiled segment means to be moved to a retracted position;
 - (d) a lower body (26) having a metal sealing surface (26a) thereon;
 - (e) means (24) swivelably connecting said lower body to said upper mandrel; and
 - (f) force transmitting means (W) between said upper mandrel and said body.
- **2.** A lock mandrel as claimed in claim 1, wherein the lock mandrel is a rotary lock mandrel.

55

50

EUROPEAN SEARCH REPORT

Application Number EP 94 20 2413

	GB-A-2 149 835 (CAMCO) * abstract; figures * * page 2, line 111 - page US-A-4 164 977 (ARENDT)	e 3, 1ine 3 *	1	E21B23/02
A	US-A-4 164 977 (ARENDT)			
A	* abstract; figures *		1	
	US-A-3 863 715 (YONKER) * abstract; figures *	·-	1	
				TECHNICAL FIELDS
				SEARCHED (Int.Cl.5) E21B
	The present search report has been dra	wn up for all claims		
	Place of search	Date of completion of the search	1	Examiner
	THE HAGUE	22 November 1994	We	iand, T
Y:pa	CATEGORY OF CITED DOCUMENTS T: theory or princi E: earlier patent d arrier the filing particularly relevant if taken alone particularly relevant if combined with another document of the same category L: document cited			ne invention blished on, or on