[0001] L'invention concerne un aspirateur comprenant un corps d'aspirateur muni d'une entrée
d'air et d'une sortie d'air, et un tuyau muni d'une buse couplé à l'entrée d'air du
corps d'aspirateur, ce corps d'aspirateur incluant une chambre à poussière communiquant
avec l'entrée d'air, et un logement pour un ventilateur entraîné par un moteur électrique,
ce logement communiquant avec la chambre à poussière et la sortie d'air, cet aspirateur
comprenant en outre :
- un premier capteur, dit capteur de sol, pour fournir un signal fonction de caractéristiques
de l'état de surface du sol détectées par la buse lors de l'opération de nettoyage
;
- des moyens de calcul prenant en compte les signaux fournis par ce premier capteur,
pour fournir un signal de classification de l'état de surface du sol, lors de l'opération
de nettoyage.
[0002] L'invention trouve son application dans le domaine de fabrication d'aspirateurs domestiques
ou industriels.
[0003] Un aspirateur muni des éléments décrits plus haut est connu de la demande de brevet
européen EP 0 467 347. Le document décrit un aspirateur ayant des moyens pour régler
la puissance du moteur d'entraînement du ventilateur en fonction de la nature ou de
l'état de surface du sol frotté par la buse. Ces moyens comprennent :
- un premier capteur, qui est un capteur de courant, pour détecter les changements du
courant d'alimentation d'une brosse électrique placée dans la buse, qui apparaissent
au moment précis du passage d'un sol à un autre sol, par exemple lors des changements
de sols entre tapis épais, tapis fin, tatami et sol dur, et un circuit pour mémoriser
les pics de courant. En effet pendant l'opération de nettoyage, l'utilisateur de l'aspirateur
effectue avec la brosse située dans la buse, des allers et retours en frottant le
sol. Selon l'état de surface de ce dernier, la charge appliquée à la brosse change,
et donc son courant change. Ce courant présente la forme d'une sinusoïde ayant pour
fréquence celle de la tension d'alimentation alternative du moteur de la brosse, fournie
par le secteur. Ce courant présente d'autre part des variations en forme de pics de
l'enveloppe de la courbe sinusoïdale. Ces pics d'amplitude de la sinusoïde apparaissent
à chaque changement de direction dans le frottement du sol par la brosse, c'est-à-dire
entre un aller, où la brosse est poussée sur le sol, et un retour, où la brosse est
tirée sur le sol. Il est important de remarquer que entre ces pics, la valeur du courant
représentée par l'amplitude de la sinusoïde est à peu près constante quel que soit
le sol. La valeur du courant varie seulement lorsque les pics apparaissent et de telle
manière que l'amplitude de ces pics est plus grande pour les tapis épais que pour
les tapis fins, et est la plus petite pour les sols durs. Lorsque la brosse ne touche
pas le sol, aucun pic n'apparaît ;
- un second capteur, qui est un capteur de pression, formé d'un capteur piézoélectrique
disposé dans le corps de l'aspirateur relié à un tuyau pour détecter la pression d'air
à la partie succion du ventilateur, entre le chambre à poussière et la face succion
de ce ventilateur, pour fournir un signal fonction de cete pression.
[0004] L'aspirateur connu du document cité comprend en outre :
- des moyens de calculs pour fournir un signal de classification de l'état de surface
des sols, entre TAPIS EPAIS, TAPIS MINCE, TATAMI, et SOL DUR, à partir des pics de
courant de la brosse électrique de base. Ces moyens de calcul incluent un microprocessuer
qui compare les valeurs retenues des pics de courant avec des valeurs de courant de
référence prédéterminées et prémémorisées. A partir de là, ce microprocesseur établit
la classification des sols par comparaison avec ces valeurs de courant de référence.
D'autre part, ce microprocesseur compare les valeurs de pression fournies par le second
capteur, avec des valeurs de référence de pression prédéterminées et prémémorisées
correspondant aux différents sols possibles. Ce microprocesseur fournit ensuite un
signal de réglage de la puissance du moteur pour obtenir, en sortie de la chambre
à poussière, une valeur de pression conforme à la valeur de pression prédéterminée
et prémémorisée correspondant à la classe du sol calculée. Le microprocesseur peut
aussi fournir éventuellement un signal interrupteur du moteur de brosse.
[0005] Cet aspirateur connu présente un inconvénient du fait que le détecteur de sol est
un détecteur de courant lié à la brosse électrique de buse. Ainsi, la détection des
pics, permettant l'indication des différents sols, ne peut être faite que lorsqu'une
brosse est systématiquement utilisée dans la buse, c'est-à-dire est à la fois présente
et en rotation. Or l'utilisation systématique d'une brosse n'est pas pratique. En
particulier, la brosse électrique a tendance à éparpiller les miettes au lieu de les
attirer vers la buse lorque le sol est un revêtement lisse ou un tapis ras. En général,
l'utilisateur désire que la brosse soit hors service pour les sols lisses et les tapis
ras. Donc, le dispositif décrit n'est utile que pour distinguer les tapis épais des
tapis moyens, et dans ce cas, il apparaît que les niveaux des pics de courant ne sont
pas assez différents pour faire cette distinction d'une manière correcte.
[0006] La présente invention a pour but de fournir un aspirateur qui permet d'obtenir une
information relative au sol, indépendante de la mise en service de la brosse.
[0007] Selon l'invention ce but est atteint au moyen d'un aspirateur muni des éléments décrits
dans le préambule et en outre caractérisé en ce que le premier capteur, dit capteur
de sol, est un capteur de pression qui fournit un signal fonction de la pression de
l'air mesurée à un premier point de mesure sur le trajet du flux d'air d'aspiration
de l'aspirateur, ce signal présentant des oscillations pseudo-périodiques, dont les
maxima et les minima correspondent pour les uns aux allers, et pour les autres aux
retours de la buse sur le sol durant l'opération de nettoyage, ce signal présentant
une différence d'amplitude, entre ces maxima et minima, qui varie selon la classe
du sol nettoyé, et en ce que les moyens de calcul déterminent la classe du sol nettoyé,
en fonction de cette différence d'amplitude.
[0008] Cet aspirateur présente l'avantage que la détection des sols est très bonne, car
elle résulte d'un capteur dont la mesure est directement influencée par l'action du
sol sur le flux d'air d'aspiration et n'a pas à prendre en compte des paramètres liés
aux moteurs ou aux alimentations.
[0009] En outre, cet aspirateur présente l'avantage que la mesure ne dépend pas de la mise
en service obligatoire de la brosse électrique située dans la buse, puisque le point
de mesure du capteur est situé sur le trajet du flux d'aspiration. Donc la détection
peut être faite pour tous les sols, même les sols durs nettoyés sans brosse.
[0010] Par ailleurs, cet aspirateur présente l'avantage d'une meilleure longévité que le
dispositif connu, car d'une manière générale le moteur de brosse de la buse a une
moins grande longévité que le moteur principal de l'aspirateur ; donc le dispositif
selon l'invention, qui n'est pas lié au moteur de brosse, peut durer plus longtemps
que le dispositif connu.
[0011] Dans une mise en oeuvre, cet aspirateur est caractérisé en ce que, le signal du premier
capteur de pression dit capteur de sol présentant une amplitude dite moyenne, entre
les amplitudes des maxima et des minima, qui varie selon la classe du sol nettoyé,
les moyens de calculs déterminent la classe du sol nettoyé conjointement en fonction
de la différence d'amplitude entre maxima et minima et de ladite amplitude moyenne
du signal du capteur de sol.
[0012] Dans cette mise en oeuvre, cet aspirateur présente l'avantage que la détection des
différents sols est encore améliorée.
[0013] La présente invention a également pour but de fournir un aspirateur qui présente
un meilleur réglage de la pression d'aspiration en fonction de la classe du sol, que
l'aspirateur connu.
[0014] Selon l'invention, ce but est atteint au moyen d'un aspirateur caractérisé en ce
qu'il comprend des moyens de consigne pour déterminer, en fonction de la classe du
sol calculée, une valeur de consigne pour ladite amplitude moyenne du signal du premier
capteur de pression, de façon à régler la pression d'aspiration de manière appropriée
en fonction de la classe du sol calculée.
[0015] Cet aspirateur présente l'avantage, du fait que la détection est améliorée, la valeur
de consigne pour ladite amplitude moyenne du signal du premier capteur de pression
peut être déterminée plus précisément.
[0016] Dans une mise en oeuvre cet aspirateur est caractérisé en ce qu'il comprend des moyens
de contrôle pour déterminer une valeur de réglage de la tension d'alimentation du
moteur du ventilateur pour fournir la puissance électrique qui permet d'obtenir la
valeur de consigne pour l'amplitude moyenne du signal du premier capteur de pression.
[0017] Cet aspirateur présente en particulier un avantage, extrêmement important sur l'aspirateur
connu : en effet, selon l'invention, à la fois la détection de sol et le réglage de
la pression convenable d'aspiration en fonction du sol détecté sont réalisés au moyen
d'un seul et unique capteur. Donc non seulement selon l'invention la détection est
plus précise, le réglage de la pression de travail est plus précis, mais encore ces
résultats sont atteints avec une grande économie de moyens. On rappelle que dans l'aspirateur
connu, le capteur de courant intervenait seulement dans la détection de sol, et le
capteur de pression situé en sortie de la chambre à poussière intervenait seulement
dans le réglage de la pression de travail. Deux capteurs étaient donc nécessaires
pour remplir les deux fonctions. L'aspirateur selon l'invention réalise ces deux fonctions
avec un seul capteur au lieu de deux.
[0018] La présente invention a aussi pour but d'optimiser la détection du sol nettoyé et
le réglage du niveau de pression d'aspiration.
[0019] Selon l'invention, ce but est atteint au moyen d'un aspirateur caractérisé en ce
que le point de mesure du premier capteur de pression dit capteur de sol est situé
à l'entrée de la chambre à poussière.
[0020] Cet aspirateur présente alors de très nombreux avantages. Tout d'abord la précision
de la détection est grandement améliorée, car la mesure est influencée par l'action
du sol, pratiquement sans intermédiaires, et en tout cas sans amortissement.
[0021] Ensuite le réglage de la pression d'aspiration est également amélioré, car cette
pression est réglée directement à l'entrée de la chambre à poussière, au lieu de l'être
à la sortie comme dans l'aspirateur connu. Donc le réglage de pression est plus précis
et plus adéquat que dans l'aspirateur connu.
[0022] Dans une mise en oeuvre, cet aspirateur est caractérisé en ce que les moyens de calcul
comprennent des moyens dits de prétraitement, qui reçoivent en entrée le signal fourni
par le premier capteur de pression, dit capteur de sol, et qui fournissent en sortie,
résultant de ce prétraitement :
- un premier signal fonction de ladite valeur moyenne de la pression mesurée sur le
trajet du flux d'aspiration par le premier capteur de pression :
- un second signal fonction de la valeur de différence d'amplitude entre maxima et minima
des oscillations de la pression mesurée sur le trajet du flux d'aspiration par le
premier capteur de pression.
[0023] Cet aspirateur présente l'avantage de n'utiliser, pour ce prétraitement, que des
moyens de calculs simples, avec des additions ou soustractions ou tests, et non pas
des multiplications ou divisions. Ces moyens de calculs sont donc peu coûteux et faciles
à mettre en oeuvre pour obtenir un dispositif à bas coût.
[0024] Dans une mise en oeuvre, cet aspirateur est caractérisé en ce que, les moyens de
calcul comprennent en outre un bloc de déduction classificateur, qui reçoit en entrée
les premier et second signaux issus desdits moyens de prétraitement, et qui fournit
en sortie des classes correspondant, selon des règles prédéterminées, à la détection
de plusieurs états de surface différents du sol à nettoyer.
[0025] Dans une mise en oeuvre, cet aspirateur est éventuellement caractérisé en ce que
le bloc de déduction classificateur fournit en sortie deux classes correspondant à
la détection de deux états de surface différents du sol à nettoyer qui sont un état
"TAPIS" et un état "SOL DUR et LISSE.
[0026] Cet aspirateur présente l'avantage de n'utiliser que des moyens de déduction très
simples qui fournissent les résultats d'une manière très rapide.
[0027] Dans une mise en oeuvre, cet aspirateur est caractérisé en ce qu'il comprend un second
capteur de pression, pour fournir un signal fonction de la différence des pressions
d'air mesurées entre l'entrée et la sortie de la chambre à poussière, et en ce que
les moyens de prétraitement reçoivent ce signal et fournissent en sortie :
- un troisième signal fonction de la valeur moyenne de la différence entre les pressions
à l'entrée et à la sortie de la chambre à poussière.
[0028] Cette mesure permet d'améliorer la robustesse de la classification de sol. Eventuellement,
cette mesure peut être utilisée pour fournir le taux de remplissage de la chambre
à poussière.
[0029] Dans une mise en oeuvre, cet aspirateur est caractérisé en ce que qu'il comprend
en outre une brosse électrique disposée dans la buse et des moyens de réglage de la
puissance électrique du moteur de cette brosse dit moteur auxiliaire en fonction de
la classe du sol calculée.
[0030] Dans une mise en oeuvre, cet aspirateur est caractérisé en ce que les moyens de réglage
de la puissance du moteur auxiliaire comprennent un bloc de consigne pour déterminer
par une conversion directe en fonction de la classe de sol détecté, une valeur de
réglage de la tension d'alimentation du moteur auxiliaire pour fournir la puissance
qui permet la mise en service ou hors service de la brosse disposée dans la buse selon
la classe de sol détectée.
[0031] Cet aspirateur présente l'avantage que la mise en route et le réglage du moteur auxiliaire
de brosse sont complètement indépendants du réglage du moteur principal en fonction
du sol.
[0032] L'invention est décrite ci-après en détail en référence avec les figures annexées
parmi lesquelles, schématiquement :
- la FIG.1 représente un aspirateur muni de ses éléments principaux et des 2 capteurs
de pression ;
- la FIG.2 représente, en blocs fonctionnels, l'aspirateur et le dispositif de traitement
des signaux des capteurs de pression, pour le contrôle du moteur principal de ventilateur
et d'un moteur auxiliaire, de brosse dans la buse, et la détection du taux de remplissage
de la chambre à poussière.
- la FIG.3A représente les signaux des premier et second capteurs de pression à puissance
constante du moteur principal, avec des taux de remplissage de la chambre à poussière
différents, sur un sol "TAPIS" ;
- la FIG.3B représente les signaux des premier et second capteurs de pression, à puissance
constante du moteur, à taux de remplissage du sac à poussière identique, avec des
sols différents.
[0033] En référence avec la FIG.1, un aspirateur pour usage domestique ou industriel comprend
un corps d'aspirateur 1, muni de moyens, non représentés, pour être aisément déplacé
sur un sol à nettoyer, par exemple des roues ou des patins, ou une combinaison de
ces éléments.
[0034] Le corps d'aspirateur est muni d'une entrée d'air 11 et d'une sortie d'air 21, et
comprend essentiellement deux logements :
- un premier logement 10 constituant la chambre à poussière, communiquant avec l'entrée
d'air 11 ;
- un second logement 20 pour un ventilateur 23 entraîné par un moteur 22. Le logement
du ventilateur et du moteur communiquent avec la chambre à poussière 10 d'une part,
et la sortie d'air 21 d'autre part. Le ventilateur 23 présente un côté succion 23a
vers la chambre à poussière 10, et un côté soufflerie vers la sortie d'air 21.
[0035] Le logement 20 du ventilateur est rendu étanche à la poussière de la chambre à poussière
par un filtre F1 disposé de façon amovible dans l'ouverture de communication de la
chambre à poussière 10 avec ce logement 20. La sortie d'air 11 est également protégée
de la poussière par un filtre F2 disposé de façon amovible entre le côté soufflerie
23b du ventilateur et cette sortie d'air 21.
[0036] En général un sac à poussière 12 formant filtre, est disposé de manière amovible
dans la chambre à poussière. Ce sac a une ouverture dirigée vers l'entrée d'air 11,
et est mis en place de manière aussi étanche à la poussière que possible derrière
cette entrée d'air 11.
[0037] L'aspirateur comprend en outre un tuyau formé en général d'une partie souple et d'un
prolongateur rigide terminé par une buse. L'extrémité du tuyau opposée à la buse est
couplée avec l'ouverture de l'entrée d'air 11. Ces diverses parties ne sont pas représentées
sur la FIG.1.
[0038] Le fonctionnement de l'aspirateur comprend le branchement du moteur de ventilateur
sur une source de tension alternative pour créer, par l'action du ventilateur, une
dépression dans la buse, de manière à aspirer les poussières, miettes, petits débris
et autres qui se trouvent sur des sols à nettoyer. L'action de nettoyer comprend l'actionnement
de la partie rigide du tuyau par l'utilisateur, selon un mouvement de va-et-vient
de la buse sur le sol à nettoyer, formant des allers-retours de la buse sur le sol
d'une manière pseudo-périodique, la pseudo-période d'un aller-retour étant de l'ordre
de 0,5 seconde, et en général inférieur à 2 secondes.
[0039] Lorsque la buse est poussée vers l'avant par l'utilisateur au moyen de la partie
rigide du tuyau, dans la partie "aller" de la pseudo-période, la buse se trouve plaquée
sur le sol, et donc la résistance à l'air augmente, le flux dans le tuyau diminue,
et il s'ensuit que la dépression dans le tuyau de l'aspirateur augmente.
[0040] Lorsque la buse est tirée vers l'arrière, au contraire, dans la partie "retour" de
la période, la buse se trouve légèrement soulevée vis-à-vis du sol à nettoyer et la
dépression dans le tuyau de l'aspirateur diminue.
[0041] Donc au changement de direction de la buse, c'est-à-dire entre un aller et un retour,
et l'inverse, il apparaît une variation de la dépression. Cette variation est en outre
pseudo-périodique, avec la pseudo-période des allers-retours de la buse. Ces variations
de la dépression au niveau de la buse, que l'on peut aussi appeler oscillations de
l'amplitude de la pression dans la buse et le tuyau, constituent des grandeurs qui
sont mesurables.
[0042] En effet, chaque "aller" de la buse correspond dans cette variation pseudo-périodique,
à un maximum de l'amplitude de la pression, et chaque "retour" de la buse correspond
à un minimum de l'amplitude de la pression dans le tuyau d'aspirateur. Il est important
de noter que la valeur de l'amplitude de la pression reste maximale pendant toute
la durée de l'opération "aller", de même que l'amplitude de la pression reste minimale
pendant toute la durée de l'opération "retour". Entre les maxima et les minima de
pression, la variation de pression, qui correspond à un changement brusque de direction
de la buse sur le sol, est abrupte. Ainsi la courbe représentative de l'amplitude
de la pression en fonction du temps a pratiquement la forme d'un signal carré pseudo-périodique.
[0043] La différence d'amplitude de la pression entre les "allers" et les "retours", c'est-à-dire
la différence entre l'amplitude ou la valeur de pression aux maxima et l'amplitude
ou valeur de la pression aux minima de la variation pseudopériodique, dépend fortement
de l'état de surface ou de la nature du sol à nettoyer. Ainsi, cette différence d'amplitude
des oscillations est grande si les allers-retours de la buse s'effectuent sur un tapis
épais ; cette différence d'amplitude diminue lorsque la profondeur du tapis diminue
; et cette amplitude est quasiment nulle sur un sol dur et lisse.
[0044] D'autre part, l'amplitude moyenne de la pression dans la buse, c'est-à-dire la valeur
moyenne de l'amplitude mesurée entre les maxima et minima d'amplitude par rapport
à la pression zéro dépend également fortement de l'état de surface ou nature du sol
à nettoyer. Cette amplitude moyenne est grande lorsque la buse est en présence d'un
tapis épais : elle diminue lorsque la profondeur du tapis diminue et elle est à une
valeur minimale, mais non nulle, lorsque la buse est en présence d'un sol dur.
[0045] Ces variations d'amplitude de la pression peuvent être mesurées dans la buse du tuyau
d'aspirateur. Mais, il est préférable, pour des questions de facilité de mise en oeuvre,
de les mesurer au niveau de l'entrée d'air 11 du corps 1 de l'aspirateur.
[0046] Ces variations sont également visibles dans la partie du corps de l'aspirateur située
en 23a entre la chambre à poussière et le ventilateur ou bien en 23b en sortie de
la chambre à poussière. Mais à ces endroits les oscillations sont amorties par la
présence de la poussière et par celle des différents filtres (sac à poussière 12 et
éventuellement filtre F1) eux-mêmes.
[0047] En conséquence, une mesure réalisée au niveau de l'entrée d'air 11 correspond plus
correctement aux conditions de pression qui existent dans la buse même et fournit
une indication plus probante de l'état de surface du sol.
[0048] Cette mesure des variations d'amplitude de la pression qui apparaissent à chaque
changement de direction de la buse est réalisée au moyen d'un capteur de pression
14 dont le point de mesure 15 est disposé au niveau de l'entrée d'air 11, par exemple
avant le sac à poussière 12. Ce capteur de pression peut être un capteur au silicium
muni d'un tuyau souple 17 dont l'extrémité est amenée au point de mesure 15. Le corps
du capteur 14 lui-même peut être fixé sur une plaquette 29 de circuit disposée dans
le corps 1 de l'aspirateur, hors du trajet du flux d'air.
[0049] Il apparaît d'autre part, que les variations de pression au cours des allers-retours
pour un même sol, et une même puissance du moteur sont légèrement influencées par
le remplissage de la chambre à poussière. C'est pourquoi dans le but d'améliorer la
robustesse de la détection de sol, une mesure de la différence de pression entre la
sortie et l'entrée de la chambre à poussière est prévue.
[0050] A cet effet on dispose, dans le corps de l'aspirateur d'un second capteur de pression
24 du même type que le premier capteur de pression 14, muni d'un tuyau souple 27 dont
l'extrémité est amenée au point de mesure 25 côté succion 23a du ventilateur. Le corps
du capteur de pression 24 peut être fixé sur une plaquette de circuit disposée dans
le corps de l'aspirateur en dehors du trajet du flux d'air. le corps du capteur de
pression 24 peut par exemple être fixé sur la même plaquette 29 de circuit que le
corps du capteur de pression 14. De préférence ce second capteur 24 est couplé au
premier capteur 14 pour fournir une mesure de la différence de pression aux bornes
de la chambre à poussière. La différence entre les pressions moyennes qui existent
au point de mesure 15, à l'entrée de la chambre à poussière, et au point de mesure
25, en sortie de cette chambre peut être obtenue de façon simple. A cet effet, le
capteur de pression 24 est un capteur différentiel, et un T référencé 28 est appliqué
sur le tuyau souple qui prélève la pression au point de mesure 15 pour appliquer cette
pression mesurée à la fois sur le capteur 14 d'entrée et sur le capteur 24 de sortie
de la chambre à poussière. Ainsi le capteur 24 reçoit à la fois les pressions aux
points de mesure 15 et 25.
[0051] Dans des variantes de mise en oeuvre, le point de mesure 25 peut être d'un côté,
ou de l'autre du filtre à poussière F1, c'est-à-dire en fait, soit en sortie 23b de
la chambre à poussière 10, dans cette chambre à poussière derrière le sac à poussière
12, ou bien dans la position 23b entre le filtre F1 et la face succion du ventilateur
23 dans le logement 20.
[0052] Il faut noter que, à la différence de l'aspirateur divulgué par la demande de brevet
européen EP 0467 347, cité au titre d'état de la technique, ce capteur de pression
24 disposé en sortie de la chambre à poussière n'est pas indispensable pour le réglage
de la pression de travail de l'aspirateur, réglage qui sera décrit plus loin. Ce second
capteur de pression 24 est selon l'invention uniquement destiné à améliorer la robustesse
de la classification du sol. Eventuellement, la mesure de pression différentielle
peut permettre de déduire une indication du taux de remplissage de la chambre à poussière.
[0053] Dans une mise en oeuvre, on peut chercher à détecter les conditions de pression relatives
à 3 ou 4 sols différents, par exemple comme connu du document cité au titre d'état
de la technique : tapis épais, tapis fin, tatami, et sol dur et lisse ; et on peut
prévoir les réglages correspondants de la puissance du moteur du ventilateur.
[0054] Les courbes des FIG.3A et 3B illustrent la mise en oeuvre de la détection par les
deux capteurs de pression, respectivement 14 et 24.
[0055] La courbe C de la FIG.3B montre la pression P en mbar mesurée par le capteur 14 au
point de mesure 15 à l'entrée du sac à poussière en fonction du temps t mesuré en
secondes (s), et la courbe D de cette même FIG.3B montre la pression P en mbar mesurée
par le capteur 24 au point de mesure 25 à la sortie du sac à poussière en fonction
du temps t mesuré en secondes. Ces mesures sont faites à puissance constante du moteur
22 du ventilateur 23, et avec un taux de remplissage du sac à poussière identique
pour toutes les parties de courbe.
[0056] On rappelle que 1 bar = 10⁵ Pa (Pascal).
[0057] Les parties C1 et D1 de courbe concernent une condition de nettoyage où la buse subit
des allers-retours sur un sol muni d'un tapis épais, à brins longs, les parties C2
et D2 concernent une condition de nettoyage sur tapis de moyenne épaisseur, et les
parties C3 et D3 concernent une condition de nettoyage sur sol dur.
[0058] Ces courbes montrent dans les parties C1 et D1, d'une part, et C2 et D2 d'autre part,
des oscillations formées par des maxima γ1, γ2, γ3 considérés par exemple sur C1,
et des minima ε1, ε2, ε3 considérés sur la même courbe C1 représentative de la pression
P à l'entrée de la chambre à poussière, lorsque la buse effectue des allers et retours
sur un tapis épais. Les maxima de pression, qui sont ici de l'ordre de 82 mbar correspondent
aux durées de temps de l'ordre de 1,5 secondes pendant lesquelles l'utilisateur pousse
la buse sur le tapis (allers). Les minima de pression, qui sont ici de l'ordre de
74 mbar correspondent aux durées de temps de l'ordre de 1,5 secondes pendant lesquelles
l'utilisateur tire la buse sur le tapis (retours). La variation de la pression P entre
les maxima γ1, γ2, γ3 et les minima ε1, ε2, ε3 est extrêmement abrupte : elle correspond
aux changements de direction de la buse entre les allers et retours.
[0059] Les légères irrégularités qui apparaissent sur les maxima ou bien sur les minima
d'amplitude sont dues au bruit et devront être lissées lors du traitement des données
mesurées.
[0060] La différence d'amplitude ΔP entre l'amplitude P2 des maxima γ1, γ2, γ3 et l'amplitude
P1 des minima ε1, ε2, ε3 est dans l'exemple illustré par la FIG.3B de l'ordre de 8
mbar pour un tapis, la pression étant mesurée à l'entrée de la chambre à poussière.
[0061] On peut voir, sur la même FIG.3B que la partie D1 relative à la pression mesurée
à l'arrière de la chambre à poussière dans les mêmes conditions que C1 montre également
des oscillations entre les amplitudes correspondant aux allers et aux retours de la
buse. Sur la courbe D1, les maxima sont notés γ'1, γ'2, γ'3... et les minima sont
notés ε'1, ε'2, ε'3. L'amplitude moyenne de la pression entre maxima et minima est
noté PM1'. Mais, si l'amplitude moyenne PM' de la pression (courbe D) est plus grande
à l'arrière de la chambre à poussière (PM1'= environ 108 mbar pour D1) que l'amplitude
moyenne PM (courbe C) à l'avant de la chambre à poussière, (PM1 = environ 79 mbar
pour C1), par contre les oscillations relevées à l'arrière de la chambre à poussière
(courbe D) sont plus amorties : par exemple pour un tapis, la différence d'amplitude
de pression ΔP entre les allers-retours est d'environ 6 mbar (courbe D1) au lieu de
8 (courbe C1) lorsque la pression est mesurée à l'avant de la chambre à poussière.
Donc il est plus favorable de placer le capteur de pression qui sert de détecteur
de sol à l'avant de la chambre à poussière, plutôt qu'à l'arrière.
[0062] Les mêmes observations peuvent être faites pour les parties de courbe C2 et D2 relatives
à un tapis moins épais, montrant la pression respectivement à l'avant (courbe C2)
et à l'arrière (courbe D2) de la chambre à poussière.
[0063] Les parties C3 et D3 qui concernent les conditons où la buse effectue des allers-retours
sur sol dur montrent que l'amplitude de la pression est ici identique pour les allers
et les retours. Aucune variation d'amplitude
n'apparaît ; il n'y a ni maxima, ni minima. On constate seulement un léger bruit.
[0064] D'autre part, la détermination des amplitudes moyennes de pression PM1, dans la condition
tapis épais (courbe C1), PM2 tapis moyen (courbe C2) et PM3, sol dur (courbe C3) montre
que cette amplitude moyenne passe de 78 mbar (C1), à 69 mbar (C2) et à 64 mbar (C3).
Donc cette amplitude moyenne varie avec l'état de surface du sol. Notamment, elle
diminue de tapis épais, à tapis moyen et à sol dur.
[0065] La courbe A de la FIG.3A montre la pression P en mbar mesurée par le capteur 14 au
point de mesure 15 à l'entrée de la chambre à poussière, en fonction des temps t mesuré
en secondes, et la courbe B de cette même FIG.3A montre la pression P en mbar mesurée
par le capteur 24 au point de mesure 25 à la sortie de la chambre à poussière, en
fonction du temps t mesuré en secondes. Ces mesures sont faites à puissance constante
du moteur 22 de ventilateur 23, et sur un tapis moyen.
[0066] Les parties A1 et B1 de courbe concernent une condition où la chambre à poussière,
par exemple muni d'un sac à poussière, est vide, c'est-à-dire que le sac est propre
et neuf.
[0067] Les parties A2 et B2 de courbe concernent une condition où le sac à poussière montre
un taux de remplissage d'à peu près 50 %. On constate d'après ces courbes que lorsque
la chambre à poussière se remplit, la pression au point 15 à l'entrée de la chambre
à poussière diminue alors que la pression au point 25 à la sortie de la chambre poussière
augmente.
[0068] Les parties A3 et B3 de courbe concernent la condition où le sac à poussière est
plein. On constate que la pression au point 15 est minimale, alors qu'au point 25
elle est maximale.
[0069] Quelles que soient les conditions de remplissage de la chambre à poussière, les maxima
et minima de pression correspondant aux allers et retours de la buse sont toujours
bien mesurables sur les courbes, et tout particulièrement sur les courbes A qui correspondent
à la pression mesurée à l'avant de la chambre à poussière.
[0070] Les courbes A et B de la FIG.1A montrent que l'on peut effectuer une mesure différentielle
de la pression moyenne entre l'arrière de la chambre à poussière, au point de mesure
25, et l'avant de la chambre à poussière, au point de mesure 15.
[0071] Les caractéristiques mises en lumière sur la FIG.3B permettent d'arriver à une détection
de sol précise. A cet effet, les mesures du premier capteur de pression 14, dit capteur
de sol sont reportées sur des moyens de calcul décrit plus loin, c'est-à-dire :
- les amplitudes P2 des maxima γ1, γ2,... pour chaque type de sol,
- les amplitudes P1 des minima ε1, ε2... pour chaque sol, pour évaluer ensuite :
- la différence d'amplitude

- l'amplitude moyenne :

L'évaluation de la différence d'amplitude ΔP pour chaque sol permet déjà à elle
seule une classification des sols. L'évaluation de l'amplitude moyenne PM permet d'améliorer
cette classification. Ensuite l'évaluation par le traitement des mesures de la FIG.3A,
de la pression différentielle moyenne entre l'entrée et la sortie : PM'-PM, permet
une amélioration supplémentaire de cette classification.
[0072] Dans un souci de simplicité, on va décrire ci-après un exemple de mise en oeuvre
où l'on cherche à détecter seulement deux états de surface du sol différents, classés
"tapis" et "sol dur et lisse". Il est en effet apparu à l'expérience que cette mise
en oeuvre conduit à un aspirateur simple et bon marché, dont les fonctions correspondent
au mieux à la demande la plus fréquente de l'utilisateur. Cette détection de deux
états possibles des sols différents conduira ensuite d'une part à des réglages de
la puissance du moteur du ventilateur, et d'autre part au déclenchement automatique
d'une brosse électrique placée dans la buse, éventuellement.
[0073] C'est pourquoi, dans cet exemple de mise en oeuvre, on décrit en outre des moyens
pour activer le moteur d'une brosse électrique située dans la buse, dans le cas où
l'appareil détecte un tapis, ou pour désactiver ce moteur, lorsque la buse vient nettoyer
un sol dur et lisse.
[0074] Dans cette mise en oeuvre, on pourrait également utiliser la mesure des deux capteurs
de pression pour fournir une indication de l'état de remplissage du sac à poussière.
[0075] La FIG.2 représente le dispositif de détection de sol qui permet à partir des mesures
16 du capteur de pression 14 appliqué au point de mesure 15 situé à l'entrée de la
chambre à poussière, et telles que représentées sur la FIG. 3B (courbe C), de fournir
ultérieurement un signal de contrôle de la puissance du moteur principal 22 de ventilateur
23 et éventuellement du moteur auxiliaire de brosse (non représenté).
[0076] Ce dispositif de détection de sol comprend :
- un bloc de prétraitement 30 qui reçoit en entrée les sorties 16 et 26 du premier et
du second capteurs de pression et qui effectue un traitement dit PRE-TRAITEMENT consistant
à calculer :
- la valeur moyenne PM des oscillations du signal de sortie 16 du premier capteur de
pression 14, relatif à la pression existant à l'entrée 11 de la chambre à poussière
12 ;
- la différence d'amplitude ΔP entre maxima et minima des oscillations du signal de
sortie 16 du capteur de pression 14 relatif à cette même pression ;
- la différence des valeurs moyennes PM'- PM des pressions existant à l'entrée 11 au
point de mesure 15 et à la sortie 23a ou 23b de la chambre à poussière, au point de
mesure 25.
[0077] Ce calcul est effectué sur des durées de temps ou "fenêtres de temps" T d'une valeur
suffisante, par exemple de 2 secondes, pendant lesquelles, en fonctionnement de l'aspirateur,
durant une opération de nettoyage conventionnelle, un utilisateur moyen effectue au
moins un changement de direction de la buse entre un aller et retour sur le sol à
nettoyer.
[0078] On rappelle que le capteur de sol 14 a un point de mesure 15 disposé dans le corps
1 de l'appareil, et que son signal de sortie 16 n'est pas lié à l'utilisation obligatoire
d'une brosse électrique dans la buse.
[0079] Les opérations effectuées par ce bloc de prétraitement 30 sont donc très simples.
Ce sont seulement des moyennes d'une part, et des tests d'autre part pour d'abord
calculer l'amplitude moyenne PM de la pression à l'entrée du sac à poussière, pour
ensuite calculer la différence des pressions moyennes (PM' - PM) entre la sortie et
l'entrée du sac à poussière, et pour également détecter les maxima γ1, γ2, γ3 et minima
ε1, ε2, ε3 de pression coïncidant avec les allers et retours de la base et calculer
les différences d'amplitudes ΔP entre ces maxima et minima.
[0080] Ces calculs ne comportent donc ni multiplication, ni division, d'où il résulte que
ce bloc de prétraitement 30 effectuant ces opérations peut être très simple.
[0081] Les sorties 31, 32, 33 du bloc de prétraitement 30 sont appliquées sur un bloc 40
de déduction, dit classificateur qui comporte :
- 1 à 3 entrées,
- 2 sorties pour les signaux à calculer.
[0082] Les trois entrées du bloc 40 de déduction classificateur sont constituées par les
trois signaux de sortie calculés par le bloc de prétraitement 30 :
- un signal 31 de la valeur maximale de la différence d'amplitude ΔP entre les maxima
et minima des oscillations de pression, du signal fourni par le capteur de sol 14
;
- un signal 32 de la valeur de l'amplitude moyenne de pression PM fournie par le capteur
de sol 14,
- un signal 33 de la différence des amplitudes moyennes de pression (PM' - PM) entre
la sortie et l'entrée de la chambre à poussière.
[0083] Le bloc 40 de déduction classificateur comporte seulement deux sorties complémentaires
:
Dans ce cas, tous les exemples de tapis sont contre-exemples de sol dur, et VICE
VERSA. Par ailleurs, il peut être prévu de contrôler en plus du moteur principal 22
de ventilateur, un moteur auxiliaire de brosse (non représenté).
[0084] Le bloc 40 de déduction classificateur fournit donc deux sorties possibles qui correspondent
à deux classes complémentaires, indiquant l'état "tapis" et l'état "sol dur".
[0085] Par exemple, les sorties peuvent être :
[0086] Pour la première sortie : le niveau de sortie est +1 si l'état "TAPIS" est détecté
et est -1 dans le cas contraire.
[0087] Pour la seconde sortie : le niveau de sortie est +1 si l'état "SOL DUR" est détecté
et est -1 dans le cas contraire.
[0088] Ainsi, la somme des niveaux de sortie des première et seconde sorties est nul. Les
niveaux de sortie du bloc 40 de déduction classification peuvent être portés sur un
étage de traitement qui fournit une sortie binaire 41, telle que par exemple le niveau
de ce signal 41 est 1 pour l'état "TAPIS" détecté, et est 0 pour l'état "SOL DUR"
détecté.
[0089] La sortie 41 du bloc 40 de déduction classificateur est portée sur un bloc de consigne
50 qui, par une conversion directe en fonction du sol, donne une consigne 51 de l'amplitude
de pression moyenne PM que l'on doit imposer à l'entrée de la chambre à poussière,
pour un nettoyage adéquat du sol détecté.
[0090] Cette consigne 51 est établie par des règles simples, par exemple :
- si l'état "tapis" a été détecté, alors la consigne est 80 mbar,
- si l'état "sol dur" a été détecté, alors la consigne est 60 mbar.
[0091] Le fait d'appliquer une consigne d'amplitude de pression à l'entrée de la chambre
à poussière permet d'être assuré que chaque sol à nettoyer est aspiré sous la pression
la plus adéquate, puisque les courbes des FIG.3A et B montrent que la détection ailleurs
qu'à l'entrée de la chambre à poussière est légèrement altérée.
[0092] De plus, selon l'invention, ce réglage ne nécessite réellement qu'un seul capteur,
qui est le capteur de pression d'entrée 14, dans l'exemple décrit, qui permet à la
fois la détection de sol et l'application de la consigne de pression. Le second capteur
24 ne concerne qu'un perfectionnement. Comme on a vu précédemment, l'aspirateur connu
de l'état de la technique rendait indispensable l'utilisation de deux capteurs différents
pour réaliser ces deux fonctions. Selon l'invention, les deux fonctions peuvent être
réalisées de façon économique par un seul capteur de pression.
[0093] Ensuite, selon l'invention, la détection, et donc le réglage de la consigne sont
faits indépendamment de la mise en service d'une brosse électrique dans la buse.
[0094] Cette consigne d'amplitude moyenne de pression 51 est reportée sur un contrôleur
60 qui compare le signal de consigne 51 avec l'amplitude moyenne PM de pression 32
existant à cet instant à l'entrée de la chambre à poussière, et qui fournit un signal
61 pour régler la puissance électrique du moteur principal de telle manière que la
consigne de pression appropriée est amenée ou est maintenue à l'entrée de la chambre
à poussière.
[0095] D'autre part, la sortie 41 du bloc 40 de déduction classificateur peut être portée
sur un second bloc de consigne 70, qui par une conversion directe en fonction du sol,
donne une consigne 71 de puissance du moteur d'une brosse électrique située dans la
buse.
[0096] Cette consigne 71 est établie par des règles simples telles que :
- si l'état tapis est détecté, alors la consigne est : moteur auxiliaire actionné,
- si l'état sol dur est détecté, alors la consigne est : moteur auxiliaire coupé.
[0097] Dans une variante de cette mise en oeuvre, le premier bloc 50 de consigne, peut être
un bloc de consigne floue.
[0098] En effet, la sortie 41 du bloc 40 de déduction classificateur peut n'être pas nette,
c'est-à-dire peut être comprise entre 0 et 1, au lieu d'être 0 ou 1.
[0099] Donc le bloc de consigne floue 50 fournit des valeurs de pression interpolées entre
60 et 80 mB dans l'exemple cité précédemment.
[0100] Un bloc de consigne floue 70 peut également être utilisé pour fournir au moteur de
la brosse une puissance intermédiaire entre tout et rien.
[0101] Dans une autre mise en oeuvre de l'invention les blocs de consigne 50, 70 peuvent
être regroupés en un seul bloc de consigne compact ayant deux entrées seulement :
- 1 entrée relative à la pression,
- 1 entrée relative aux sols.
En outre, ce bloc de consigne compact peut être un bloc de consigne floue.
[0102] Dans une mise en oeuvre préférentielle, le bloc de déduction classificateur 40 est
un réseau de neurones, qui dans le cas où l'on cherche à détecter seulement l'état
TAPIS et l'état SOL DUR, comporte :
- 3 entrées,
- une couche cachée comprenant 0 à 7 neurones, ce nombre dépendant de la complexité
des problèmes à traiter,
- 2 sorties pour les signaux calculés qui peuvent être transformées en 1 sortie 41 comme
il a été dit précédemment.
[0103] Les trois entrées du réseau de neurones classificateur sont alors constituées par
les trois signaux de sortie 31, 32, 33 calculés par le microprocesseur 30, et les
deux sorties sont : TAPIS et SOL DUR.
1. Aspirateur comprenant un corps d'aspirateur muni d'une entrée d'air (11) et d'une
sortie d'air (21), et un tuyau muni d'une buse couplé à l'entrée d'air du corps d'aspirateur,
ce corps d'aspirateur incluant une chambre à poussière (10) communiquant avec l'entrée
d'air (11), et un logement (20) pour un ventilateur (23) entraîné par un moteur électrique
(22), ce logement (20) communiquant avec la chambre à poussière (10) et la sortie
d'air (21), cet aspirateur comprenant en outre :
- un premier capteur, dit capteur de sol, pour fournir un signal fonction de caractéristiques
de l'état de surface du sol détectées par la buse lors de l'opération de nettoyage
;
- des moyens de calcul prenant en compte les signaux fournis par ce premier capteur,
pour fournir un signal de classification de l'état de surface du sol, lors de l'opération
de nettoyage,
caractérisé en ce que le premier capteur (14), dit capteur de sol, est un capteur
de pression qui fournit un signal fonction de la pression de l'air mesurée à un premier
point de mesure (15) sur le trajet du flux d'air d'aspiration de l'aspirateur, ce
signal présentant des oscillations pseudo-périodiques, dont les maxima (γ) et les
minima (ε) correspondent pour les uns aux allers, et pour les autres aux retours de
la buse sur le sol durant l'opération de nettoyage, ce signal présentant une différence
d'amplitude (ΔP), entre ces maxima et minima, qui varie selon la classe du sol nettoyé,
et en ce que les moyens de calcul (30,40) déterminent la classe du sol nettoyé, en
fonction de cette différence d'amplitude (ΔP).
2. Aspirateur selon la revendication 1, caractérisé en ce que le signal du premier capteur
de pression dit capteur de sol présentant une amplitude dite moyenne (PM), entre les
amplitudes des maxima (γ) et des minima (ε), qui varie selon la classe du sol nettoyé,
les moyens de calculs (30,40) déterminent la classe du sol nettoyé conjointement en
fonction de la différence d'amplitude (ΔP) entre maxima et minima et de ladite amplitude
moyenne (PM) du signal du capteur de sol.
3. Aspirateur selon la revendication 2, caractérisé en ce qu'il comprend des moyens de
consigne (50) pour déterminer, en fonction de la classe du sol calculée, une valeur
de consigne (51) pour ladite amplitude moyenne (PM) du signal du premier capteur de
pression (14), de façon à régler la pression d'aspiration de manière appropriée en
fonction de la classe du sol calculée.
4. Aspirateur selon la revendication 3, caractérisé en ce qu'il comprend des moyens de
contrôle (60) pour comparer la valeur de consigne (51) avec une mesure de la pression
moyenne (32) mesurée par le premier capteur de pression, et pour déterminer une valeur
de réglage de la tension d'alimentation du moteur du ventilateur pour fournir la puissance
électrique qui permet à l'amplitude moyenne du signal du premier capteur de pression
d'arriver à la valeur de consigne (51).
5. Aspirateur selon l'une des revendications 1 à 4, caractérisé en ce que le point de
mesure (15) du premier capteur de pression (14) dit capteur de sol est situé à l'entrée
(11) de la chambre à poussière (12).
6. Aspirateur selon l'une des revendications 1 à 5, caractérisé en ce que les moyens
de calcul comprennent des moyens dits de prétraitement (30), qui reçoivent en entrée
le signal (16) fourni par le premier capteur de pression (14), dit capteur de sol,
et qui fournissent en sortie, résultant de ce prétraitement :
- un premier signal (32) fonction de ladite valeur moyenne (PM) de la pression mesurée
sur le trajet du flux d'aspiration par le premier capteur de pression ;
- un second signal (31) fonction de la valeur de différence d'amplitude (ΔP) entre
maxima (γ) et minima (ε) des oscillations de la pression mesurée sur le trajet du
flux d'aspiration par le premier capteur de pression (14).
7. Aspirateur selon la revendication 6, caractérisé en ce que, les moyens de calcul comprennent
en outre un bloc de déduction classificateur (40), qui reçoit en entrée les premier
et second signaux (31,32) issus desdits moyens de prétraitement (30), et qui fournit
en sortie des classes correspondant, selon des règles prédéterminées, à la détection
de plusieurs états de surface différents du sol à nettoyer.
8. Aspirateur selon la revendication 7, caractérisé en en ce que le bloc de déduction
classificateur (40) fournit en sortie deux classes correspondant à la détection de
deux états de surface différents du sol à nettoyer qui sont un état "TAPIS" et un
état "SOL DUR".
9. Aspirateur selon l'une des revendications 6 à 8, caractérisé en ce qu'il comprend
un second capteur de pression (25), pour fournir un signal fonction de la différence
des pressions moyennes d'air mesurées entre l'entrée (PM) et la sortie (PM') de la
chambre à poussière (12), et en ce que les moyens de prétraitement (30) reçoivent
ce signal et fournissent en-sortie :
- un troisième signal (33) fonction de la valeur moyenne (PM'-PM) de la différence
entre les pressions à l'entrée et à la sortie de la chambre à poussière.
10. Aspirateur selon la revendication 9, caractérisé en ce que qu'il comprend en outre
une brosse électrique disposée dans la buse et des moyens de réglage (70) de la puissance
électrique du moteur de cette brosse dit moteur auxiliaire en fonction de la classe
du sol calculée.
11. Aspirateur selon la revendication 10, caractérisé en ce que les moyens de réglage
de la puissance du moteur auxiliaire comprennent un bloc de consigne (70) pour déterminer
par une conversion directe en fonction de la classe de sol détecté, une valeur de
réglage (71) de la tension d'alimentation du moteur auxiliaire pour fournir la puissance
qui permet la mise en service ou hors service de la brosse disposée dans la buse selon
la classe de sol détectée.