

11) Numéro de publication:

0 645 190 A2

DEMANDE DE BREVET EUROPEEN

(21) Numéro de dépôt: 94114265.5

(51) Int. Cl.6: **B02C** 17/22

22) Date de dépôt: 10.09.94

30 Priorité: 17.09.93 LU 88409

Date de publication de la demande:29.03.95 Bulletin 95/13

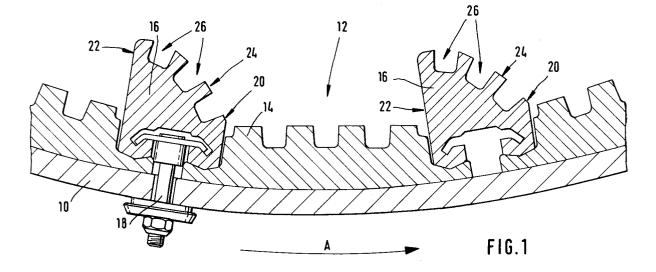
Etats contractants désignés:

DE FR GB

71 Demandeur: MAGOTTEAUX INTERNATIONAL Société Anonyme dite :
Rue A. Dumont
B-4051 Vaux-sous-Chèvremont (BE)

(72) Inventeur: Brisbois, Jean-Marie

13 av.des Alouettes B-1325 Dion-le-Mont (BE) Inventeur: Rycerski, Serge rue Fosses Berger B-4877 OLne (BE)


Mandataire: Meyers, Ernest et al Office de Brevets Meyers & Van Malderen 261 route d'Arlon B.P. 111 L-8002 Strassen (LU)

Elément de relevage pour broyeur rotatif et broyeur équipé de tels éléments.

© L'élément de relevage est constitué d'un bloc parallélépipédique en élastomère conçu pour être fixé sur la paroi intérieure d'un broyeur contenant des engins broyants. Au moins une partie de sa face (24) exposée aux engins broyants comporte des alvéoles (26) pour permettre aux engins broyants de

s'y incruster.

Le broyeur comporte une virole cylindrique (10) avec des rangées longitudinales de ces éléments de relevage avec des éléments disposés parallèlement à la génératrice de la virole et des éléments inclinés par rapport à cette génératrice.

15

20

La présente invention concerne un élément de relevage pour broyeur rotatif constitué d'un bloc parallélépipédique en élastomère conçu pour être fixé sur la paroi intérieur d'un broyeur rotatif contenant des engins broyants et pour faire partie du blindage de celui-ci. L'invention concerne également un broyeur rotatif comprenant une virole cylindrique dont le blindage intérieur comporte de tels releveurs.

L'invention concerne plus particulièrement le domaine des broyeurs en voie humide, notamment ceux utilisés en cimenterie ou dans l'industrie minière pour le concassage et le broyage des minerais. Ces broyeurs sont constitués d'une virole cylindrique tournant autour de son axe longitudinal et contenant une charge broyante constituée d'engins broyants tels que des boulets, cylpebs, boulpebs, etc de dimensions différentes.

La virole comporte un blindage intérieur constitué de plaques de blindage et de ce qu'on appelle des éléments de relevage ou releveurs ayant la fonction de brasser et d'entraîner la charge broyante et la matière à broyer. Celle-ci est introduite d'un côté du broyeur et, au fur et à mesure de sa progression vers la sortie, du côté opposé, elle est broyée et concassée entre les engins broyants.

Étant donné que le broyage est réalisé progressivement dans le sens de la traversée du broyeur, les meilleures conditions de broyage sont réalisées lorsque la taille des engins broyants est adaptée à celle de la matière à broyer. Autrement dit, les engins broyants les plus gros devraient, de préférence, se concentrer du côté de l'entrée du broyeur, alors que les plus petits devraient se retrouver du côté de la sortie. C'est ce que l'on appelle le classement des engins broyants en fonction de leur taille. Dans les conditions optimales, ce classement devrait donc se réaliser automatiquement pendant le fonctionnement du broyeur.

Par ailleurs, dans l'intérêt de l'efficacité du broyage et de la durée de vie des engins broyants, il faut, dans la mesure du possible, éviter les projections et chutes de ceux-ci au profit d'un glissement et malaxage intenses, favorables au concassage et broyage de la matière entre les engins broyants en mouvement.

Jusqu'à présent, les blindages des broyeurs travaillant en voie humide étaient soit en fonte ou en acier alliés, soit en élastomère. Les blindages en fonte ou acier alliés ont l'inconvénient d'un poids élevé et d'une manipulation fastidieuse lors de la mise en place des éléments formant le blindage. En outre, ils sont extrêmement bruyants et ne répondent plus aux critères d'environnement de plus en plus sévères.

Pour résister à l'usure, les blindages en élastomère avaient des éléments de relevage plus importants que ceux des blindages métalliques. Ces éléments plus épais et plus saillants ont toujours tendance à projeter les corps broyants lors de la rotation du broyeur. Or, la projection des engins broyants réduit l'efficacité du broyage et accélère l'usure des engins broyants par fragmentation et micro-écaillage.

En outre, on a constaté que des éléments de relevage épais et saillants en élastomère ont tendance à provoquer une ségrégation longitudinale des engins broyants contraire au classement visé, si bien que l'on retrouve, souvent, les petits engins broyants à l'entrée du broyeur et les plus gros du côté de la sortie, alors que, pour l'efficacité du broyage, c'est le contraire qui est visé.

Le but de la présente invention est de prévoir un nouvel élément de relevage en élastomère qui est moins exposé à l'usure, ainsi qu'un broyeur dans lequel ces nouveaux éléments sont arrangés de manière à assurer le classement souhaité des engins broyants et à améliorer l'efficacité du broyaqe.

Pour atteindre cet objectif, l'élément de relevage proposé par la présente invention est caractérisé en ce que au moins une partie de sa face exposée aux engins broyants comporte des alvéoles pour permettre aux engins broyants de s'y incruster.

Les engins broyants qui s'incrustent ainsi, lors de l'opération de broyage, dans les éléments de relevage, y restent généralement accrochés sous l'effet de l'élasticité de l'élastomère.

Grâce à l'incrustation des engins broyants dans les éléments de relevage, on augmente leur résistance à l'usure, ce qui permet de réduire leur épaisseur ainsi que les risques de projection des engins broyants pour améliorer finalement l'efficacité du broyage.

L'invention prévoit également un broyeur équipé de tels éléments de relevage et dans lequel ces éléments et les plaques de blindage sont disposées en rangées longitudinales alternantes.

Selon un mode réalisation préférée, chaque rangée d'éléments de relevage comporte, sur au moins une partie de la longueur de la virole, des éléments droits parallèles à la génératrice de la virole et des éléments inclinés par rapport à la génératrice de la virole. Chaque élément droit est, de préférence, entouré de deux éléments inclinés et vice-versa.

Il a été constaté que cette combinaison alternante d'éléments droits et d'éléments inclinés favorise le classement des engins broyant sur la longueur du broyeur dans le sens voulu, c'est-à-dire que les engins broyants les plus volumineux restent à l'entrée du broyeur et les plus petits sont refoulés en direction de la sortie, là où la matière à broyer est plus fine.

50

55

10

15

20

25

30

40

50

55

Selon un autre aspect de l'invention, les éléments droits et les éléments inclinés ont des épaisseurs radiales différentes. Grâce à cette conception, on provoque, dans des plans diamétraux du broyeur, des mouvements et glissements relatifs entre les différentes couches de la charge broyante et de la matière à broyer.

D'autres particularités et caractéristiques de l'invention ressortiront d'un mode de réalisation préféré, présenté ci-dessous, à titre d'illustration, en référence aux dessins annexés dans lesquels :

- la Figure 1 montre une partie d'une vue en coupe diamétrale d'un broyeur selon la présente invention ;
- la Figure 2 montre une vue frontale d'une partie du blindage d'un broyeur et
- la Figure 3 représente une coupe longitudinale suivant le plan de coupe III-III sur la Figure

La référence 10 sur la Figure 1 représente une virole cylindrique métallique d'un broyeur avec un revêtement intérieur formant un blindage 12 de protection de la virole 10. Ce blindage est constitué de plaques de blindage 14 ainsi que d'éléments de relevage 16 fixés à l'aide de boulons appropriés 18 sur la virole. Dans l'exemple représenté, les plaques de blindage 14 ne sont pas fixées directement à la virole 10 mais sont maintenues en place grâce aux fixations des éléments de relevage avoisinants 16.

La virole 10 est conçue pour être entraînée en rotation autour de son axe longitudinal dans le sens de la flèche A. Durant cette rotation, la fonction des éléments de relevage 16 dont l'épaisseur radiale est supérieure à celle des plaques de blindage 14 est d'entraîner la charge broyante et la matière à broyer non représentée. Étant donné que le broyeur n'est rempli que partiellement, généralement de l'ordre de 30%, la charge broyante et la matière à broyer s'accumulent, lors de la rotation du broyeur, essentiellement dans le quatrième quart trigonométrique du broyeur vu dans le sens axial de la Figure 1. Par suite de l'enroulement de cette masse autour de soi et du glissement relatif entre les différentes couches, la matière est broyée progressivement par la charge broyante au fur et à mesure de sa progression depuis l'entrée jusqu'à la sortie du broyeur.

Les éléments de relevage 16 sont des blocs parallélépipédiques en élastomère, par exemple en caoutchouc, fixés en rangées longitudinales sur la paroi de la virole 10. Le côté radial 20 de chaque élément de relevage 16 dans la zone d'attaque de la charge broyante, vue dans le sens de rotation A, est moins profond que le côté radial opposé 22 si bien que la face 24 exposée à la charge et reliant les côtés 20 et 22 est oblique par rapport à la virole. Cette face 24 peut être droite ou légèrement

bombée comme représenté sur la Figure 1.

Conformément à la présente invention, la face 24 de chaque élément de relevage 16 comporte une série d'alvéoles 26. Celles-ci peuvent être réparties de façon régulière ou de façon aléatoire sur toute la longueur des éléments de relevage, l'essentiel étant que les engins broyants puissent s'y incruster lors de l'opération du broyeur afin d'améliorer la résistance des éléments de relevage 16 à l'usure

La taille des éléments de relevage 16 est variable suivant les dimensions du broyeur. Dans un broyeur ayant, par exemple, les données suivantes

- longueur : 12 mètres,

- diamètre : 2,2 mètres,

- vitesse: 19,8 tour/minute,

- coefficient de remplissage : 28%,

- engins broyants: 100 à 600 grammes.

On a prévu des releveurs avec les dimensions suivantes :

- longueur: 700 mm,

- largeur: 100 mm,

 épaisseur (hauteur maximale du côté 22) : 115 mm.

Les dimensions des éléments de relevage sont généralement plus élevées si le coefficient de remplissage du broyeur est plus grand ou si le broyeur tourne plus lentement.

Les plaques de blindage 14 peuvent être en élastomère, soit du type alvéolaire à incrustation, soit avec une rugosité de surface.

Selon un autre aspect de l'invention, les releveurs sont arrangés suivant une disposition particulière contribuant à une plus grande efficacité du broyage. En effet, comme le montre la Figure 2, les éléments de relevage sont disposés en rangées longitudinales a qui alternent avec des rangées longitudinales b de plaques de blindage.

Par ailleurs, chaque rangée a d'éléments de relevage comporte, selon un mode de réalisation préférée, une série d'éléments droits 16a, c'est-à-dire parallèles à la génératrice du broyeur et une série d'éléments 16 b inclinés par rapport à la génératrice du broyeur. La disposition et l'arrangement des éléments droits 16a et des éléments inclinés 16b est modifiable sur la longueur du broyeur suivant les conditions de marche du broyeur, notamment en ce qui concerne la vitesse de rotation, le coefficient de remplissage et le diamètre du broyeur.

Dans l'exemple représenté, chaque rangée a d'éléments de relevage comporte une succession alternée d'éléments droits et d'éléments inclinés. Il est préférable de prévoir, dans la zone d'entrée du broyeur, non représenté sur la Figure mais se trouvant du côté gauche de celle-ci, seulement des éléments droits.

10

15

20

30

35

40

45

50

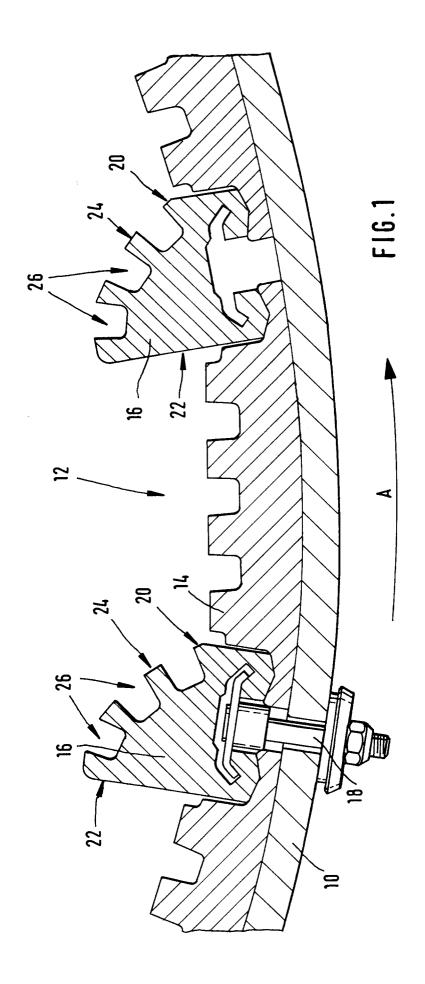
55

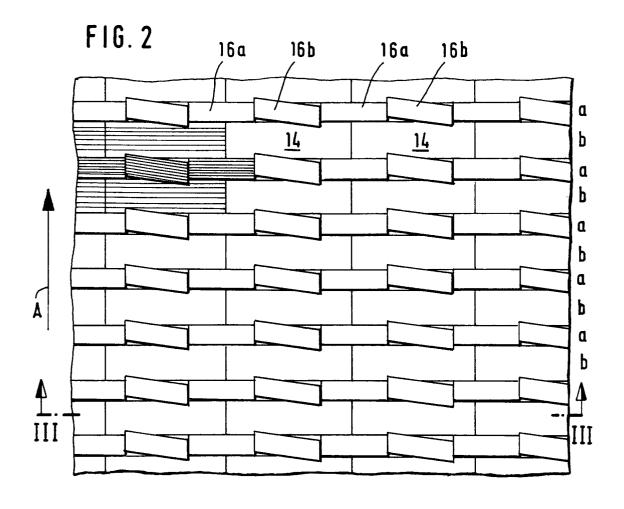
Il s'est avéré que l'alternance d'éléments droits et d'éléments inclinés a une influence favorable sur le classement des engins broyants en refoulant les plus gros vers la zone d'entrée et les plus petits vers la zone de sortie du broyeur.

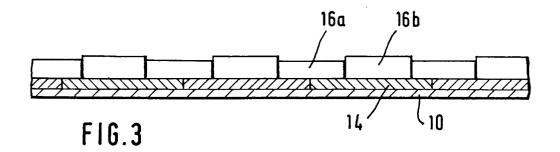
Dans l'exemple de la Figure 2, les éléments de relevage 16b sont inclinés dans la direction de la sortie du broyeur, qui se trouve du côté droit de la Figure. Toutefois, aussi bien le sens que l'angle d'inclinaison des éléments de relevage peuvent être modifiés en fonction de la nature et de la forme des engins broyants afin d'obtenir le meilleur effet de classement.

Comme le montre la Figure 3, les éléments de relevage droits 16a et les éléments de relevage inclinés 16b n'ont pas la même épaisseur. Dans l'exemple représenté, les éléments inclinés 16b sont plus épais que les éléments droits 16a, mais le contraire est également possible. Le but de cette conception est de provoquer, lors de la rotation du broyeur, dans des plans diamétraux, des cisaillements entre différentes couches de la charge broyante et de la matière à broyer.

Il est possible que, abstraction faite des différences d'épaisseur entre les éléments de relevage et les plaques de blindage, le niveau du blindage soit uniforme depuis l'entrée jusqu'à la sortie du broyeur. Il est toutefois également possible que le niveau du blindage soit, à la sortie, légèrement plus élevé qu'à l'entrée de sorte que la section du broyeur soit légèrement convergente vers la sortie.


Revendications


- Élément de relevage pour broyeur rotatif constitué d'un bloc parallélépipédique en élastomère conçu pour être fixé sur la paroi intérieure d'un broyeur rotatif contenant des engins broyants et pour faire partie du blindage de celui-ci, caractérisé en ce que, au moins une partie de sa face (24) exposée aux engins broyants comporte des alvéoles (26) pour permettre aux engins broyants de s'y incruster.
- 2. Élément de relevage selon la revendication 1, caractérisé en ce que la face (24) comportant lesdites alvéoles (26) est inclinée par rapport à la paroi du broyeur, l'épaisseur du côté de la zone d'attaque, vue dans le sens de rotation du broyeur, étant plus faible que du côté opposé (22).
- Élément de relevage selon la revendication 2, caractérisé en ce que ladite face (24) est bombée vue en coupe diamétrale du broyeur.
- 4. Broyeur rotatif comprenant une virole cylindrique (10) avec un blindage intérieur (12) consti-


tué de releveurs (16) et de plaques de blindage (14), caractérisé en ce que les éléments de relevage sont des éléments selon l'une quelconque des revendications 1 à 3.

- 5. Broyeur selon la revendication 4, caractérisé en ce que les éléments de relevage (16) et les plaques de blindage (14) sont disposés en rangées longitudinales alternantes (a, b).
- 6. Broyeur selon la revendication 5, caractérisé en ce que chaque rangée a d'éléments de relevage comporte, sur au moins une partie de la longueur de la virole, des éléments droits (16a), parallèles à la génératrice de la virole et des éléments (16b) inclinés par rapport à la génératrice de la virole.
- 7. Broyeur selon la revendication 6, caractérisé en ce que chaque élément droit (16a) est entouré de deux éléments inclinés (16b) et vice-versa.
- 8. Broyeur selon l'une quelconque des revendications 6 ou 7, caractérisé en ce que les éléments droits (16a) et les éléments inclinés (16b) ont des épaisseurs radiales différentes.
- 9. Broyeur selon l'une quelconque des revendications 4 à 8, caractérisé en ce que l'épaisseur du blindage (12) est constante sur toute la longueur du broyeur.
- 10. Broyeur selon l'une quelconque des revendications 4 à 7, caractérisé en ce que l'épaisseur du blindage (12) est plus élevée à la sortie qu'à l'entrée.

4

