(19)
(11) EP 0 670 834 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
12.03.1997 Bulletin 1997/11

(21) Application number: 94900806.4

(22) Date of filing: 17.11.1993
(51) International Patent Classification (IPC)6C07D 317/22, C11D 1/00, C09K 3/00
(86) International application number:
PCT/EP9303/170
(87) International publication number:
WO 9412/489 (09.06.1994 Gazette 1994/13)

(54)

ALKYLIDENE GLYCEROL SURFACTANTS AND DETERGENT COMPOSITIONS CONTAINING THEM

ALKYLIDENE GLYZEROL-TENSIDE UND DIESE ENTHALTENDE WASCHMITTELZUSAMMENSETZUNGEN

TENSIOACTIFS A ALKYLIDENE-GLYCEROL ET COMPOSITIONS DETERSIVES LES CONTENANT


(84) Designated Contracting States:
CH DE ES FR GB IT LI NL SE

(30) Priority: 25.11.1992 US 981737
21.09.1993 GB 9319462

(43) Date of publication of application:
13.09.1995 Bulletin 1995/37

(73) Proprietors:
  • UNILEVER PLC
    London EC4P 4BQ (GB)
    Designated Contracting States:
    GB 
  • UNILEVER N.V.
    3013 AL Rotterdam (NL)
    Designated Contracting States:
    CH DE ES FR IT LI NL SE 

(72) Inventors:
  • CRAWFORD, Robert, John 134 Town Lane
    Wirral Merseyside L63 8LF (GB)
  • CURTIS, Richard, John 12 Ashbrook Terrace
    Wirral Merseyside L63 7LP (GB)
  • KHAN-LODHI, Abid, Nadin 29 Hewitt Street
    Chester CH2 2JD (GB)
  • NICHOLLS, Malcolm, Philip 69 Slingsby Drive Upton
    Merseyside L49 0TY (GB)

(74) Representative: Fransella, Mary Evelyn et al
Unilever PLC Patent Division Colworth House Sharnbrook
Bedford MK44 1LQ
Bedford MK44 1LQ (GB)


(56) References cited: : 
WO-A-92/08685
   
  • PATENT ABSTRACTS OF JAPAN, vol. 13, no. 187 (C-592), 02 May 1989
  • PATENT ABSTRACTS OF JAPAN, vol. 16, no. 164 (C-931), 21 April 1992
   
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

TECHNICAL FIELD



[0001] The present invention provides novel alkylidene glycerol surfactants useful in detergent compositions.

BACKGROUND AND PRIOR ART



[0002] Condensation products of aldehydes with glycerol (alkylidene monoglycerols or monoglycerol acetals) are described in GB 414 772 (Johnson). For example, lauric aldehyde may be reacted with glycerol to give the monoglycerol acetal, described as having a five-membered dioxolane ring structure:

Such products are hydrophobic but introduction of water-solubilising groups gives products which are useful as wetting, washing, foaming and dispersing agents. For example, the compound shown above does not itself exhibit foaming properties, but may be converted by reaction with chlorosulphonic acid to give a high-foaming anionic surfactant, or ethoxylated to give a nonionic surfactant.

[0003] EP 12 543A (ICI) discloses cyclic acetals and ketals of glycerol and other polyols, and their use as emollients in cosmetic, toilet and household cleaning compositions. There is disclosed the reaction product of an aldehyde RCHO with glycerol, which comprises a mixture of a five-membered ring structure A (1,3-dioxolane) and a six-membered ring structure B (1, 3-dioxane), the proportions of which can be varied in a known manner by varying the reaction conditions:





[0004] These materials may optionally be alkoxylated, acylated or alkylated.

[0005] Monoglycerol ketals are disclosed in US 3 909 460 and US 3 948 953 (McCoy/Texaco Inc). These materials, prepared by the condensation of ketones with glycerol, have the formula

where R and R' are alkyl groups containing in total 6 to 30 carbon atoms. Unlike the monoglycerol acetals, these materials can exist only in a five-membered ring form. Like the monoglycerol acetals, these materials require the introduction of a solubilising group, for example, sulphate or polyoxyethylene, to give water-soluble surfactants.

[0006] The present inventors have now prepared acetals and ketals containing two or more glycerol residues. These materials, which are liquids or soft solids, behave as effective, water-soluble nonionic surfactants especially useful in detergent compositions for washing fabrics. Certain combinations with other, known surfactants have been found to display synergistic oily soil detergency.

[0007] In many ways the new materials behave comparably to ethoxylated alcohol nonionic surfactants, and are potential candidates for replacing them wholly or partially in detergent compositions if a reduction in the use of ethoxylated materials should become considered desirable on environmental grounds.

DEFINITION OF THE INVENTION



[0008] The present invention accordingly provides a compound of the formula I:

wherein R1 represents a linear or branched alkyl or alkenyl group and R2 represents a hydrogen atom or a linear or branched alkyl or alkenyl group, the total number of carbon atoms in R1 and R2 being from 7 to 17; and A represents a monoglycerol or diglycerol unit.

[0009] A second subject of the present invention is the use of a compound as defined in the previous paragraph as a surfactant or wetting agent.

[0010] A third subject of the present invention is a detergent composition having a surfactant system comprising a compound as defined above.

[0011] A fourth subject of the present invention is a process for the preparation of a compound of the formula I, in which an aldehyde or ketone of the formula R1-CO-R2 is reacted with an oligomer of glycerol.

DETAILED DESCRIPTION OF THE INVENTION


The alkylidene glycerols



[0012] The compounds of the formula I given above are believed to be novel materials. The novelty resides in the presence of more than one - specifically two or three - glycerol units in the molecule. These two classes of compounds will be referred to respectively as alkylidene diglycerols and alkylidene triglycerols.

[0013] The diglycerols (A is a monoglycerol unit) exist as a mixture of two structural isomers, of the formulae IIa and IIb:



the linear isomer IIa being the predominant species.

[0014] The triglycerols (A is a diglycerol unit) exist as a mixture of six structural isomers, as shown in the following formulae IIIa to IIIf. Again, the linear isomer IIIa predominates.













[0015] The predominant linear isomers IIa and IIIa of the alkylidene di- and triglycerols may be represented by the general formula Ia:

wherein n is 1 or 2.

[0016] The total number of carbon atoms in the groups R1 and R2 in the compounds of the invention may range from 7 to 17, preferably from 9 to 13. In principle the carbon atoms may be distributed in any proportions between the two groups. However, the compounds studied by the present inventors fall into two classes: those in which R2 is a hydrogen atom, and those in which R2 is a methyl group. R1 in both cases is a linear or branched alkyl or alkenyl group.

[0017] Compounds in which R2 is a hydrogen atom, derived from an aldehyde R1 CHO, are referred to in the present specification as 1-alkylidene (di- or tri-)glycerols or (di- or tri-)glycerol acetals, while compounds in which R2 is a methyl group, derived from a methyl ketone R1COCH3, are referred to as 2-alkylidene (di- or tri-)glycerols or (di- or tri-)glycerol ketals.

[0018] As may be inferred from the discussion of prior art above, the compounds in which R2 is a hydrogen atom (1-alkylidene di- and triglycerols, or di- or triglycerol acetals) also exist in a six-membered ring isomeric form Ib:



[0019] In practice a mixture of the two forms is normally obtained, with the five-membered ring form predominating.

[0020] The present inventors have studied the following compounds in detail, all alkyl groups being linear:

1-decylidene diglycerol   R1 = C9, R2 = H

2-decylidene diglycerol   R1 = C8, R2 = methyl

1-dodecylidene diglycerol   R1 = C11, R2 = H

2-dodecylidene diglycerol   R1 = C10, R2 = methyl

1-decylidene triglycerol   R1 = C9, R1 = H

1-dodecylidene triglycerol   R1 = C11, R1 = H



[0021] These materials between them are estimated to span a hydrophilic-lipophilic balance (HLB) range of about 7 to 13, making them useful in a wide range of detergent compositions. For a full discussion of HLB the reader is referred to "Surfactants in Consumer Products", ed J Falbe, Springer-Verlag, 1987.

[0022] In physical form, alkylidene glycerols range from liquids to solids depending on the length and nature of the alkyl or alkenyl chain, the number of glycerol units in the molecule, and the particular isomer or mixture or isomers present.

[0023] The linear 1- and 2-decylidene diglycerols are liquids of low viscosity, and are thus especially suitable for formulation into liquid detergent compositions, more especially non-aqueous liquid detergent compositions. The dodecylidene diglycerols are solids, and preferred for incorporation into particulate detergent compositions.

[0024] The HLB values of the diglycerols are estimated from phase behaviour to be 9.5-10.5, comparable to C12 ethoxylated alcohol having an average degree of ethoxylation of 3-4 (hereinafter referred to for convenience as C12EO3-4). However, their oily soil detergency is somewhat better.

[0025] These materials may advantageously be used in combination with cosurfactants of higher HLB (preferably >9, more preferably 9-13), such as sulphate and sulphonate-type anionic surfactants and more highly ethoxylated nonionic surfactants, for example, C8-18EO5-10. Synergistic oily soil detergency has been observed when the new compounds are used in combination with primary alcohol sulphate, and with C12EO8 nonionic surfactant.

[0026] The linear decylidene and dodecylidene triglycerols are soft liquid-crystalline solids, suitable for incorporation into both aqueous liquid and particulate detergent compositions. They are estimated to have HLB values in the range 12-13, comparable to C12EO8 nonionic surfactant. The oily soil detergency is very similar. These materials may most suitably be used in combination with cosurfactants of lower HLB (preferably ≤9, more preferably 7-9), for example, C8-18EO2-6. Synergistic oily soil detergency has been observed with C12EO3.

Preparation of the alkylidene glycerols



[0027] As previously indicated, the novel alkylidene di- and triglycerols of the invention may be prepared by condensation of the appropriate aldehyde or ketone with a glycerol oligomer or mixture of oligomers.

[0028] These processes generally give more or less complex mixtures but provided that excessive amounts of non-surface-active by-products are not present it has not in general proved necessary to isolate pure compounds.

Detergent compositions



[0029] The novel surfactants of the present invention may be incorporated in detergent compositions of all physical types, for example, powders, liquids, gels and solid bars.

[0030] These compositions, whatever their physical form, will generally contain detergent-active compounds and detergency builders, and may optionally contain bleaching components and other active ingredients to enhance performance and properties.

Detergent-active compounds



[0031] The detergent compositions of the invention will contain a surfactant system comprising one or more detergent-active compounds (surfactants), the surfactant system consisting at least in part of an alkylidene di- or triglycerol in accordance with the present invention.

[0032] As indicated, one or more cosurfactants may also be present. These may be chosen from soap and non-soap anionic, cationic, nonionic, amphoteric and zwitterionic detergent-active compounds, and mixtures thereof. Many suitable detergent-active compounds are available and are fully described in the literature, for example, in "Surface-Active Agents and Detergents", Volumes I and II, by Schwartz, Perry and Berch.

[0033] The preferred detergent-active compounds that can be used are soaps and synthetic non-soap anionic and nonionic compounds.

[0034] Anionic surfactants are well-known to those skilled in the art. Examples include alkylbenzene sulphonates, particularly linear alkylbenzene sulphonates having an alkyl chain length of C8-C15; primary and secondary alkyl sulphates, particularly C12-C15 primary alkyl sulphates; alkyl ether sulphates; olefin sulphonates; alkyl xylene sulphonates; dialkyl sulphosuccinates; and fatty acid ester sulphonates. Sodium salts are generally preferred.

[0035] Nonionic surfactants that may be used include the primary and secondary alcohol ethoxylates, especially the C8-C20 aliphatic alcohols ethoxylated with an average of from 1 to 20 moles of ethylene oxide per mole of alcohol, and more especially the C10-C15 primary and secondary aliphatic alcohols ethoxylated with an average of from 1 to 10 moles of ethylene oxide per mole of alcohol. Non-ethoxylated nonionic surfactants include alkylpolyglycosides, glycerol monoethers, and polyhydroxyamides (glucamide).

[0036] The total amount of surfactant present will depend on the intended end use and may be as low as 0.5 wt%, for example, in a machine dishwashing composition, or as high as 60 wt%, for example, in a composition for washing fabrics by hand. In compositions for machine washing of fabrics, an amount of from 5 to 40 wt% is generally appropriate.

Detergency builders



[0037] The detergent compositions of the invention will generally also contain one or detergency builders. The total amount of detergency builder in the compositions will suitably range from 5 to 80 wt%, preferably from 10 to 60 wt% in powders, from 5 to 25 wt% in aqueous liquids and from 10 to 40 wt% in non-aqueous liquids.

[0038] Inorganic builders that may be present include sodium carbonate, if desired in combination with a crystallisation seed for calcium carbonate, as disclosed in GB 1 437 950 (Unilever); crystalline and amorphous aluminosilicates, for example, zeolites as disclosed in GB 1 473 201 (Henkel), amorphous aluminosilicates as disclosed in GB 1 473 202 (Henkel) and mixed crystalline/amorphous aluminosilicates as disclosed in GB 1 470 250 (Procter & Gamble); and layered silicates as disclosed in EP 164 514B (Hoechst). Inorganic phosphate builders, for example, sodium orthophosphate, pyrophosphate and tripolyphosphate, may also be present, but on environmental grounds those are no longer preferred.

[0039] Zeolite builders may suitably be present in amounts of from 5 to 60 wt%, preferably from 10 to 50 wt%. Amounts of from 10 to 45 wt% are being especially suitable for particulate (machine) fabric washing compositions. The zeolite used in most commercial particulate detergent compositions is zeolite A. Advantageously, however, maximum aluminium zeolite P (zeolite MAP) described and claimed in EP 384 070A (Unilever) may be used. Zeolite MAP is an alkali metal aluminosilicate of the P type having a silicon to aluminium ratio not exceeding 1.33, preferably not exceeding 1.15, and more preferably not exceeding 1.07.

[0040] Organic builders that may be present include polycarboxylate polymers such as polyacrylates, acrylic/maleic copolymers, and acrylic phosphinates; monomeric polycarboxylates such as citrates, gluconates, oxydisuccinates, glycerol mono-, di- and trisuccinates, carboxymethyloxysuccinates, carboxymethyloxymalonates, dipicolinates, hydroxyethyliminodiacetates, alkyl- and alkenylmalonates and succinates; and sulphonated fatty acid salts. This list is not intended to be exhaustive.

[0041] Especially preferred organic builders are citrates, suitably used in amounts of from 5 to 30 wt%, preferably from 10 to 25 wt%; and acrylic polymers, more especially acrylic/maleic copolymers, suitably used in amounts of from 0.5 to 15 wt%, preferably from 1 to 10 wt%.

[0042] Builders, both inorganic and organic, are preferably present in alkali metal salt, especially sodium salt, form.

Bleach components



[0043] Detergent compositions according to the invention may also suitably contain a bleach system. Machine dishwashing compositions may suitably contain a chlorine bleach system, while fabric washing compositions may more desirably contain peroxy bleach compounds, for example, inorganic persalts or organic peroxyacids, capable of yielding hydrogen peroxide in aqueous solution.

[0044] Suitable peroxy bleach compounds include organic peroxides such as urea peroxide, and inorganic persalts such as the alkali metal perborates, percarbonates, perphosphates, persilicates and persulphates. Preferred inorganic persalts are sodium perborate monohydrate and tetrahydrate, and sodium percarbonate.

[0045] Especially preferred is sodium percarbonate having a protective coating against destabilisation by moisture. Sodium percarbonate having a protective coating comprising sodium metaborate and sodium silicate is disclosed in GB 2 123 044B (Kao).

[0046] The peroxy bleach compound is suitably present in an amount of from 5 to 35 wt%, preferably from 10 to 25 wt%.

[0047] The peroxy bleach compound may be used in conjunction with a bleach activator (bleach precursor) to improve bleaching action at low wash temperatures. The bleach precursor is suitably present in an amount of from 1 to 8 wt%, preferably from 2 to 5 wt%. Preferred bleach precursors are peroxycarboxylic acid precursors, more especially peracetic acid precursors and peroxybenzoic acid precursors; and peroxycarbonic acid precursors. An especially preferred bleach precursor suitable for use in the present invention is N,N,N',N'-tetracetyl ethylenediamine (TAED).

[0048] A bleach stabiliser (heavy metal sequestrant) may also be present. Suitable bleach stabilisers include ethylenediamine tetraacetate (EDTA) and the polyphosphonates such as Dequest (Trade Mark), EDTMP.

[0049] An especially preferred bleach system comprises a peroxy bleach compound (preferably sodium percarbonate or sodium perborate monohydrate) optionally together with a bleach activator), and a transition metal bleach catalyst as described and claimed in EP 458 397A, EP 458 398A and EP 509 787A (Unilever).

Other ingredients



[0050] Detergent compositions of the invention may contain alkali metal, preferably sodium, carbonate, in order to increase detergency and ease processing. Sodium carbonate may suitably be present in amounts ranging from 1 to 60 wt%, preferably from 2 to 40 wt%. However, compositions containing little or no sodium carbonate are also within the scope of the invention.

[0051] In particulate detergent compositions, powder flow may be improved by the incorporation of a small amount of a powder structurant, for example, a fatty acid (or fatty acid soap), a sugar, an acrylate or acrylate/maleate polymer, or sodium silicate. A preferred powder structurant is fatty acid soap, suitably present in an amount of from 1 to 5 wt%.

[0052] Other materials that may be present in detergent compositions of the invention include sodium silicate; antiredeposition agents such as cellulosic polymers; fluorescers; inorganic salts such as sodium sulphate; lather control agents or lather boosters as appropriate; proteolytic and lipolytic enzymes; dyes; coloured speckles; perfumes; foam controllers; and fabric softening compounds. This list is not intended to be exhaustive.

Liquid detergent compositions



[0053] As previously indicated, alkylidene di- and triglycerols in accordance with the present invention may advantageously be incorporated into both aqueous and non-aqueous liquid detergent compositions.

[0054] Aqueous liquids in accordance with the invention may be isotropic. Alternatively they may be structured liquids comprising a dispersion of lamellar droplets in an aqueous continuous phase, optionally containing suspended particulate solid. Structured liquids of this type without suspended solid are disclosed, for example, in US 4 244 840, while structured liquids containing suspended solids are disclosed in US 4 244 840 and also in EP 38 101A, EP 160 342A and EP 140 452A. The liquids may contain a deflocculating polymer as described and claimed in EP 346 995A (Unilever), suitably in an amount of from 0.01 to 5 wt%.

[0055] Non-aqueous liquids in accordance with the invention contain not more than 5 wt%, and preferably less than 3 wt%, water. They may take the form of a particulate solid phase dispersed in a non-aqueous liquid phase, the latter comprising one or more nonionic surfactants, suitably in an amount of from 1 to 90 wt%, preferably from 5 to 75 wt% and more preferably from 20 to 60 wt%. Advantageously the non-aqueous liquids may contain a hydrophobically modified dispersant, for example, a hydrophobic silica, to improve physical stability. A deflocculant, for example, an acid as described and claimed in EP 266 199A (Unilever), may also advantageously be present.

EXAMPLES



[0056] The invention is further illustrated by the following non-limiting Examples, in which parts and percentages are by weight unless otherwise stated. Numbered Examples are within the invention, while those identified by a letter are comparative.

EXAMPLES 1 to 4


Synthesis and characterisation of alkylidene di- and triglycerols


Example 1: preparation of 1-decylidene diglycerol



[0057] This example describes the preparation of a compound of the formula I in which R1 = linear C9H19, R2 = H, A = monoglycerol.

[0058] 1,1-Dimethoxydecane (22.0g, 0.10mol), diglycerol (86.0g, 0.52mol) and p-toluene sulphonic acid (0.25g) in dimethyl formamide (100 cm3) were heated at 100°C for 7 hours. The reaction mixture was allowed to cool and water (400 cm3) was added and the mixture extracted with ether (2x300 cm3). The combined ether extracts were washed with water (2x250 cm3) and brine (250 cm3) and dried over anhydrous sodium sulphate. The solvent was removed at reduced pressure to give the crude product. Short path distillation using a Kugelrohr apparatus afforded pure 1-decylidene diglycerol (14.7g, 48%) .

[0059] The compound was characterised by nuclear magnetic resonance (NMR) spectroscopy: deltaH (360 MHz, CDCl3, TMS) 0.89 (3H, t, CH3-), 1.3-1.4 (14H, m, -(CH2)7-), 1.65 (2H, m, C8H17-CH2-), 3.5-4.4 (10H, m, -O-CH2-CH(O)-CH2-O-), 4.88,4.98 (1H, t, C9H19-CH-).

[0060] A similar method was used to prepare and characterise 1-dodecylidene diglycerol.

Example 2: preparation of 2-decylidene diglycerol



[0061] This example describes the preparation of a compound of the formula I in which R1 = linear C8H17, R2 = methyl, A = monoglycerol.

[0062] 2-Decanone (0.136 mol), diglycerol (340.0g, 2.05mol, 15 equiv) and p-toluene sulphonic acid (0.5g) in dimethyl formamide (340 cm3) were stirred together at 100°C for 3-6 hours. The reaction mixture was allowed to cool, water (250 cm3) was added and the mixture extracted with ether. The ether extracts were washed with water and brine and dried over anhydrous sodium sulphate. The solvent was removed on a rotary evaporator to give crude product. Short path distillation using a Kugelrohr apparatus afforded pure 2-decylidene diglycerol (12.52g, 30%)

[0063] The compound was characterised by nuclear magnetic resonance (NMR) spectroscopy: deltaH (360 MHz, CDCl3, TMS) 0.88 (3H, t J = 6.9 Hz, CH3), 1.3 (12H, m, -(CH2)6-), 1.31,1.37 (3H, s, O-C(CH3)C8H17-O) , 1.65 (2H, m, C7H15-CH2-), 2.2-3.0 (2H,br m, -OH), 3.6-4.4 (10H, m, -O-CH2-CH(O)-CH2-O-).

Example 3: preparation of 2-dodecylidene diglycerol



[0064] This example describes the preparation of a compound of the formula I in which R1 = linear C10H21, R2 = methyl, A = monoglycerol.

[0065] 2-Dodecanone (0.136 mol), diglycerol (340.0g, 2.05mol, 15 equiv) and p-toluene sulphonic acid (0.5g) in dimethyl formamide (340 cm3) were stirred together at 100°C for 3-6 hours. The reaction mixture was allowed to cool, water (250 cm3) was added and the mixture extracted with ether. The ether extracts were washed with water and brine and dried over anhydrous sodium sulphate. The solvent was removed on a rotary evaporator to give crude product. Short path distillation using a Kugelrohr afforded pure 2-dodecylidene diglycerol (21.3g, 47%) b.p. 225°C / 0.04mbar.

[0066] The compound was characterised by nuclear magnetic resonance (NMR) spectroscopy: deltaH (360 MHz, CDCl3, TMS) 0.88 (3H, t J = 6.9 Hz, CH3), 1.3 (17(?)H, m, -(CH2)8-), 1.31,1.36 (3H, s, O-C(CH3)C10H21-O), 1.65 (2H, m, C9H19-CH2-), 2.2-3.0 (2H, br m, -OH), 3.5-4.4 (10H, m, -O-CH2-CH(O)-CH2-O-).

Example 4: preparation of 1-decylidene triglycerol



[0067] This example describes the preparation of a compound of the formula I in which R1 = linear C8H17, R2 = H, A = diglycerol.

[0068] 1,1-Dimethoxydodecane (11.5g, 0.05mol), triglycerol (240g, 1.0mol) and p-toluene sulphonic acid (0.5g) in dimethyl formamide (250 cm3) was heated at 100°C for 5 hours. The reaction mixture was allowed to cool and water (400 cm3) was added and the mixture extracted with ether (2x300 cm3). The combined ether extracts were washed with water (2x250 cm3) and brine (250 cm3) and dried over anhydrous sodium sulphate. The solvent was removed at reduced pressure to give the crude product. Short path distillation using a Kugelrohr apparatus was used to remove low boiling impurities to leave near-pure 1-dodecylidene triglycerol ( 14.2g, 70%).

[0069] The compound was characterised by nuclear magnetic resonance (NMR) spectroscopy: deltaH (360 MHz, CDCl3, TMS) 0.88 (3H, t, CH3-), 1.3-1.4 (18H, m, -(CH2)9-), 1.64 (2H, m, C10H21-CH2-), 3.5-4.4 (15H, m, -O-CH2-CH(O)-CH2-O-), 4.88,4.97 (1H, t, C11H23-CH-).

[0070] A similar method was used to prepare and characterise 1-dodecylidene triglycerol.

EXAMPLES 5 TO 8 - DETERGENCY



[0071] Oily soil detergencies were compared in triolein removal experiments using the Tergotometer.

[0072] 3H-radiolabelled triolein was used to assess soil removal. Knitted polyester test cloths carrying this soil (level about 1.9%) were washed in the Tergotometer UR 7227 for 20 minutes, the agitation being 70 rpm, the wash liquor volume being 500 ml, and the wash temperature being 40°C. The surfactants were used at a concentration of 1 g/litre in distilled water in the presence of sodium metaborate buffer (0.05M). Subsequent to the wash, 4 x 1 ml samples of wash liquor were removed from each tergotometer pot and the activity determined using a liquid scintillation counter.

[0073] Percentage detergency was calculated from the relationship:

where Aw is the total activity in the wash liquor and As is the level of activity originally applied to the cloth.

[0074] The decylidene and dodecylidene diglycerols all showed synergistic detergency behaviour when used in combination with the high-HLB cosurfactants, primary alcohol sulphate (cocoPAS) and C12EO8 ethoxylated alcohol.

Example 5


2-decylidene diglycerol (Example 2) with primary alcohol sulphate (cocoPAS)



[0075] 
Surfactant mixture (%) Triolein removal (%)
2-decylidene diglycerol cocoPAS  
100 0 30
80 20 68
60 40 52
40 60 48
20 80 46
0 100 44

Example 6


2-dodecylidene diglycerol (Example 3) with cocoPAS



[0076] 
Surfactant mixture (%) Triolein removal (%)
2-dodecylidene diglycerol cocoPAS  
100 0 8
80 20 60
60 40 68
40 60 66
20 80 58
0 100 44

Example 7


2-decylidene diglycerol (Example 2) with C12EO8 nonionic surfactant



[0077] 
Surfactant mixture (%) Triolein removal (%)
2-decylidene diglycerol C12EO8 nonionic  
100 0 6
80 20 54
60 40 74
40 60 73
20 80 69
0 100 58

Example 8


2-dodecylidene diglycerol (Example 3) with C12EO8 nonionic surfactant



[0078] 
Surfactant mixture (%) Triolein removal (%)
2-dodecylidene diglycerol C12EO8 nonionic  
100 0 35
80 20 69
60 40 68
40 60 69
20 80 64
0 100 58

EXAMPLES 9 TO 12 - DETERGENCY



[0079] In these Examples, detergencies were measured by a method similar to that used in Examples 5 to 8, but the tergotometer wash liquors contained the following ingredients in 24° (French) hard water:
  g/litre
surfactant (total) 1.00
zeolite 2.42
sodium carbonate 1.82
acrylic/maleic copolymer 0.592

Example 9


1-decylidene diglycerol (Example 1) with cocoPAS



[0080] 
Surfactant mixture (%) Triolein removal (%)
1-decylidene diglycerol cocoPAS  
100 0 2.5
80 20 58.6
60 40 58.2
40 60 52.8
20 80 44.7
0 100 40.1

Example 10


1-decylidene diglycerol (Example 1) with nonionic surfactant



[0081] 
Surfactant mixture (%) Triolein removal (%)
1-decylidene diglycerol C10-12EO7 nonionic  
100 0 2.1
80 20 51.5
60 40 62.7
40 60 61.3
20 80 64.9
0 100 60.7

Example 11


1-dodecylidene diglycerol (Example 1) with nonionic surfactant



[0082] 
Surfactant mixture (%) Triolein removal (%)
1-dodecylidene diglycerol C10-12EO7 nonionic  
100 0 1.5
80 20 4.9
60 40 62.0
40 60 65.9
20 80 65.0
0 100 60.7

Example 12


1-dodecylidene triglycerol (Example 4) with nonionic surfactants



[0083] With 7EO nonionic surfactant:
Surfactant mixture (%) Triolein removal (%)
1-dodecylidene triglycerol C10-12EO7 nonionic  
100 0 60.3
80 20 57.7
60 40 58.8
40 60 62.2
20 80 22.6
0 100 60.7


[0084] With 3EO nonionic surfactant:
Surfactant mixture (%) Triolein removal (%)
1-dodecylidene triglycerol C10-12EO3 nonionic  
100 0 61.1
80 20 65.1
60 40 60.8
40 60 6.5
20 80 3.2
0 100 0.7


[0085] These results show that 1-dodecylidene triglycerol behaved as a high-HLB surfactant. Little benefit was obtained from mixing it with another high-HLB surfactant, 7EO ethoxylated nonionic, the two surfactants exhibiting very similar performance. However, when it was mixed with a low-HLB surfactant, 3EO ethoxylated alcohol, enhanced detergency was observed.

EXAMPLES 13 TO 16 - DETERGENT COMPOSITIONS


Examples 13 and 14 - detergent powders



[0086] Detergent powders incorporating the compounds of the invention may be prepared to the following formulations (weight %):
  13 14
Decylidene or dodecylidene diglycerol 17 -
Decylidene or dodecylidene triglycerol - 8.5
C12-15EO(av)7 ethoxylate   8.5
 
zeolite 32 32
sodium carbonate 12 12
alkaline sodium silicate 0.5 0.5
fatty acid soap 2 2
sodium carboxymethylcellulose 0.6 0.6
 
sodium perborate monohydrate 15 15
TAED 6.5 6.5
bleach stabiliser (EDTMP) 0.4 0.4
silicone suds suppressor 0.4 0.4
enzymes 1.0 1.0
fluorescer 0.2 0.2
perfume 0.6 0.6
moisture and salts to 100%    

Example 15: non-aqueous liquid detergent



[0087] 
  weight %
Decyl- or dodecylidene diglycerol 25.3
C10-15EO(av)7 ethoxylate 25.3
sodium carbonate 17
sodium perborate monohydrate 10.5
alkylbenzene sulphonic acid 6
calcium carbonate 6
silica (dispersant) 4
silicone suds suppressor 2.75
antiashing polymer 1.5
antiredeposition polymer 1.5
fluorescer 0.15

Examples 16 and 17: aqueous liquid detergents



[0088] 
  weight %
  16 17
decyl- or dodecylidene triglycerol 25 -
decyl- or dodecylidene diglycerol - 12.5
C10-15EO(av)7 ethoxylate - 12.5
 
fatty acid 4.5 4.5
potassium hydroxide 10 10
zeolite 15 15
citric acid 8 8
glycerol 2 2
borax 1.5 1.5
polymer 1.0 1.0
silicone oil 0.3 0.3
enzymes 0.5 0.5
perfume 0.5 0.5
water to 100%    



Claims

1. A compound of the formula I:

wherein R1 represents a linear or branched alkyl or alkenyl group and R2 represents a hydrogen atom or a linear or branched alkyl or alkenyl group, the total number of carbon atoms in R1 and R2 being from 7 to 17 ; and
A represents a monoglycerol or diglycerol unit.
 
2. A compound as claimed in claim 1, having the formula Ia:

wherein n is 1 or 2.
 
3. A compound as claimed in claim 1, wherein R1 represents a C9 or C11 alkyl group, and R2 represents a hydrogen atom.
 
4. A compound as claimed in claim 1, wherein R1 represents a C8 or C10 alkyl group, and R2 represents a methyl group.
 
5. Use of a compound as claimed in claim 1 as a surfactant or wetting agent.
 
6. A detergent composition containing a surfactant system comprising one or more surface-active compounds, characterised in that the surfactant system comprises a compound as claimed in claim 1.
 
7. A detergent composition as claimed in claim 6, comprising as surfactant system a compound of the formula I wherein A is a monoglycerol unit in combination with a cosurfactant having an HLB value of at least 9.
 
8. A detergent composition as claimed in claim 7, wherein the cosurfactant has an HLB value of from 9 to 13.
 
9. A detergent composition as claimed in claim 7, wherein the cosurfactant is selected from sulphate and sulphonate anionic surfactants and ethoxylated nonionic surfactants.
 
10. A detergent composition as claimed in claim 7, wherein the cosurfactant is a primary alcohol sulphate.
 
11. A detergent composition as claimed in claim 7, wherein the cosurfactant is a C8-18 alcohol ethoxylated with an average of 5 to 10 moles of ethylene oxide per mole of alcohol.
 
12. A detergent composition as claimed in claim 6, comprising as surfactant system a compound of the formula I wherein A represents a diglycerol unit, in combination with a cosurfactant having an HLB value not exceeding 9.
 
13. A detergent composition as claimed in claim 12, wherein the cosurfactant has an HLB value within the range of from 7 to 9.
 
14. A detergent composition as claimed in claim 12, wherein the cosurfactant is an ethoxylated nonionic surfactant.
 
15. A detergent composition as claimed in claim 12, wherein the cosurfactant is a C8-18 alcohol ethoxylated with an average of 2 to 6 moles of ethylene oxide per mole of alcohol.
 
16. A detergent composition as claimed in claim 6, which is in liquid form.
 
17. A detergent composition as claimed in claim 6, which is in non-aqueous liquid form.
 
18. A process for the preparation of a compound as claimed in claim 1, which comprises reacting an aldehyde or ketone of the formula R1-CO-R2 with an oligomer of glycerol.
 


Ansprüche

1. Verbindung der Formel I:

   worin R1 eine lineare oder verzweigte Alkyl- oder Alkenylgruppe wiedergibt und R2 ein Wasserstoffatom oder eine lineare oder verzweigte Alkyl- oder Alkenylgruppe wiedergibt. wobei die Gesamtzahl, an Kohlenstoffatomen in R1 und R2 7 bis 17 ist und
   A eine Monoglycerin- oder Diglycerineinheit wiedergibt.
 
2. Verbindung nach Anspruch 1. der Formel Ia:

   worin n 1 oder 2 ist.
 
3. Verbindung nach Anspruch 1, worin R1 eine C9- oder C11-Alkylgruppe wiedergibt und R2 ein Wasserstoffatom wiedergibt.
 
4. Verbindung nach Anspruch 1, worin R1 eine C8- oder C10-Alkylgruppe wiedergibt und R2 eine Methylgruppe wiedergibt.
 
5. Verwendung einer Verbindung nach Anspruch 1 als Tensid oder Netzmittel.
 
6. Waschmittel, enthaltend ein Tensidsystem, umfassend ein oder mehrere grenzflächenaktive Verbindungen, dadurch gekennzeichnet, daß das Tensidsystem eine Verbindung nach Anspruch 1 umfaßt.
 
7. Waschmittel nach Anspruch 6, umfassend als Tensidsystem eine Verbindung der Formel I, worin A eine Monoglyccrineinheit ist, in Kombination mit einem Cotensid mit einem HLB-Wert von mindestens 9.
 
8. Waschmittel nach Anspruch 7, worin das Cotensid einen HLB-Wert von 9 bis 13 aufweist.
 
9. Waschmittel nach Anspruch 7, worin das Cotensid aus anionischen Sulfat- und Sulfonattensiden und ethoxylierten nichtionischen Tensiden ausgewählt ist.
 
10. Waschmittel nach Anspruch 7, worin das Cotensid ein primäres Alkoholsulfat darstellt.
 
11. Waschmittel nach Anspruch 7, worin das Cotensid einen C8-18-Alkohol darstellt, der mit durchschnittlich 5 bis 10 Mol Ethylenoxid pro Mol Alkohol ethoxyliert ist.
 
12. Waschmittel nach Anspruch 6, umfassend als Tensidsystem eine verbindung der Formel I, worin A eine Diglycerineinheit wiedergibt, in Kombination mit einem Cotensid, das einen HLB-Wert von nicht mehr als 9 aufweist.
 
13. Waschmittel nach Anspruch 12, worin das Cotensid einen HLB-Wert im Bereich von 7 bis 9 aufweist.
 
14. Waschmittel nach Anspruch 12, worin das Cotensid ein ethoxyliertes, nichtionisches Tensid darstellt.
 
15. Waschmittel nach Anspruch 12, worin das Cotensid einen C8-18-Alkohol darstellt, der mit durchschnittlich 2 bis 6 Mol Ethylenoxid pro Mol Alkohol ethoxyliert ist.
 
16. Waschmittel nach Anspruch 6 in flüssiger Form.
 
17. Waschmittel nach Anspruch 6 in nichtwässeriger, flüssiger Form.
 
18. Verfahren zur Herstellung einer verbindung nach Anspruch 1, umfassend Umsetzen eines Aldehyds oder Ketons der Formel R1-CO-R2 mit einem Oligomer von Glycerin.
 


Revendications

1. Un composé présentant la formule I suivante :

où R1 représente un groupe alkyle ou alkényle linéaire ou ramifié et R2 représente un atome d'hydrogène ou un groupe alkyle ou alkényle linéaire ou ramifié, le nombre total d'atomes de carbone dans R1 et R2 étant compris entre 7 et 17, et A représente une unité de monoglycérol ou de diglycérol.
 
2. Un composé selon la Revendication 1, présentant la formule Ia suivante :

où n est égal à 1 ou 2.
 
3. Un composé selon la Revendication 1, où R1 représente un groupe alkyle C9 ou C11, et R2 représente un atome d'hydrogène.
 
4. Un composé selon la Revendication 1, où R1 représente un groupe alkyle C8 ou C10, et R2 représente un groupe méthyle.
 
5. Utilisation d'un composé selon la Revendication 1 en tant que tensioactif ou agent mouillant.
 
6. Une composition détersive comportant un système tensioactif contenant un ou plusieurs composés tensioactifs, caractérisée en ce que le système tensioactif comprend un composé tel que revendiqué dans la Revendication 1.
 
7. Une composition détersive selon la Revendication 6, comportant en tant que système tensioactif un composé présentant la formule I dans laquelle A est une unité de monoglycérol en combinaison avec un cotensioactif présentant une valeur HLB au moins égale à 9.
 
8. Une composition détersive selon la Revendication 7, dans laquelle le cotensioactif présente une valeur HLB comprise entre 9 et 13.
 
9. Une composition détersive selon la Revendication 7, dans laquelle le cotensioactif est sélectionné parmi des tensioactifs anioniques de sulfate et de sulfonate et des tensioactifs non ioniques éthoxylés.
 
10. Une composition détersive selon la Revendication 7, dans laquelle le cotensioactif est un sulfate d'alcool primaire.
 
11. Une composition détersive selon la Revendication 7, dans laquelle le cotensioactif est un alcool éthoxylé C8-18 présentant une moyenne de 5 à 10 moles d'oxyde d'éthylène par mole d'alcool.
 
12. Une composition détersive selon la Revendication 6, comprenant en tant que système tensioactif un composé présentant la formule I où A représente une unité de diglycérol, en combinaison avec un cotensioactif présentant une valeur HLB n'excédant pas 9.
 
13. Une composition détersive selon la Revendication 12, dans laquelle le cotensioactif présente une valeur HLB comprise dans la gamme allant de 7 à 9.
 
14. Une composition détersive selon la Revendication 12, dans laquelle le cotensioactif est un tensioactif non ionique éthoxylé.
 
15. Une composition détersive selon la Revendication 12, dans laquelle le cotensioactif est un alcool éthoxylé C8-18 présentant une moyenne de 2 à 6 moles d'oxyde d'éthylène par mole d'alcool.
 
16. Une composition détersive selon la Revendication 6, se présentant sous forme liquide.
 
17. Une composition détersive selon la Revendication 6, se présentant sous forme liquide non aqueuse.
 
18. Une méthode destinée à la préparation d'un composé selon la Revendication 1, comprenant l'étape consistant à faire réagir un aldéhyde ou une cétone présentant la formule R1-CO-R2 avec un oligomère de glycérol.