
19

Europaisches Patentamt

European Patent Office

Office europeen des brevets © Publication number : 0 680 000 A 1

EUROPEAN PATENT A P P L I C A T I O N

(2j) Application number: 95302661.4

(22) Date of filing : 21.04.95

© int. ci.6 : G06F 17/30, G06F 9 / 4 4

® Priority : 26.04.94 US 234435

@ Date of publication of application
02.11.95 Bulletin 95/44

@ Designated Contracting States :
DE FR GB

(n) Applicant : International Business Machines
Corporation
Old Orchard Road
Armonk, N.Y. 10504 (US)

(72) Inventor : Cantin, Guylaine
190 Douglas Drive
Toronto, Ontario (CA)
Inventor : Copeland, George P.
1708 Mail Springs Drive
Austin, Texas 78746 (US)
Inventor : Gheith, Ahmed M.
1212 Parrot Trail
Round Rock, Texas 78681 (US)
Inventor : Sessions, Roger H.
11414 Pencewood Drive
Austin, Texas 78750 (US)

(74) Representative : Lloyd, Richard Graham
IBM (UK) Ltd,
UK Intellectual Property Department,
Hursley Park
Winchester, Hampshire S021 2JN (GB)

@) Data store access in an object oriented environment.

O
O
o
o
00
CO

(57) A method in a data processing system for
optimizing access to a Datastore in an object-
oriented environment. The data processing sys-
tem includes an object and an identification
object, wherein the identification object is an
instance of a class object. The method includes
receiving a request to open the Datastore at the
identification object. The request is sent from
the identification object its class object in res-
ponse to receiving the request. Then whether
the Datastore is open is determined in response
to receiving the request at the class object. The
Datastore is opened in response to the Datas-
tore being closed and a message is sent to the
identification object indicating that the Datas-
tore has been opened. If the Datastore is already
open, a message to the identification object
indicating that the Datastore has been opened,
wherein access to the Datastore is optimized.

202

LU

Jouve, 18, rue Saint-Denis, 75001 PARIS

EP 0 680 000 A1

The present invention relates in general to data processing and, more particularly, to the accessing of a
datastore for object data in an object-oriented environment.

Object-oriented programming environments treat the presentation of data and its manipulation as a single
entity called an "object", which is a package of information and the description of its manipulation. An object

5 is manipulated by sending a "message" to the object. An object that receives a message determines how to
manipulate itself. A "class" describes one or more related objects, and an "instance" of an object is an object
described by a particular class. Each instance of an object contains data in "instance variables". All instances
of an object in a class have the same instance variables although the actual values of the instance variables
may differ. The class contains "methods", which are procedures that are invoked by sending messages to an

10 instance of a class. All objects in a class have the same methods.
Inheritance is a feature of an object-oriented environment. Typically, object-oriented environments provide

inheritance between classes. For example, a class may be modified to form a new class, wherein the original
class is the "superclass" and the new class is called the "subclass", which inherits everything from the super
class.

15 Another feature of an object-oriented environment is object persistence. An object can have a "dynamic
state" and a "persistent state". In the dynamic state, an object is typically in memory and is not likely to exist
for the entire lifetime of the object; e.g., the object would not survive a system failure. The persistent state of
an object is the data that is used to reconstruct the dynamic state of an object. A standard for implementing
object persistence has been set by Object Management Group, Inc. This standard is known as the Object Per-

20 sistence Service Specification (OPSS), which defines a guidelines for providing interfaces and mechanisms
used for retaining and managing the persistent state of objects. A client is an object that manipulates a persis-
tent object.

OPSS defines a number of interfaces including: Persistent Identifier (PID), Persistent Object (PO), Per-
sistent Object Manager (POM), Persistent Data Service (PDS), Protocol, and Datastore. The PID contains in-

25 formation that identifies the storage location for the persistent states of an object. The PO is an object whose
persistence is typically controlled externally by its candidates. The PO includes a store/restore interface de-
fining the operations that control the PO's persistent data. The PDS moves data between an object and a da-
tastore. The POM routes storage related requests from the object to a PDS. Protocol provides a mechanism
to move data in and out of an object. A Datastore is an interface that provides one of several ways to store

30 data. A Datastore may be, for example, a database, a record file, or some other type of file and may use well
known interfaces for databases and record files. The Datastore provides storage for the persistent state of an
object.

Additional information about object-oriented computing can be found in Peterson, Object Oriented Com-
puting, IEEE Computer Society Press, IEEE Computer Society Press Order No. 821 (1990) and in De Cham-

35 peaux, Object-Oriented System Development, Addison-Wesley Publishing Co. (1993). More information and
details regarding the implementation of object persistence may be found in Object Persistence Service Spec-
ification, OMG TC document number 93.11. 3, which is available from Object Management Group, Inc., located
at 492 Old Connecticut Path, Framingham, Massachusetts, 01701.

Under OPSS, a performance problem exists with accessing Datastores. Opening a Datastore is a time
40 consuming process and ideally, should be performed as infrequently as possible. Typically, a Datastore is

opened, a series of store/restore operations are performed, and then the datastore is closed. Under OPSS,
open/close operations are performed during connect/disconnect operations. Unfortunately, these operations
are defined in the Persistent Object interface in which operations cannot be invoked before a target object is
instantiated and cannot be invoked once the object is de-instantiated. If an object accessing a Datastore is

45 instantiated and de-instantiated within a loop, the Datastore must be opened and closed each time the loop
occurs, degrading performance.

This invention provides a method for accessing a Datastore in a data processing system with an object-
oriented environment, wherein said data processing system includes an object and an identification object,
wherein said identification object is within a class object, said method comprising the data processing system

50 implemented steps of: receiving a request to open said Datastore at said identification object; sending said
request from said identification object to said class object in response to receiving said request; determining
whether said Datastore is open in response to receiving said request at said class object; opening said Data-
store in response to determination of said Datastore being closed and sending a message to said identification
object indicating that said Datastore has been opened; sending a message to said identification object indi-

55 eating that said Datastore has been opened in response to a determination that said Datastore is open.
The present invention improves the efficiency of the system by reducing the time devoted to opening and

closing a Datastore in an object-oriented environment.
More particularly, this is achieved as is now described. A method is provided in a data processing system

2

EP 0 680 000 A1

for optimizing access to a Datastore in an object-oriented environment. The data processing system includes
an object and an identification object, wherein the identification object is within a class object. The method
includes receiving a request to open the Datastore at the identification object. The request is sent from the
identification object to the class object in response to receiving the request. Then whether the Datastore is

5 open is determined in response to receiving the request at the class object. The Datastore is opened in re-
sponse to the Datastore being closed and a message is sent to the identification object indicating that the Da-
tastore has been opened. If the Datastore is already open, a message to the identification object indicating
that the Datastore has been opened, wherein access to the Datastore is optimized.

In closing the Datastore, a request is received to close the Datastore at the identification object. The re-
10 quest from the identification object is sent to the class object in response to receiving the request at the iden-

tification object. Whether other objects require the Datastore to remain open is determined. The Datastore is
closed in response to a determination that a requirement that the Datastore remain open is absent. Amessage
to the identification object indicating that the Datastore has been closed. The client of the PID is unaware of
any of this. To the client, it appears as if a Datastore open or close was done in response to the open/close

15 request.
The invention will best be understood by reference to the following detailed description of an illustrative

embodiment when read in conjunction with the accompanying drawings, wherein:
Figure 1 depicts a data processing system in the form of a personal computer;
Figure 2 is a block diagram of a personal computer system;

20 Figure 3 is a schematic diagram showing an object in an object-oriented environment;
Figure 4 is a diagram illustrating components employed to support persistent objects in an object-oriented
environment;
Figure 5 depicts a diagram of components and their interactions in support of object persistence;
Figure 6 is a flow chart of a process to open a Datastore using a class object; and

25 Figure 7 depicts a flow chart of a process for closing a Datastore
Referring now to the figures, and in particular to Figure 1, a data processing system, personal com-

puter system 10, in which the present invention can be employed is depicted. As shown, personal computer
system 10 comprises a number of components, which are interconnected together. More particularly, a
system unit 12 is coupled to and can drive an optional monitor 14 (such as a conventional video display).

30 A system unit 12 also can be optionally coupled to input devices such as a PC keyboard 16 or a mouse
18. Mouse 18 includes right and left buttons (not shown). The left button is generally employed as the main
selector button and alternatively is referred to as the first mouse button or mouse button 1 . The right button
is typically employed to select auxiliary functions as explained later. The right mouse button is alternatively
referred to as the second mouse button or mouse button 2. An optional output device, such as a printer

35 20, also can be connected to the system unit 12. Finally, system unit 12 may include one or more mass
storage devices such as the diskette drive 22.
As will be described below, the system unit 12 responds to input devices, such as PC keyboard 16, the

mouse 18, or local area networking interfaces. Additionally, input/output (I/O) devices, such as floppy diskette
drive 22, display 14, printer 20, and local area network communication system are connected to system unit

40 12 in a manner well known. Of course, those skilled in the art are aware that other conventional components
also can be connected to the system unit 12 for interaction therewith. In accordance with the present invention,
personal computer system 10 includes a system processor that is interconnected to a random access memory
(RAM), a read only memory (ROM), and a plurality of I/O devices.

In normal use, personal computer system 10 can be designed to give independent computing power to a
45 small group of users as a server or a single user and is inexpensively priced for purchase by individuals or

small businesses. In operation, the system processorf unctions under an operating system, such as IBM's OS/2
operating system or DOS (OS/2 is a trademark of International Business Machines Corporation). This type of
operating system includes a Basic Input/Output System (BIOS) interface between the I/O devices and the op-
erating system. BIOS, which can be stored in a ROM on a motherboard or planar, includes diagnostic routines

so which are contained in a power on self test section referred to as POST.
Prior to relating the above structure to the present invention, a summary of the operation in general of

personal computer system 10 may merit review. Referring to Figure 2, there is shown a block diagram of per-
sonal computer system 10 illustrating the various components of personal computer system 10 in accordance
with the present invention. Figure 2 further illustrates components of planar 11 and the connection of planar

55 11 to I/O slots 46a-46d and other hardware of personal computer system 10. Connected to planar 11 is the
system central processing unit (CPU) 26 comprised of a microprocessor which is connected by a high speed
CPU local bus 24 through a bus controlled timing unit 38 to a memory control unit 50 which is further connected
to a volatile random access memory (RAM) 58. While any appropriate microprocessor can be used for CPU

3

EP 0 680 000 A1

26, one suitable microprocessor is the Pentium microprocessor, which is sold by Intel Corporation. "Pentium"
is a trademark of Intel Corporation.

While the present invention is described hereinafter with particular reference to the system block diagram
of Figure 2, it is to be understood at the outset of the description which follows, it is contemplated that the

5 apparatus and methods in accordance with the present invention may be used with other hardware configur-
ations. For example, the system processor could be an Intel 80286, 80386, or 80486 microprocessor. These
particular microprocessors can operate in a real addressing mode or a protected addressing mode. Each mode
provides an addressing scheme for accessing different areas of the microprocessor's memory.

Returning now to Figure 2, CPU local bus 24 (comprising data, address and control components) provides
10 for the connection of CPU 26, an optional math coprocessor 27, a cache controller 28, and a cache memory

30. Also coupled on CPU local bus 24 is a buffer 32. Buffer 32 is itself connected to a slower speed (compared
to the CPU local bus) system bus 34, also comprising address, data and control components. System bus 34
extends between buffer 32 and a further buffer 36. System bus 34 is further connected to a bus control and
timing unit 38 and a Direct Memory Access (DMA) unit 40. DMA unit 40 is comprised of a central arbitration

15 unit 48 and a DMA controller 41 . Buffer 36 provides an interface between the system bus 34 and an optional
feature bus such as the Micro Channel bus 44. ("Micro Channel" is a trademark of International Business Ma-
chines Corporation). Connected to bus 44 are a plurality of I/O slots 46a-46d for receiving Micro Channel adap-
ter cards which may be further connected to an I/O device or memory. In the depicted example, I/O slot 46a
has a hard disk drive connected to it; I/O slot 46b has a CD-ROM drive connected to it; and I/O slot 46c has

20 a ROM on an adapter card connected to it. An arbitration control bus 42 couples the DMA controller 41 and
central arbitration unit 48 to I/O slots 46 and diskette adapter 82. Also connected to system bus 34 is a memory
control unit 50 which is comprised of a memory controller 52, an address multiplexer 54, and a data buffer 56.
Memory control unit 50 is further connected to a random access memory as represented by RAM module 58.
Memory controller 52 includes the logic for mapping addresses to and from CPU 26 to particular areas of RAM

25 58. While the microcomputer system 10 is shown with a basic 1 megabyte RAM module, it is understood that
additional memory can be interconnected as represented in Figure 2 by the optional memory modules 60
through 64.

A further buffer 66 is coupled between system bus 34 and a planar I/O bus 68. Planar I/O bus 68 includes
address, data, and control components respectively. Coupled along planar bus 68 are a variety of I/O adapters

30 and other peripheral components such as display adapter 70 (which is used to drive an optional display 14),
a clock 72, nonvolatile RAM 74 (hereinafter referred to as "NVRAM"), a RS232 adapter 76, a parallel adapter
78, a plurality of timers 80, a diskette adapter 82, a PC keyboard/mouse controller 84, and a read only memory
(ROM) 86. The ROM 86 includes BIOS which provides the user transparent communications between many
I/O devices.

35 Clock 72 is used for time of day calculations. NVRAM 74 is used to store system configuration data. That
is, the NVRAM will contain values which describe the present configuration of the system. For example,
NVRAM 74 contains information which describe the capacity of a fixed disk or diskette, the type of display,
the amount of memory, etc. Of particular importance, NVRAM 74 will contain data which is used to describe
the system console configuration; i.e., whether a PC keyboard is connected to the keyboard/mouse controller

40 84, a display controller is available or the ASCII terminal is connected to RS232 adapter 76. Furthermore, these
data are stored in NVRAM 74 whenever a special configuration program is executed. The purpose of the con-
figuration program is to store values characterizing the configuration of this system to NVRAM 76 which are
saved when power is removed from the system.

Connected to keyboard/mouse controller 84 are ports A and B. These ports are used to connect a PC key-
45 board (as opposed to an ASCII terminal) and mouse to the PC system. Coupled to RS232 adapter unit 76 is

an RS232 connector. An optional ASCII terminal can be coupled to the system through this connector.
Specifically, personal computer system 10 may be implemented utilizing any suitable computer such as

the IBM PS/2 computer or an IBM RISC SYSTEM/6000 computer, both products of International Business Ma-
chines Corporation, located in Armonk, New York. ("RISC SYSTEM/6000" and "PS/2" are trademarks of Inter-

so national Business Machines Corporation.)
An object encapsulates data and the methods needed to operate on that data. Objects can be represented

by a "doughnut diagram" such as illustrated in Figure 3 in accordance with a preferred embodiment of the pres-
ent invention. Object data 102 is depicted in the center of object 100 surrounded by applicable methods 104
to 114. Data 102 may be modified only by the methods of that object. Methods 104-114 are invoked by receiving

55 messages from other objects. Atypical object-oriented system will have a message router 116 that routes mes-
sages between objects. Thus, object 118 causes method 108 to be invoked by sending a message to message
router 116, which in turns sends the message to method 208 of object 100. Object 100 may be a persistent
object that has data stored externally in a Datastore (not shown).

4

EP 0 680 000 A1

Referring now to Figure 4, an illustration of components employed in supporting persistent objects in an
object-oriented system. Client 200 manipulates Persistent Object (PO) 202, which has a Persistent Identifier
(PID) 204 associated with it. Persistent Object Manager (POM) 206 provides an interface for PO 202's persis-
tence operations. Persistence Data Service (PDS) 208 receives requests from POM 206 and receives data

5 from PO 202 through Protocol 210. PDS 208 provides an interface to Datastore 212, which stores PO202's
data.

Previously, Client 200 sends a request to PO 202 to open Datastore 212. In response, PO 202 sends a
request to POM 206 to open Datastore 212. In turn, POM 206 opens Datastore 212, using PDS 208. After Da-
tastore 212 is opened and data from PO 202 would be sent to PDS 208 using Protocol 210. PDS 208 then

10 stores data in Datastore 212. Afterwards, Datastore 212 is closed. Data also could restored to PO 202 while
Datastore 212 using this procedure. In this prior art procedure, the open and close operations are defined in
the Persistent Object interface. Operations cannot be invoked before the target object is instantiated and can-
not be invoked after the object is de-instantiated. Also, if a second persistent object is accessing Datastore
212, each time PO 202 orthe second persistent object accesses Datastore 212, the Datastore must be opened

15 and closed.
Referring next to Figure 5, a diagram of components and their interactions in support object persistence

is illustrated in accordance with a preferred embodiment of the present invention. PID 204 is an instance of
Class Object 214. According to the present invention, Client 200 sends a request to open Datastore 212 to PID
204, instead of PO 202. PID 204 sends the request to Class Object 214, which includes a method to open Da-

20 tastore 212. Class Object 214 opens Datastore 212 directly in the depicted embodiment. Datastore 212 also
could be opened by Class Object 214 through a request to PDS 208. PID 204 includes open and close oper-
ations to open and close Datastore in accordance with a preferred embodiment of the present invention. Since
PID 204 accesses Datastore 212 by passing open and close requests from Client 200 to Class Object 214.
The opens and closes may be virtual and with the physical opens and closes being handled by Class Object

25 214. These features are hidden from the perspective of Client 200. "Datastore" is a generic term that refers
to a place where data is stored. A Datastore can be, for example, a relational database, an object-oriented da-
tabase, a record file, or a tape drive.

Turning now to Figure 6, a flow chart of a process to open a Datastore using a class object is depicted.
The class object receives a request from a PID to open a Datastore, as depicted in block 300. In response to

30 receiving the request to open a Datastore, a determination is made as to whether the Datastore is open, as
illustrated in block 302. If the Datastore is not open, the Datastore is opened, as depicted in block 304. This
step represents an actual or physical opening of the Datastore. A variable, COUNT, is set equal to zero, as
illustrated in block 306. Then, the COUNT is incremented by one, as depicted in block 308. Thereafter, the
class object returns a code to the PID indicating that the Datastore has been opened, as illustrated in block

35 310. In this case, the Datastore is physically opened.
Referring back to block 302, if the Datastore is already open, the process proceeds directly to block 308

and COUNT is incremented by one, as depicted in block 308. In this case, the process "virtually" opens the
Datastore, which is tracked by COUNT. The class object returns a code to the PID indicated that the Datastore
has been opened, as illustrated in block 310.

40 With reference to Figure 7, a flow chart of a process for closing a Datastore is illustrated in accordance
with a preferred embodiment of the present invention. The class object receives a request from a PID to close
a Datastore, as depicted in block 320. In response to receiving the request, the class object decrements
COUNT by one, as illustrated in block 322. Thereafter, a determination of whether the COUNT is equal to zero
is made, as depicted in block 324. If the COUNT is not equal to zero, the class object returns a code to the

45 PID, indicating that the Datastore has been closed. In this case, the Datastore has been virtually closed.
Referring again to block 324 if the COUNT is equal to zero, the class object closes the Datastore, as illu-

strated in block 328. The Datastore is physically closed. Thereafter, the class object returns a code to the PID,
indicating that the Datastore has been closed. The client object is told by the PID that the Datastore in closed
even of it is not according to the present invention.

so The processes depicted in Figures 5-7 may be implemented by those of ordinary skill in the art within the
data processing system depicted in Figures 1 and 2. The processes of the present invention also may be im-
plemented in a program storage device that is readable by a data processing system, wherein the program
storage device encodes data processing system executable instructions coding for the processes of the pres-
ent invention. The program storage device may take various forms including, for example, but not limited to a

55 hard disk drive, a floppy drive, an optical disk drive, a ROM, and an EPROM, which are known to those skilled
in the art. The processes on the program storage device are dormant until activated by using the program stor-
age device with the data processing system. For example, a hard drive containing data processing system
executable instructions for the present invention may be connected to a data processing system; a floppy disk

5

EP 0 680 000 A1

containing data processing system executable instructions for the present invention may be inserted into a flop-
py disk drive in the data processing system; or an ROM containing data processing system executable instruc-
tion for the present invention may be connected to the data processing system via a card or adapter connected
to an I/O slot.

5 An advantage of the present invention is that opens and closes by a PID may be virtual with the physical
connection to a Datastore being handled by the class object. Thus, performance is increased for client objects.
Appendix A illustrates an implementation of a client object using a PID to close and open Datastores of the
present invention.

Appendix B depicts the class definition and code for a PID and a PID class object that handles the opening
10 and closing of a Datastore. The class definitions are in CORBAIDL while the implementation of the class def-

initions are in C. CORBA is a trademark of Object Management Group, Inc. The implementation is for use with
IBM System Object Model, which is available from International Business Machines Corporation.

While the invention has been particularly shown and described with reference to a preferred embodiment,
it will be understood by those skilled in the art that various changes in form and detail may be made therein

15 without departing from the scope of the invention.

APPENDIX A

20

m a i n ()
{

PID p i d ;
P IDFac to ry p i d f a c t ;
Account a c c n t ;
boolean d o n e ;
s t r i ng accntNo ;

p idfact = P I D F a c t o r y N e w Q
pid = c r ea t e_PID_f rom_key (p idfac t , " P I D J D B 2 ")
accnt _ Accoun tNewQ ;

_ s e t _ d b a l i a s (p i d , "SAMPLE") ;
s e t _ u s e r i d (p i d , "Sher lock Ho lmes")
s e t _ p a s s w o r d (pid , "Pipe") ;

_ o p e n _ d a t a s t o r e (p i d) ;

done = FALSE;
45 while (!done) {

accntNo = r e a d A c c n t N u m b e r () ;
j ? u t _ s t r i n g _ i t e m (p i d , a c c n t N o) ;
_ r e s to r e (accnt , p i d) ;

so u p d a t e A c c o u n t (a c c n t) ;
_s tore (accnt , p i d) ;

) ;
/ * . . . * /

55 _c lo se_da t a s to r e (p id) ;

6

EP 0 680 000 A1

APPENDIX B

#ifndef o p s p i d _ i d l
fdef ine o p s p i d _ i d l

l inc lude <somobj . id l>

in te r face xxxPID : SOMObject {

a t t r i b u t e s t r i ng d a t a s t o r e _ t y p e ;

s t r i ng g e t _ P I D S t r i n g () ;

implementa t ion {

d a t a s t o r e _ t y p e : n o d a t a ;
r e l e a s e o r d e r : _ g e t _ d a t a s t o r e _ t y p e , _ s e t _ d a t a s t o r e _ t y p e ,

g e t _ P I D S t r i n g ;
};

};

#endif /* opspid_idl * /

ffitndet p i d _ d s _ i d l
^define p i d _ d s _ i d l

^include < o p s p i d . i d l >

/*
Forward D e c l a r a t i o n s .

* /
in terface xxxMemory Stream ;

/*
In te r face d e f i n i t i o n .

* /
in ter face xxxPID_DS : xxxPID {

/* Cons tan t d e c l a r a t i o n s .
* /

const char s t r i n g S e p =

* Method d e c l a r a t i o n s .
*/

EP 0 680 000 A1

void s e t _ P I D S t r i n g (m s t r ing buf fe r) ;

void up datePID Stream () ; /* be sure to over r ide * /
void r e a d F r o m P I D S t r e a m () ; /* be sure to over r ide * /

void o p e n _ d a t a s t o r e () ; /* client method * /
void c l o s e _ d a t a s t o r e () ; /* client method * /
void * g e t _ d a t a s t o r e _ h a n d l e () ; /* PDS/SM method * /

xxxMemorySt ream ge t_ s t r eam() ;

/* Implementa t ion s e c t i o n .
— */
implementa t ion {

/* D a t a .
*/

xxxMemoryS t ream stream ;
s t r i ng d a t a s t o r e _ t y p e ;

/* O v e r r i d e s .
* /

_ g e t _ d a t a s t o r e _ t y p e : o v e r r i d e ;
_ s e t _ d a t a s t o r e _ t y p e : o v e r r i d e ;
g e t P I D S t r i n g : o v e r r i d e ;

somlnit: o v e r r i d e ;
somUninit : o v e r r i d e ;

/* A d m i n i s t r i v i a .
- - */
r e l e a s e o r d e r : s e t _ P I D S t r i n g , u p d a t e P I D S t r e a m ,

r eadFromPIDSt ream ,
get s t ream, o p e n _ d a t a s t o r e , c l o s e _ d a t a s t o r e ,

g e t _ d a t a s t o r e _ h a n d l e ;
};

};

l end i f /* p id_ds_idl * /

firndet m p i d _ d s _ i d l
^define m p i d _ d s _ i d l

EP 0 680 000 A1

ffinciuae ^somcis . m i ?
#include < p i d _ d s . i d l >

in te r face xxxM_PID_DS : SOMClass {

s t ruc t en t ry {
void * k e y ;
long count ;
void * c o n n e c t i o n _ h a n d l e ;

>;
const long maxElements = 20;

void o p e n _ d a t a s t o r e (i n xxxPID_DS p i d) ;
void c l o s e _ d a t a s t o r e (i n xxxPID_DS p i d) ;
void * g e t _ d a t a s t o r e _ h a n d l e (i n xxxPID_DS pid) ;

void *connec t_ to_ds (i n xxxPID_DS pid) ; /* to b e
ave r r iden * /

void d i s c o n n e c t _ f r o m _ d s (i n xxxPID DS pid) ; /* to b e
ave r r iden */

void *p id_ to_key(in xxxPID_DS pid) ; /* to b e
ave r r iden * /

boolean compare_key (in void *keyl , in void *key2) ; /* to b e
ave r r iden */

/* Pr iva te M e t h o d s .
* /

boolean f i n d _ c o n n e c t i o n (i n void *key, out long en t ry) ;
long a d d _ e n t r y (i n void *key, in void *connec t i on_hand l e) ;
void d e l e t e _ e n t r y (i n void * k e y) ;

/* D e b u g g i n g M e t h o d s .
" * /
void dump_connec t i onTab l e (in void *output) ;

implementat ion {

/* Data M e m b e r s .
* /

en t ry connec t ionTab le [maxElements] ;
long nEnt r ies ;
long latch; /* get type r ight later * /

/* O v e r r i d e s .
* /

somlnit: o v e r r i d e ;
somUninit: o v e r r i d e ;

tr U b»U UUU Al

/T /vaminisxrivia .
* /

r e l e a s e o r d e r : o p e n _ d a t a s t o r e , c lo se_da ta s to re ,
g e t _ d a t a s t o r e _ h a n d l e ,

connec t_ to_ds , d i sconnec t_ f rom_ds , p i d _ t o _ k e y ,
compare_key ,

f i n d c o n n e c t i o n , a d d _ e n t r y , delete e n t r y ,
d u m p _ c o n n e c t i o n T a b l e ;

};
};

#endif /* mpid_ds_idl * /

fue i ine xxxivi_FiD_.ufc>_uiass_Source
#define S O M C l a s s _ C l a s s _ S o u r c e

#include < s t d i o . h >
#include < p i d _ d s . h >
#include < m p i d _ d s . i h >

/*

Method: o p e n _ d a t a s t o r e
Purpose : implements the connect logic common to all d a t a s t o r e

y p e s
Called by: P I D D S

*/

SOM_Scope void SOMLINK o p e n _ d a t a s t o r e (x x x M _ P I D _ D S
;omSelf ,

Envi ronment * e v ,
xxxPID_DS p i d)

{
void *key; /* key e x t r a c t e d from the PID */
long index; /* connect ion table index * /
void *connec t ion_hand le ; /* connect ion handle * /

/* Set u p .
* /

j

EP 0 680 000 A1

x x x M _ F i u _ u t . j j a t a "somThis = xxxM_PID_DSGetDa ta (somSe l f) ;

xxxM_PID_DSMethodDebug("xxxM_PID_DS" , " o p e n _ d a t a s t o r e ") ;
p r in t f (" m p i d d s : : o p e n _ d a t a s t o r e \ n ") ;

/* Latch connect ion t a b l e .
" */

/* Get the da t a s to re key from the P ID .
- - * /

key = _p id_ to_key(somSe l f , ev, pid) ; /* allocate memory f o r
key * /

p r in t f (" > key = %s\n", (char *) k e y) ;

if (_ f i nd_connec t i on (somSe l f , ev, key, &index)) {

_connec t ionTab le [index] . count++ ;
p r in t f (" > KEY FOUND\n") ;

} else {

p r in t f (" > KEY NOT FOUND \ n") ;
c o n n e c t i o n j i a n d l e = _ c o n n e c t _ t o _ d s (s o m S e l f , ev, p i d) ;
index = a d d _ e n t r y (s o m S e l f , ev, key, c o n n e c t i o n j i a n d l e) ;

connec t ionTab le [index] . count++ ;

} /* endif * /

/* Unlatch connect ion t a b l e .
* /

/* Free r e s s o u r c e s and r e t u r n .
" * /
S O M F r e e (k e y) ;
SOMFree(c o n n e c t i o n j i a n d l e) ;

_ d u m p _ c o n n e c t i o n T a b l e (s o m S e l f , ev, s t d o u t) ;
r e t u r n ;

}

/*

K************************^

Method : c l o s e _ d a t a s t o r e
Purpose : implements the d i sconnec t logic common to al l

i a t a s t o r e s

i

fcK U OBU UUU Al

^ai isu uy ; f l u j j o

sjc sfc s|c 3|c *jc s|c s|c
* /
SOM_Scope void SOMLINK c l o s e _ d a t a s t o r e (x x x M _ P I D _ D S

somSelf, ~

Envi ronment * e v ,
xxxPID DS p i d)

{
/* Variable D e c l a r a t i o n s .

- * /
void * k e y ;
long e n t r y ;

/* Set u p .
* /

xxxM_PID_DSData *somThis = xxxM_PID_DSGetDa ta (somSel f) ;

xxxM_PID_DSMethodDebug("xxxM_PID_DS" , " c lo se_da t a s to r e ") ;
p r in t f ("mpid_ds: : c l o s e _ d a t a s t o r e \ n ") ;

/* Latch connect ion t a b l e
- */

/* Get the da ta s to re key from the PID
- */

key = _p id_ to_key(somSe l f , ev, pid) ; /* allocate memory f o r
tey * /

if (_ f i nd_connec t i on (somSe l f , ev, key, &ent ry)) {
_connec t ionTab le [en t ry] . count- - ;
if (_connec t ionTab le [en t ry] .count 0) {

_ d i s c o n n e c t _ f r o m _ d s (s o m S e l f , ev, p i d) ;
d e l e t e _ e n t r y (s o m S e l f , ev, k e y) ;

}
}

un ia icn connect ion t a o i e
*/

* Free r e s s o u r c e s and r e t u r n .
*/

SOMFree(key) ;

_ d u m p _ c o n n e c t i o n T a b l e (s o m S e l f , ev, s t d o u t) ;
r e t u r n ;

EP 0 680 000 A1

r

*********************************^

Method : g e t _ d a t a s t o r e _ h a n d l e
Pu rpose : r e t u r n s the da ta s to re connect ion h a n d l e

Called by: PDS

*******************************^

*l
SOM_Scope void* SOMLINK g e t _ d a t a s t o r e _ h a n d l e (x x x M _ P I D _ D S

somSelf ,
Envi ronment * e v ,
xxxPID_DS p i d)

{
/* Variable D e c l a r a t i o n s .

* /
void * k e y ;
long e n t r y ;

/* S e t u p .
* /

xxxM_PID_DSData *somThis = xxxM_PID_DSGetDa ta (somSe l f) ;

xxxM_PID_DSMethodDebug("xxxM_PID_DS" , " g e t _ d a t a s t o r e _ h a n d l
) J

p r in t f ("mpid_ds : : g e t _ d a t a s t o r e _ h a n d l e \ n ") ;

/* lookup the connect ion t a b l e .
* /

key = _p id_ to_key(somSe l f , ev, p i d) ;
if (! _ f i n d _ c o n n e c t i o n (s o m S e l f , ev, key, & e n t r y))

/* r e t u r n an except ion */

* Keturn connect ion handle .
- * /

r e t u r n (_connec t ionTab le pentrya . connec t i on_hand l e) ;

*

3

EP 0 680 000 A1

**tm*
3fc sfc s|e s|e s|c sfc

Method: c o m p a r e _ k e y
Purpose : compares 2 connect ion k e y s

Called by: o p e n _ d a t a s t o r e , c l o s e _ d a t a s t o r e
O v e r r i d e n : Yes

**

*/
SOM_Scope boolean SOMLINK c o m p a r e _ k e y (x x x M _ P I D _ D S

somSelf ,
Envi ronment * e v ,
void* k e y l ,
void* key 2)

{
/* Set u p .

*/
xxxM_PID_DSData *somThis = xxxM_PID_DSGetDa ta (somSe l f) ;
xxxM_PID_DSMethodDebug("xxxM_PID_DS" , " compare_key") ;
p r in t f ("mpid_ds : : c o m p a r e _ k e y \ n ") ;

/* Re tu rn s ta tement to be cus tomized: */
r e t u r n ;

}

/*

Method: c o n n e c t _ t o _ d s
Pu rpose : da t a s to re specific connect ion c o d e

Called by: open d a t a s t o r e
O v e r r i d e n : Yes

*/
SOM_Scope void* SOMLINK c o n n e c t _ t o _ d s (x x x M _ P I D _ D S

somSelf ,
Envi ronment * e v ,
xxxPID_DS p i d)

{
/* Set u p .

*/
xxxM_PID_DSData *somThis = xxxM_PID_DSGetDa ta (somSe l f) ;
xxxM_PID_DSMethodDebug("xxxM_PID_DS" , " c o n n e c t _ t o _ d s ") ;

4

EP 0 680 000 A1

pr in t f ("mpid ds: : c o n n e c t _ t o _ d s \ n ") ;

/* Re turn s ta tement to be customized: * /
r e t u r n ;

}

/*

Method: d i s c o n n e c t _ f r o m _ d s

Purpose : da tas to re specific d i sconnect code
Called by: c l o s e _ d a t a s t o r e
O v e r r i d e n : Yes

*/
SOM_Scope void SOMLINK d i s c o n n e c t _ f r o m _ d s (x x x M _ P I D _ D S

somSelf ,
Envi ronment * e v ,
xxxPID_DS p i d)

{
xxxM_PID_DSData *somThis = xxxM PID D SGetData(somSelf) ;

xxxM_PID_DSMethodDebug("xxxM_PID_DS" , " d i s c o n n e c t _ f r o m _ d s "
) ;

p r in t f ("mpid: : d i s c o n n e c t _ f r o m _ d s \ n ") ;
>

/*

Method: pid to k e y
Purpose : Ex t rac t s the da tas to re key from the PID

Called b y :
O v e r r i d e n : Yes

*/
SOM_Scope void* SOMLINK p id_ to_key(xxxM_PID_DS somSelf ,

Environment * e v ,
xxxPID_DS p i d)

{
xxxM_PID_DSData *somThis = xxxM_PID_DSGetData (somSel f) ;
xxxM_PID_DSMethodDebug("xxxM_PID_DS" , "p id_ to_key") ;

15

EP 0 680 000 A1

p r in t f ("mpid : : p id_to_key \n") ;

/* Re tu rn s ta tement to be cus tomized: * /
r e t u r n ;

}

/*

Method : f i n d _ c o n n e c t i o n
Purpose : Search a key in the connec t ionTab le .
Ou tpu t : Re tu rns success (1) or failure (0). If s u c c e s s f u l ,

i n i t i a l i z e s
en t ry with the connec t ionTab le index where key w a s

found .
Called by: o p e n _ d a t a s t o r e , c l o s e _ d a t a s t o r e
O v e r r i d e n : No

* /
SOM_Scope boolean SOMLINK f i n d _ c o n n e c t i o n (x x x M _ P I D _ D S

somSel f ,
Envi ronment * e v ,
void* k e y ,
long* i n d e x)

{
/* Variable D e c l a r a t i o n s .

- * /
boolean m a t c h ;
long n ;

/* S e t u p .
* /

xxxM_PID_DSData *somThis = xxxM_PID_DSGetData (somSelf) ;

xxxM_PID_DSMethodDebug("xxxM_PID_DS" , " f i n d _ c o n n e c t i o n ") ;
p r i n t f (" m p i d _ d s : : f i n d _ c o n n e c t i o n \ n ") ;
p r in t f (" > input key = %s\n", (char *) k e y) ;

/* Find k e y .
- */

match = FALSE;
for (n=0; n < maxElements; n++) {

16

EP 0 680 000 A1

if (_compare_key (somSelf, ev, k e y ,
_connec t ionTab le [n] . key)) {

match = T R U E ;
*index = n ;
p r in t f (" > r e t u r n e d index = %ld\n", * i n d e x) ;
b r e a k ;

} /* endif * /

} /* end for * /

/* D o n e .
* /

p r i n t f (" > match = %ld\n", m a t c h) ;
r e t u r n (match) ;

}

/*

Method: a d d _ e n t r y
Purpose : Add an en t ry in the f irst available slot in

connec t i onTab le .
Outpu t : R e t u r n s index into connec t ionTab le where key w a s

added .
Called by: o p e n _ d a t a s t o r e
O v e r r i d e n : No

*/
SOM_Scope long SOMLINK a d d _ e n t r y (x x x M _ P I D _ D S somSe l f ,

Envi ronment * e v ,
void* k e y ,
void* c o n n e c t i o n j i a n d l e)

{
/* Variable D e c l a r a t i o n s .

* /
long index ;
en t ry * c t e ;

/* S e t u p .
* /

xxxM_PID_DSData *somThis = xxxM_PID_DSGetData (somSelf) ;
xxxM_PID_DSMethodDebug("xxxM_PID_DSM , " a d d _ e n t r y ") ;
p r in t f ("mpid_ds: : a d d _ e n t r y \ n ") ;

/* Find f irst available en t ry in the connec t ion T a b l e .
* /

I7

EP 0 680 000 A1

ir t j i u n t r i e s maxElements) {

for (index = 0; index < maxElements; index++) {

if (_connec t ionTab le [index] .key == NULL) {

_connec t ionTab le [i ndex] , key = S O M M a l l o c (s t r l e n (k e y)
+ l) ;

s t r c p y (_ c o n n e c t i o n T a b l e [index] .key, key) ;
p r in t f (" > key = %s \n" ,

connec t ionTab le [index] .key) ;

_connec t ionTab le pindexa . count = 0;
p r in t f (" > count = %s \n" ,

connec t ionTab le [index] .count) ;

_connec t ionTab le pindexa . connec t ion_hand le =
SOMMalloc(str len(c o n n e c t i o n j i a n d l e) + 1) ;

s t r c p y (_ c o n n e c t i o n T a b l e [index] . c o n n e c t i o n j i a n d l e ,
c o n n e c t i o n j i a n d l e) ;

p r in t f (" > handle = %s \n" ,
_connec t ionTab le pindexa . c o n n e c t i o n j i a n d l e) ;

_nEntr ies++ ;
b r e a k ;

}
} /* end for */

} else {

/* r e t u r n an except ion: connect ion table is full * /
p r in t f (" > CONNECTION TABLE FULL\n") ;

} /* endif */

/* D o n e .
* /

p r in t f (" > r e t u r n e d index = %d\n", i n d e x) ;
r e t u r n (index) ;

}

/*

t**

Method: d e l e t e _ e n t r y
Purpose : Removes an en t ry from the c o n n e c t i o n T a b l e .
Ou tpu t : None

Called by: c l o s e _ d a t a s t o r e

18

EP 0 680 000 A1

O v e r r i d e n : No

**********************************^

*/
SOM_Scope void SOMLINK d e l e t e _ e n t r y (x x x M _ P I D _ D S somSe l f ,

Envi ronment * e v ,
void* k e y)

{
/* Variable D e c l a r a t i o n s .

- * /
long index; /* index into the connect ion table * /
en t ry *cte; /* po in ter to a connect ion table en t ry * /

/* S e t u p .
* /

xxxM_PID_DSData *somThis = xxxM_PID_DSGetData(somSelf) ;
xxxM_PID_DSMethodDebug("xxxM_PID_DS" , " d e l e t e _ e n t r y ") ;
p r in t f ("mpid_ds: : d e l e t e _ e n t r y \ n ") ;

/* Delete en t ry from the connect ion t a b l e .
- — */

for (index = 0; index < maxElements; index++) {

if (_compare_key(somSelf, e v ,
_connec t ionTab le [index] . key , key)) {

cte = &_connect ionTable [index] ;
c te ->key = NULL;
c te ->count = 0;
c t e - > c o n n e c t i o n _ h a n d l e = NULL;

S O M F r e e (c t e - > k e y) ;
SOMFree (c t e - > c o n n e c t i o n _ h a n d l e) ;

_nEnt r i es — ;
b r e a k ;

} /* endif * /
} /* end for * /

p r in t f (" > deleted index = %d\n", i n d e x) ;
}

I*

19

EP 0 680 000 A1

it (_nEnt r i es < maxElements) {

for (index = 0; index < maxElements; index++) {

if (_connec t ionTab le [index] .key == NULL) {

_connec t ionTab le [index] , key = S O M M a l l o c (s t r l e n (k e y)
+ l) ;

s t r c p y (_ c o n n e c t i o n T a b l e [i n d e x] .key, key) ;
p r in t f (" > key = %s \n" ,

_connec t ionTab le [index] .key) ;

_connec t ionTab le pindexa. count = 0;
p r i n t f (" > count = % s \ n " ,

connec t ionTab le [index] .count) ;

_connec t ionTab le pindexa . connec t ion_hand le =
SOMMalloc(s t r len(c o n n e c t i o n j i a n d l e) + 1) ;

s t r c p y (connec t ionTab le [index] . c o n n e c t i o n j i a n d l e ,
c o n n e c t i o n j i a n d l e) ;

p r in t f (" > handle = % s \ n " ,
_connec t i onTab le pindexa. c o n n e c t i o n j i a n d l e) ;

_nEntr ies++ ;
b r e a k ;

}
} /* end for * /

} else {

/* r e t u r n an except ion: connect ion table is full * /
p r in t f (" > CONNECTION TABLE FULL\n") ;

} /* endif */

/* D o n e .
* /

p r i n t f (" > r e t u r n e d index = %d\n", i n d e x) ;
r e t u r n (index) ;

}

/*

***************************^

Method: d e l e t e _ e n t r y
Pu rpose : Removes an en t ry from the c o n n e c t i o n T a b l e .
Ou tpu t : None

Called by: c l o s e _ d a t a s t o r e

!0

EP 0 680 000 A1

" " « " " " * * * * « *

*/
SOM_Scope void SOMLINK somIni t (xxxM_PID_DS somSel f)
{
/* Variable D e c l a r a t i o n s .

- - * /
long n ;
en t ry cte; /* connect ion table en t ry * /

/* Set u p .
* /

xxxM_PID_DSData *somThis = xxxM_PID_DSGetData (somSelf) ;
x x x M _ P I D _ D S M e t h o d D e b u g (" x x x M _ P I D _ D S " , " s o m I n i t ") ;
p r i n t f (" m p i d _ d s : : somIn i t \n") ;

xxxM_PID_DS_paren t_SOMClass_somIni t (somSelf) ;

/* Init ializes connect ion t a b l e .
- * /

nEnt r ies = 0;
for (n=0; n < maxElements; n++) {

_ c o n n e c t i o n T a b l e [n] .key = NULL;
_ c o n n e c t i o n T a b l e [n] .count = 0;
_ c o n n e c t i o n T a b l e [n] . c o n n e c t i o n j i a n d l e = NULL;

>
>

/*

Method: somUnin i t
Pu rpose : Frees up r e s s o u r c e s

it******
*/
SOM_Scope void SOMLINK somUnini t (xxxM_PID_DS somSel f)
{

/* Variable D e c l a r a t i o n s .
— — - * /
long n ;
en t ry *cte; /* poin ter to a connect ion table en t ry * /

/* Set u p .

!1

EP 0 680 000 A1

Wf
xxxM_PID_DSData *somThis = xxxM_PID_DSGetData(somSelf) ;
xxxM PID D SMethodDebug (" xxxM_PID_D S " , " somUninit ") ;
pr in t f (" m p i d d s : : somUnini t \n") ;

/* Free connection t ab l e .
*/

for (n=0; n < maxElements; n++) {
cte = &_connect ionTable[n] ;
if (c te->key != NULL) {

SOMFree(cte->key) ;
SOMFree (cte-> connect ion_handle) ;

) /* endif */
}

xxxM_PID_DS_parent_SOMClass_somUnini t (somSelf) ;

fderine x x x P l D _ C l a s s _ S o u r c e
^include <opsp id . ih>

C*9iC3)(**]fe
Method: g e t d a t a s t o r e t y p e

Purpose: gets the da tas tore type for this PID
Over r iden : YES - this is overr iden by the PID_DS

:******************************^

*/
SOM_Scope s t r ing SOMLINK _ge t_da t a s to r e_ type (x x x P I D
iomSelf ,

Environment *ev)
{
/* xxxPIDData *somThis = xxxPIDGetData (somSelf) ; */

xxxPIDMethodDebug("xxxPID" , "_ge t_da t a s to r e_ type") ;

2

tr U b»U UUU Al

/ n e i u r n sxaxement to be customized: * /
r e t u r n ;

}

/*

********************************^^

Method : _ s e t _ d a t a s t o r e _ t y p e
Purpose : sets the da ta s to re type for this PID

O v e r r i d e n : YES - this is ove r r i den by the PID_DS

***^^

*j
SOM_Scope void SOMLINK _ s e t _ d a t a s t o r e _ t y p e (xxxPID somSe l f ,

Environment * e v ,
s t r ing d a t a s t o r e _ t y p e)

/* xxxPIDData *somThis = xxxPIDGetDa ta (somSelf) ; * /
x x x P I D M e t h o d D e b u g ("xxxPID" , " _ s e t _ d a t a s t o r e _ t y p e ") ;

}

/*

"ft1************** ******* ************************************£££
K******

Method: g e t _ P I D S t r i n g
Pu rpose : gets the PID in a s t r ing f o r m a t

O v e r r i d e n : YES - this is ove r r i den by the PID_DS

k**^^
|e******
* /
SOM_Scope s t r ing SOMLINK g e t _ P I D S t r i n g (x x x P I D somSe l f ,
Environment *ev)
{
/* xxxPIDData *somThis = xxxPIDGetDa ta (somSelf) ; * /

x x x P I D M e t h o d D e b u g ("xxxPID" , " g e t _ P I D S t r i n g ") ;

/* Re tu rn s ta tement to be customized: * /
r e t u r n ;

}

s

EP 0 680 000 A1

ffdefine x x x P I D _ D S _ C l a s s _ S o u r c e
#include < s t d i o . h >
#include < p i d _ d s . i h >
#include < m p i d _ d s . h >
#include < s t r e a m . h >
#include < m e m s t r m . h >

/*

Method: s e t P I D S t r i n g
Purpose : Take a s t r ing and reset the PID

Called by: PID F a c t o r y

* /
SOM_Scope void SOMLINK s e t _ P I D S t r i n g (x x x P I D _ D S somSe l f ,

Env i ronmen t * e v ,
s t r ing b u f f e r)

{
/* Set u p .

* /
xxxPID_DSData *somThis = x x x P I D _ D S G e t D a t a (s o m S e l f) ;
long l e n g t h ;
long n ;
x x x P I D _ D S M e t h o d D e b u g (" x x x P I D _ D S " , " s e t _ P I D S t r i n g ") ;

/* Replace s t r i ng s e p e r a t o r cha rac to r by NULLS.
" * /
p r in t f ("p id_ds : : s e t _ P I D S t r i n g : Replace s e p a r a t o r b y

NULL\n") ;
l ength = s t r l e n (b u f f e r) + 1;
for (n=0; n<=length; n++) {

if (* (b u f f e r + n) == xxxPID DS s t r i n g S e p) * (b u f f e r + n) = *\0 ' ;
}

/* Set s t r e a m .
*/

p r i n t f ("p id_ds : : s e t _ P I D S t r i n g : call _ s e t _ b u f f e r \ n ") ;
_ s e t _ b u f f e r (_ s t r e a m , ev, bu f f e r , l e n g t h) ;
p r i n t f (" p i d _ d s : : s e t _ P I D S t r i n g : call _ r e a d F r o m P I D S t r e a m \ n ") ;
_ r e a d F r o m P I D S t r e a m (somSelf , e v) ;

}

/*

24

EP 0 680 000 A1

Method : u p d a t e P I D S t r e a m
Pu rpose : Add this level's data to the PID s t r e a m

Should be o v e r r i d e n by der ived c l a s s e s
Called by: g e t _ P I D S t r i n g

*/
SOM_Scope void SOMLINK u p d a t e P I D S t r e a m (x x x P I D _ D S s o m S e l f ,

Env i ronment *ev)
{
/* Set u p .

* /
xxxPID_DSData *somThis = xxxPID_DSGetDa ta (somSelf) ;
s t r i n g c l a s s N a m e ;
x x x P I D _ D S M e t h o d D e b u g (" x x x P I D _ D S " / ' u p d a t e P I D S t r e a m ") ;

/* Add class of P ID .
*/

className = somGetClassName (somSelf) ;
_ p u t _ s t r i n g _ i t e m (_ s t r e a m , ev, c l a s s N a m e) ;
SOMFree(className) ;

/* Add d a t a s t o r e _ t y p e of P ID.
*/

_ p u t _ s t r i n g _ i t e m (_ s t r e a m , ev, _ d a t a s t o r e _ t y p e) ;
>

/*

Method: r e a d F r o m P I D S t r e a m
Purpose : Read this level's data from the PID s t r e a m

Should be o v e r r i d e n by der ived c l a s s e s
Called by: g e t _ P I D S t r i n g

*/
SOM_Scope void SOMLINK r e a d F r o m P I D S t r e a m (x x x P I D _ D S

somSel f ,
Envi ronment *ev)

{
/* Set u p .

25

EP 0 680 000 A1

*/
xxxPID_DSData *somThis = xxxPID_DSGetDa ta (somSelf) ;
s t r ing c l a s sName ;
s t r ing d s T y p e ;
x x x P I D _ D S M e t h o d D e b u g (" x x x P I D _ D S " , " r e a d F r o m P I D S t r e a m ") ;

/* Get class of P ID.
*/

className = _ g e t _ s t r i n g _ i t e m (_ s t r e a m , e v) ;
SOMFree(className) ;

/* Get d a t a s t o r e t y p e of P ID.
*/

d sType = _ g e t _ s t r i n g _ i t e m (_ s t r e a m , e v) ;
_ s e t _ d a t a s t o r e _ t y p e (somSelf, ev, d s T y p e) ;
SOMFree(d s T y p e) ;

>

/*

Method: o p e n _ d a t a s t o r e
Purpose : Do a logical open on the PID

Called by: c l i en t

* l
SOM_Scope void SOMLINK o p e n _ d a t a s t o r e (x x x P I D _ D S somSe l f ,

Envi ronment *ev)
{
/* Set u p .

*/
xxxPID DSData *somThis = xxxPID DSGetDataf somSelf) ;
xxxM_PID_DS c l a s s O b j ;
x x x P I D _ D S M e t h o d D e b u g (" x x x P I D _ D S " , " o p e n _ d a t a s t o r e ") ;

/* P a s s t h r u .
* /

p r in t f ("p id_ds : : o p e n _ d a t a s t o r e \ n ") ;
classObj = _somGetClass (somSelf) ;
x x x M _ P I D _ D S _ o p e n _ d a t a s t o r e (c lassObj, ev, s o m S e l f) ;

>

I*

26

EP 0 680 000 A1

Method : c l o s e _ d a t a s t o r e
Purpose : Do a logical close on the PID

Called by: C l i en t

* l
SOM_Scope void SOMLINK c l o s e _ d a t a s t o r e (x x x P I D _ D S somSe l f ,

Env i ronment * e v)
{
/* Set u p .

* /
xxxPID DSData *somThis = xxxPID_DSGetDa ta (somSelf) ;
xxxM PID DS c l a s s O b j ;
x x x P I D _ D S M e t h o d D e b u g (" x x x P I D _ D S " , " c l o s e _ d a t a s t o r e ") ;

/* P a s s t h r u .
* /

p r in t f ("pid_ds : : c l o s e _ d a t a s t o r e \ n ") ;
classObj = _somGetClass (somSelf) ;
xxxM_PID_DS_c lose_da t a s to re (c lassObj , ev, s o m S e l f) ;

>

/*

Method : g e t _ d a t a s t o r e _ h a n d l e

Purpose : Get the da ta s to re handle from the meta c l a s s
Called by: PDS

* l
SOM_Scope void* SOMLINK g e t _ d a t a s t o r e _ h a n d l e (x x x P I D _ D S

somSe l f ,
Envi ronment *ev)

{
/* Set u p .

* /
xxxPID_DSData *somThis = x x x P I D _ D S G e t D a t a (s o m S e l f) ;
void * h a n d l e ;
xxxM_PID_DS c l a s s O b j ;

x x x P I D _ D S M e t h o d D e b u g (" x x x P I D _ D S " , " g e t _ d a t a s t o r e _ h a n d l e ") ;

27

EP 0 680 000 A1

/* P a s s t h r u .
* /

classObj = _somGetClass (somSelf) ;
handle = x x x M _ P I D _ D S _ g e t _ d a t a s t o r e _ h a n d l e (c lassObj , e v ,

somSelf) ;
r e t u r n h a n d l e ;

>

/*

**

Method: g e t _ s t r e a m
Purpose : Get the s tream used for r ead ing and wr i t ing t o .

Called by: O v e r r i d e n vers ions of u p d a t e P I D S t r e a m

*/
SOM_Scope xxxMemorySt ream SOMLINK g e t _ s t r e a m (x x x P I D _ D S

somSel f ,
Envi ronment * e v)

{
xxxPID_DSData *somThis = xxxPID_DSGetDa ta (somSelf) ;
x x x P I D _ D S M e t h o d D e b u g (" x x x P I D _ D S " , "ge t_s t r eam") ;

r e t u r n _s t ream ;
}

/*

Method : _ g e t _ d a t a s t o r e _ t y p e
Purpose : gets the data store for this PID

Called by: POM

* /
SOM_Scope s t r i ng SOMLINK _ g e t _ d a t a s t o r e _ t y p e (x x x P I D _ D S

somSe l f ,
Envi ronment * e v)

{
xxxPID_DSData *somThis = x x x P I D _ D S G e t D a t a (s o m S e l f) ;

x x x P I D _ D S M e t h o d D e b u g (" x x x P I D _ D S " , " _ g e t _ d a t a s t o r e _ t y p e ") ;
r e t u r n _ d a t a s t o r e _ t y p e ;

>

!8

fcK U OBU UUU Al

Method : _ s e t _ d a t a s t o r e _ t y p e
Purpose : sets the data store for this PID

Called by: client or f a c t o r y

**********************************+######^#######+###+###j|(j|(!|t+j|t
sjc sjc s|c s)c sjc i)c sfc
*/
SOM Scope void SOMLINK _ s e t _ d a t a s t o r e _ t y p e (x x x P I D _ D S

somSelf ,
Envi ronment * e v ,

s t r ing d a t a s t o r e _ t y p e)

/* Set u p .
* /

xxxPID_DSData *somThis = x x x P I D _ D S G e t D a t a (s o m S e l f) ;
long l e n g t h ;

K x x P I D _ D S M e t h o d D e b u g (" x x x P I D _ D S " , " _ s e t _ d a t a s t o r e _ t y p e ") ;

/* Allocate and r e t u r n .
*/

if (_ d a t a s t o r e _ t y p e) S O M F r e e (_ d a t a s t o r e _ t y p e) ;

length = s t r l e n (d a t a s t o r e _ t y p e) + 1;
_ d a t a s t o r e _ t y p e = SOMMalloc (length) ;
s t r c p y (_ d a t a s t o r e _ t y p e , d a t a s t o r e _ t y p e) ;

>

/*

|c**********************************#####^####++##^#########)|(s|!

Method: g e t _ P I D S t r i n g
Purpose : get the PID in a s t r ing f o r m a t

Called by: c l i en t

|c 3j(3|C ĵC 3|C
*/
SOM_Scope s t r ing SOMLINK g e t _ P I D S t r i n g (x x x P I D _ D S somSe l f ,
Environment *ev)
{
/* Set u p .

* /
xxxPID_DSData *somThis = xxxPID_DSGetDa ta (s o m S e l f) ;

tr U b»U UUU Al

s t r i ng r e s u l t ;
long l e n g t h ;
long n ;
x x x P I D _ D S M e t h o d D e b u g (" x x x P I D _ D S " , " g e t _ P I D S t r i n g ") ;

/* Get s t r e a m .
* /

_ r e s e t (_ s t r e a m , e v) ;
_ u p d a t e P I D S t r e a m (s o m S e l f , ev) ;
resul t = _ g e t _ b u f f e r (s t ream, e v) ;

/* Replace s t r ing nulls by s t r ing s e p e r a t o r .
* /

length = _ g e t _ l e n g t h (_ s t r e a m , e v) ;
for (n=0; n<=length; n++) {

if (* (r e su l t+n) == ' \0') * (resu l t+n) = xxxPID DS s t r i n g S e p ;

/* Replace t ra i l ing s t r ing s e p e r a t o r s by n u l l s .
» /

n = l e n g t h ;
for (; ;) {

if (* (r e su l t+n) ! = x x x P I D _ D S _ s t r i n g S e p) {
b reak ;

>
* (r e su l t+n) = ' \ 0 ' ;
n— ;

}
r e t u r n r e s u l t ;

}

/*

*****************************^^
<******

Method: s o m l n i t
Pu rpose : Initialize o b j e c t

Called by: som run t ime

***************************^^

*l
SOM_Scope void SOMLINK somlnit (xxxPID_DS somSel f)
{
/* Set u p .

" * /
xxxPID_DSData *somThis = x x x P I D _ D S G e t D a t a (s o m S e l f) ;
Env i ronment * e v ;
x x x P I D _ D S M e t h o d D e b u g ("xxxPID_DS" , "somlnit") ;
x x x P I D _ D S _ p a r e n t _ x x x P I D _ s o m I n i t (s o m S e l f) ;

EP 0 680 000 A1

ev = bOM_Crea teLoca lEnvi ronment () ;

/* Initialize our d a t a .
* ,

_ d a t a s t o r e _ t y p e = 0;
_ s e t _ d a t a s t o r e _ t y p e (somSelf, ev, " U n k n o w n ") ;
_stream = xxxMemorySt reamNewQ ;

/* F i n i s h e d .
* /

SOM_Dest royLocalEnvi ronment (ev) ;

}

/*

Method: somUnin i t
Purpose : Free object r e s o u r c e s

Called by: som Run Time

*/
SOM_Scope void SOMLINK somUninit (xxxPID_DS somSelf)
{
/* Set u p .

* /
xxxPID_DSData *somThis = xxxPID_DSGetDa ta (somSe l f) ;
x x x P I D _ D S M e t h o d D e b u g (" x x x P I D _ D S " , "somUninit") ;

/* Free object r e s o u r c e s .
- */

SOMFree(da tas to re type) ;
_ somFree (_s t r eam) ;
x x x P I D _ D S _ p a r e n t _ x x x P I D _ s o m U n i n i t (s o m S e l f) ;

)

;iaims

I. A method for accessing a Datastore in a data processing system with an object-oriented environment,
wherein said data processing system includes an object and an identification object, wherein said iden-
tification object is within a class object, said method comprising the data processing system implemented

11

EP 0 680 000 A1

steps of:
receiving a request to open said Datastore at said identification object;
sending said request from said identification object to said class object in response to receiving

said request;
determining whether said Datastore is open in response to receiving said request at said class ob-

ject;
opening said Datastore in response to determination of said Datastore being closed and sending

a message to said identification object indicating that said Datastore has been opened;
sending a message to said identification object indicating that said Datastore has been opened in

response to a determination that said Datastore is open.

A method as claimed in claim 1 further comprising:
receiving a request to close said Datastore at said identification object;
sending said request from said identification object to said class object in response to receiving

said request at said identification object;
determining whether other objects require said Datastore to remain open;
closing said Datastore in response to a determination that a requirement that said Datastore remain

open is absent; and
sending a message to said identification object indicating that said Datastore has been closed.

A data processing system having an object-oriented environment, wherein said data processing system
includes an object and an identification object, wherein said identification object is within a class object,
said data processing system comprising:

reception means for receiving a request to open a Datastore at said identification object;
first sending means for sending said request from said identification object to said class object in

response to receiving said request;
determination means for determining whether said Datastore is open in response to receiving said

request at said class object;
opening means for opening said Datastore in response to said Datastore being closed and sending

a message to said identification object indicating that said Datastore has been opened; and
second sending means for sending a message to said identification object indicating that said Da-

tastore has been opened in response to a determination that said Datastore is open, wherein access to
said Datastore is optimized.

A data processing system as claimed in claim 3 further comprising:
second receiving means for receiving a request to close said Datastore at said identification object;
third sending means for sending said request from said identification object to said class object in

response to receiving said request at said identification object;
second determination means for determining whether other objects require said Datastore to re-

main open;
closing means for closing said Datastore in response to a determination that a requirement that

said Datastore remain open is absent; and
fourth sending means for sending a message to said identification object indicating that said Da-

tastore has been closed.

Adata processing system as claimed in claim 3 or claim 4, wherein said Datastore is a relational database.

A data processing system as claimed in any of claims 3 to 5, wherein the reception means receives a re-
quest from a client object.

Adata processing system having means for supporting persistent objects comprising:
a reception means for receiving a request from a requesting object to access a Datastore;
access means for accessing said Datastore in response to receiving said request, said access

means including:
first determination means, responsive to receiving a request to open said Datastore at said recep-

tion means, for determining whether said Datastore is open;
first opening means for opening said Datastore, responsive to a determination that said Datastore

is closed;

32

EP 0 680 000 A1

second opening means for virtually opening said Datastore, responsive to a determination that said
Datastore is already opened;

second determination means, responsive receiving a request to close said Datastore at said re-
ception means, for determining whether a requirement exists for said Datastore to remain open;

first closing means for closing said Datastore responsive to a determination that a requirement that
said Datastore remain open is absent; and

second closing means for virtually closing said Datastore, responsive to a determination that a re-
quirement exists for said Datastore to remain open.

33

EP 0 680 000 A1

EP 0 680 000 A1

OQ

36

EP 0 680 000 A1

37

EP 0 680 000 A1

K L C 1 1 V L
REQUEST FROM

PID TO OPEN
A DATASTORE

_ j 3 0 0

INIKLMLN I
COUNT

RETURN CODE TO
PID INDICATING:

DATASTORE
OPENED

j - 3 1 0

c L N U

C BEGIN J

RECEIYE
CLOSE REQUEST

FROM PID

^ 3 2 0

I

DECREMENT
COUNT

j - 3 2 2

3 2 6-7

3 2 8

CLOSE
DATASTORE

<ETURN CODE TO
3ID INDICATING:

DATASTORE
CLOSED

C END

F i g . 7

h g . 6

8

Er u uou uuu « i

0 Office Application (Number
EP 95 30 2661

of relevant passages to claim i~LAaami:Al lUIN OF THE APPLICATION qnt.C1.6)

/ol . 44, no. 3, 1 June 1993
)ages 20-30, XP 000303911
tAFIUL AHAD ET AL 'HP 0PEN0DB: AN
OBJECT-ORIENTED DATABASE MANAGEMENT SYSTEM
:0R COMMERCIAL APPLICATIONS'
' the whole document *

S06F17/30
306F9/44

E ARCHED (Int.C1.6)
Ubr"

-I " * — ™" — U|f IUI «■ VI WIIIS

Ê HAGUE August 1995 iterbau, R

: particularly relevant if taken alone : particularly relevant if combined with another document of the same category : technological background : non-written disclosure intermediate document

...1W.J vi uiiiivi|iic uiiuenying me invention : earlier patent document, but published on, Dr after the filing date : document cited in the application document cited for other reasons
: member of the same patent family, corresponding document

	bibliography
	description
	claims
	drawings
	search report

