Europaisches Patentamt ‘ ‘llm

a’ European Patent Office

Office européen des brevets @

Publication number : 0 680 000 A1

@) EUROPEAN PATENT APPLICATION

@1) Application number : 95302661.4 69

@2) Date of filing : 21.04.95

Int. c1.*: GO6F 17/30, GO6F 9/44

Priority : 26.04.94 US 234435

Date of publication of application :
02.11.95 Bulletin 95/44

Designated Contracting States :
DE FR GB

@ Applicant : International Business Machines
Corporation
Old Orchard Road
Armonk, N.Y. 10504 (US)

@2 Inventor : Cantin, Guylaine

190 Douglas Drive

Toronto, Ontario (CA)
Inventor : Copeland, George P.
1708 Mail Springs Drive
Austin, Texas 78746 (US)
Inventor : Gheith, Ahmed M.
1212 Parrot Trail

Round Rock, Texas 78681 (US)
Inventor : Sessions, Roger H.
11414 Pencewood Drive
Austin, Texas 78750 (US)

Representative : Lloyd, Richard Graham
IBM (UK) Ltd,

UK Intellectual Property Department,
Hursley Park

Winchester, Hampshire SO21 2JN (GB)

EP 0 680 000 A1

Data store access in an object oriented environment.

@ A method in a data processing system for
optimizing access to a Datastore in an object-
oriented environment. The data processing sys-
tem includes an object and an identification
object, wherein the identification object is an
instance of a class object. The method includes
receiving a request to open the Datastore at the
identification object. The request is sent from
the identification object its class object in res-
ponse to receiving the request. Then whether
the Datastore is open is determined in response
to receiving the request at the class object. The
Datastore is opened in response to the Datas-
tore being closed and a message is sent to the
identification object indicating that the Datas-
tore has been opened. If the Datastore is already
open, a message to the identification object
indicating that the Datastore has been opened,
wherein access to the Datastore is optimized.

CLASS
OBJECT

Jouve, 18, rue Saint-Denis, 75001 PARIS

214

10

18

20

25

30

35

40

45

50

55

EP 0 680 000 A1

The present invention relates in general to data processing and, more particularly, to the accessing of a
datastore for object data in an object-oriented environment.

Object-oriented programming environments treat the presentation of data and its manipulation as a single
entity called an "object", which is a package of information and the description of its manipulation. An object
is manipulated by sending a "message" to the object. An object that receives a message determines how to
manipulate itself. A "class" describes one or more related objects, and an "instance" of an object is an object
described by a particular class. Each instance of an object contains data in "instance variables". All instances
of an object in a class have the same instance variables although the actual values of the instance variables
may differ. The class contains "methods", which are procedures that are invoked by sending messages to an
instance of a class. All objects in a class have the same methods.

Inheritance is a feature of an object-oriented environment. Typically, object-oriented environments provide
inheritance between classes. For example, a class may be modified to form a new class, wherein the original
class is the "superclass" and the new class is called the "subclass", which inherits everything from the super
class.

Another feature of an object-oriented environment is object persistence. An object can have a "dynamic
state" and a "persistent state". In the dynamic state, an object is typically in memory and is not likely to exist
for the entire lifetime of the object; e.g., the object would not survive a system failure. The persistent state of
an object is the data that is used to reconstruct the dynamic state of an object. A standard for implementing
object persistence has been set by Object Management Group, Inc. This standard is known as the Object Per-
sistence Service Specification (OPSS), which defines a guidelines for providing interfaces and mechanisms
used for retaining and managing the persistent state of objects. A client is an object that manipulates a persis-
tent object.

OPSS defines a number of interfaces including: Persistent Identifier (PID), Persistent Object (PO), Per-
sistent Object Manager (POM), Persistent Data Service (PDS), Protocol, and Datastore. The PID contains in-
formation that identifies the storage location for the persistent states of an object. The PO is an object whose
persistence is typically controlled externally by its candidates. The PO includes a store/restore interface de-
fining the operations that control the PO’s persistent data. The PDS moves data between an object and a da-
tastore. The POM routes storage related requests from the object to a PDS. Protocol provides a mechanism
to move data in and out of an object. A Datastore is an interface that provides one of several ways to store
data. A Datastore may be, for example, a database, a record file, or some other type of file and may use well
known interfaces for databases and record files. The Datastore provides storage for the persistent state of an
object.

Additional information about object-oriented computing can be found in Peterson, Object Oriented Com-
puting, IEEE Computer Society Press, IEEE Computer Society Press Order No. 821 (1990) and in De Cham-
peaux, Object-Oriented System Development, Addison-Wesley Publishing Co. (1993). More information and
details regarding the implementation of object persistence may be found in Object Persistence Service Spec-
ification, OMG TC document number 93.11.3, which is available from Object Management Group, Inc., located
at 492 Old Connecticut Path, Framingham, Massachusetts, 01701.

Under OPSS, a performance problem exists with accessing Datastores. Opening a Datastore is a time
consuming process and ideally, should be performed as infrequently as possible. Typically, a Datastore is
opened, a series of store/restore operations are performed, and then the datastore is closed. Under OPSS,
open/close operations are performed during connect/disconnect operations. Unfortunately, these operations
are defined in the Persistent Object interface in which operations cannot be invoked before a target object is
instantiated and cannot be invoked once the object is de-instantiated. If an object accessing a Datastore is
instantiated and de-instantiated within a loop, the Datastore must be opened and closed each time the loop
occurs, degrading performance.

This invention provides a method for accessing a Datastore in a data processing system with an object-
oriented environment, wherein said data processing system includes an object and an identification object,
wherein said identification object is within a class object, said method comprising the data processing system
implemented steps of: receiving a request to open said Datastore at said identification object; sending said
request from said identification object to said class object in response to receiving said request; determining
whether said Datastore is open in response to receiving said request at said class object; opening said Data-
store in response to determination of said Datastore being closed and sending a message to said identification
object indicating that said Datastore has been opened; sending a message to said identification object indi-
cating that said Datastore has been opened in response to a determination that said Datastore is open.

The present invention improves the efficiency of the system by reducing the time devoted to opening and
closing a Datastore in an object-oriented environment.

More particularly, this is achieved as is now described. Amethod is provided in a data processing system

2

10

18

20

25

30

35

40

45

50

55

EP 0 680 000 A1

for optimizing access to a Datastore in an object-oriented environment. The data processing system includes
an object and an identification object, wherein the identification object is within a class object. The method
includes receiving a request to open the Datastore at the identification object. The request is sent from the
identification object to the class object in response to receiving the request. Then whether the Datastore is
open is determined in response to receiving the request at the class object. The Datastore is opened in re-
sponse to the Datastore being closed and a message is sent to the identification object indicating that the Da-
tastore has been opened. If the Datastore is already open, a message to the identification object indicating
that the Datastore has been opened, wherein access to the Datastore is optimized.

In closing the Datastore, a request is received to close the Datastore at the identification object. The re-
quest from the identification object is sent to the class object in response to receiving the request at the iden-
tification object. Whether other objects require the Datastore to remain open is determined. The Datastore is
closed in response to a determination that a requirement that the Datastore remain open is absent. Amessage
to the identification object indicating that the Datastore has been closed. The client of the PID is unaware of
any of this. To the client, it appears as if a Datastore open or close was done in response to the open/close
request.

The invention will best be understood by reference to the following detailed description of an illustrative
embodiment when read in conjunction with the accompanying drawings, wherein:

Figure 1 depicts a data processing system in the form of a personal computer;

Figure 2 is a block diagram of a personal computer system;

Figure 3 is a schematic diagram showing an object in an object-oriented environment;

Figure 4 is a diagram illustrating components employed to support persistent objects in an object-oriented

environment;

Figure 5 depicts a diagram of components and their interactions in support of object persistence;

Figure 6 is a flow chart of a process to open a Datastore using a class object; and

Figure 7 depicts a flow chart of a process for closing a Datastore

Referring now to the figures, and in particular to Figure 1, a data processing system, personal com-
puter system 10, in which the present invention can be employed is depicted. As shown, personal computer

system 10 comprises a number of components, which are interconnected together. More particularly, a

system unit 12 is coupled to and can drive an optional monitor 14 (such as a conventional video display).

A system unit 12 also can be optionally coupled to input devices such as a PC keyboard 16 or a mouse

18. Mouse 18 includes right and left buttons (not shown). The left button is generally employed as the main

selector button and alternatively is referred to as the first mouse button or mouse button 1. The right button

is typically employed to select auxiliary functions as explained later. The right mouse button is alternatively
referred to as the second mouse button or mouse button 2. An optional output device, such as a printer

20, also can be connected to the system unit 12. Finally, system unit 12 may include one or more mass

storage devices such as the diskette drive 22.

As will be described below, the system unit 12 responds to input devices, such as PC keyboard 16, the
mouse 18, or local area networking interfaces. Additionally, input/output (1/0) devices, such as floppy diskette
drive 22, display 14, printer 20, and local area network communication system are connected to system unit
12 in a manner well known. Of course, those skilled in the art are aware that other conventional components
also can be connected to the system unit 12 for interaction therewith. In accordance with the present invention,
personal computer system 10 includes a system processor that is interconnected to a random access memory
(RAM), a read only memory (ROM), and a plurality of /O devices.

In normal use, personal computer system 10 can be designed to give independent computing power to a
small group of users as a server or a single user and is inexpensively priced for purchase by individuals or
small businesses. In operation, the system processor functions under an operating system, such as IBM’s OS/2
operating system or DOS (OS/2 is a trademark of International Business Machines Corporation). This type of
operating system includes a Basic Input/Output System (BIOS) interface between the /O devices and the op-
erating system. BIOS, which can be stored in a ROM on a motherboard or planar, includes diagnostic routines
which are contained in a power on self test section referred to as POST.

Prior to relating the above structure to the present invention, a summary of the operation in general of
personal computer system 10 may merit review. Referring to Figure 2, there is shown a block diagram of per-
sonal computer system 10 illustrating the various components of personal computer system 10 in accordance
with the present invention. Figure 2 further illustrates components of planar 11 and the connection of planar
11 to I/O slots 46a-46d and other hardware of personal computer system 10. Connected to planar 11 is the
system central processing unit (CPU) 26 comprised of a microprocessor which is connected by a high speed
CPU local bus 24 through a bus controlled timing unit 38 to a memory control unit 50 which is further connected
to a volatile random access memory (RAM) 58. While any appropriate microprocessor can be used for CPU

3

10

18

20

25

30

35

40

45

50

55

EP 0 680 000 A1

26, one suitable microprocessor is the Pentium microprocessor, which is sold by Intel Corporation. "Pentium"
is a trademark of Intel Corporation.

While the present invention is described hereinafter with particular reference to the system block diagram
of Figure 2, it is to be understood at the outset of the description which follows, it is contemplated that the
apparatus and methods in accordance with the present invention may be used with other hardware configur-
ations. For example, the system processor could be an Intel 80286, 80386, or 80486 microprocessor. These
particular microprocessors can operate in a real addressing mode or a protected addressing mode. Each mode
provides an addressing scheme for accessing different areas of the microprocessor’'s memory.

Returning now to Figure 2, CPU local bus 24 (comprising data, address and control components) provides
for the connection of CPU 26, an optional math coprocessor 27, a cache controller 28, and a cache memory
30. Also coupled on CPU local bus 24 is a buffer 32. Buffer 32 is itself connected to a slower speed (compared
to the CPU local bus) system bus 34, also comprising address, data and control components. System bus 34
extends between buffer 32 and a further buffer 36. System bus 34 is further connected to a bus control and
timing unit 38 and a Direct Memory Access (DMA) unit 40. DMA unit 40 is comprised of a central arbitration
unit 48 and a DMA controller 41. Buffer 36 provides an interface between the system bus 34 and an optional
feature bus such as the Micro Channel bus 44. ("Micro Channel" is a trademark of International Business Ma-
chines Corporation). Connected to bus 44 are a plurality of I/O slots 46a-46d for receiving Micro Channel adap-
ter cards which may be further connected to an I/O device or memory. In the depicted example, 1/O slot 46a
has a hard disk drive connected to it; I/O slot 46b has a CD-ROM drive connected to it; and 1/O slot 46¢ has
a ROM on an adapter card connected to it. An arbitration control bus 42 couples the DMA controller 41 and
central arbitration unit 48 to 1/0 slots 46 and diskette adapter 82. Also connected to system bus 34 is a memory
control unit 50 which is comprised of a memory controller 52, an address multiplexer 54, and a data buffer 56.
Memory control unit 50 is further connected to a random access memory as represented by RAM module 58.
Memory controller 52 includes the logic for mapping addresses to and from CPU 26 to particular areas of RAM
58. While the microcomputer system 10 is shown with a basic 1 megabyte RAM module, it is understood that
additional memory can be interconnected as represented in Figure 2 by the optional memory modules 60
through 64.

A further buffer 66 is coupled between system bus 34 and a planar I/O bus 68. Planar I/O bus 68 includes
address, data, and control components respectively. Coupled along planar bus 68 are a variety of /O adapters
and other peripheral components such as display adapter 70 (which is used to drive an optional display 14),
a clock 72, nonvolatile RAM 74 (hereinafter referred to as "NVRAM"), a RS232 adapter 76, a parallel adapter
78, a plurality of timers 80, a diskette adapter 82, a PC keyboard/mouse controller 84, and a read only memory
(ROM) 86. The ROM 86 includes BIOS which provides the user transparent communications between many
1/0 devices.

Clock 72 is used for time of day calculations. NVRAM 74 is used to store system configuration data. That
is, the NVRAM will contain values which describe the present configuration of the system. For example,
NVRAM 74 contains information which describe the capacity of a fixed disk or diskette, the type of display,
the amount of memory, etc. Of particular importance, NVRAM 74 will contain data which is used to describe
the system console configuration; i.e., whether a PC keyboard is connected to the keyboard/mouse controller
84, a display controller is available or the ASCII terminal is connected to RS232 adapter 76. Furthermore, these
data are stored in NVRAM 74 whenever a special configuration program is executed. The purpose of the con-
figuration program is to store values characterizing the configuration of this system to NVRAM 76 which are
saved when power is removed from the system.

Connected to keyboard/mouse controller 84 are ports Aand B. These ports are used to connect a PC key-
board (as opposed to an ASCII terminal) and mouse to the PC system. Coupled to RS232 adapter unit 76 is
an RS232 connector. An optional ASCII terminal can be coupled to the system through this connector.

Specifically, personal computer system 10 may be implemented utilizing any suitable computer such as
the IBM PS/2 computer or an IBM RISC SYSTEM/6000 computer, both products of International Business Ma-
chines Corporation, located in Armonk, New York. ("RISC SYSTEM/6000" and "PS/2" are trademarks of Inter-
national Business Machines Corporation.)

An object encapsulates data and the methods needed to operate on that data. Objects can be represented
by a "doughnut diagram" such as illustrated in Figure 3 in accordance with a preferred embodiment of the pres-
ent invention. Object data 102 is depicted in the center of object 100 surrounded by applicable methods 104
to 114. Data 102 may be modified only by the methods of that object. Methods 104-114 are invoked by receiving
messages from other objects. Atypical object-oriented system will have a message router 116 that routes mes-
sages between objects. Thus, object 118 causes method 108 to be invoked by sending a message to message
router 116, which in turns sends the message to method 208 of object 100. Object 100 may be a persistent
object that has data stored externally in a Datastore (not shown).

4

10

18

20

25

30

35

40

45

50

55

EP 0 680 000 A1

Referring now to Figure 4, an illustration of components employed in supporting persistent objects in an
object-oriented system. Client 200 manipulates Persistent Object (PO) 202, which has a Persistent Identifier
(PID) 204 associated with it. Persistent Object Manager (POM) 206 provides an interface for PO 202’s persis-
tence operations. Persistence Data Service (PDS) 208 receives requests from POM 206 and receives data
from PO 202 through Protocol 210. PDS 208 provides an interface to Datastore 212, which stores PO202’s
data.

Previously, Client 200 sends a request to PO 202 to open Datastore 212. In response, PO 202 sends a
request to POM 206 to open Datastore 212. In turn, POM 206 opens Datastore 212, using PDS 208. After Da-
tastore 212 is opened and data from PO 202 would be sent to PDS 208 using Protocol 210. PDS 208 then
stores data in Datastore 212. Afterwards, Datastore 212 is closed. Data also could restored to PO 202 while
Datastore 212 using this procedure. In this prior art procedure, the open and close operations are defined in
the Persistent Object interface. Operations cannot be invoked before the target object is instantiated and can-
not be invoked after the object is de-instantiated. Also, if a second persistent object is accessing Datastore
212, each time PO 202 or the second persistent object accesses Datastore 212, the Datastore must be opened
and closed.

Referring next to Figure 5, a diagram of components and their interactions in support object persistence
is illustrated in accordance with a preferred embodiment of the present invention. PID 204 is an instance of
Class Object 214. According to the present invention, Client 200 sends a request to open Datastore 212 to PID
204, instead of PO 202. PID 204 sends the request to Class Object 214, which includes a method to open Da-
tastore 212. Class Object 214 opens Datastore 212 directly in the depicted embodiment. Datastore 212 also
could be opened by Class Object 214 through a request to PDS 208. PID 204 includes open and close oper-
ations to open and close Datastore in accordance with a preferred embodiment of the present invention. Since
PID 204 accesses Datastore 212 by passing open and close requests from Client 200 to Class Object 214.
The opens and closes may be virtual and with the physical opens and closes being handled by Class Object
214. These features are hidden from the perspective of Client 200. "Datastore" is a generic term that refers
to a place where data is stored. A Datastore can be, for example, a relational database, an object-oriented da-
tabase, a record file, or a tape drive.

Turning now to Figure 6, a flow chart of a process to open a Datastore using a class object is depicted.
The class object receives a request from a PID to open a Datastore, as depicted in block 300. In response to
receiving the request to open a Datastore, a determination is made as to whether the Datastore is open, as
illustrated in block 302. If the Datastore is not open, the Datastore is opened, as depicted in block 304. This
step represents an actual or physical opening of the Datastore. A variable, COUNT, is set equal to zero, as
illustrated in block 306. Then, the COUNT is incremented by one, as depicted in block 308. Thereafter, the
class object returns a code to the PID indicating that the Datastore has been opened, as illustrated in block
310. In this case, the Datastore is physically opened.

Referring back to block 302, if the Datastore is already open, the process proceeds directly to block 308
and COUNT is incremented by one, as depicted in block 308. In this case, the process "virtually" opens the
Datastore, which is tracked by COUNT. The class object returns a code to the PID indicated that the Datastore
has been opened, as illustrated in block 310.

With reference to Figure 7, a flow chart of a process for closing a Datastore is illustrated in accordance
with a preferred embodiment of the present invention. The class object receives a request from a PID to close
a Datastore, as depicted in block 320. In response to receiving the request, the class object decrements
COUNT by one, as illustrated in block 322. Thereafter, a determination of whether the COUNT is equal to zero
is made, as depicted in block 324. If the COUNT is not equal to zero, the class object returns a code to the
PID, indicating that the Datastore has been closed. In this case, the Datastore has been virtually closed.

Referring again to block 324 if the COUNT is equal to zero, the class object closes the Datastore, as illu-
strated in block 328. The Datastore is physically closed. Thereafter, the class object returns a code to the PID,
indicating that the Datastore has been closed. The client object is told by the PID that the Datastore in closed
even of it is not according to the present invention.

The processes depicted in Figures 5-7 may be implemented by those of ordinary skill in the art within the
data processing system depicted in Figures 1 and 2. The processes of the present invention alsoc may be im-
plemented in a program storage device that is readable by a data processing system, wherein the program
storage device encodes data processing system executable instructions coding for the processes of the pres-
ent invention. The program storage device may take various forms including, for example, but not limited to a
hard disk drive, a floppy drive, an optical disk drive, a ROM, and an EPROM, which are known to those skilled
in the art. The processes on the program storage device are dormant until activated by using the program stor-
age device with the data processing system. For example, a hard drive containing data processing system
executable instructions for the present invention may be connected to a data processing system; a floppy disk

5

10

18

20

25

30

35

40

45

50

55

EP 0 680 000 A1

containing data processing system executable instructions for the present invention may be inserted into a flop-
py disk drive in the data processing system; or an ROM containing data processing system executable instruc-
tion for the present invention may be connected to the data processing system via a card or adapter connected
to an I/O slot.

An advantage of the present invention is that opens and closes by a PID may be virtual with the physical
connection to a Datastore being handled by the class object. Thus, performance is increased for client objects.
Appendix A illustrates an implementation of a client object using a PID to close and open Datastores of the
present invention.

Appendix B depicts the class definition and code for a PID and a PID class object that handles the opening
and closing of a Datastore. The class definitions are in CORBA IDL while the implementation of the class def-
initions are in C. CORBA is a trademark of Object Management Group, Inc. The implementation is for use with
IBM System Object Model, which is available from International Business Machines Corporation.

While the invention has been particularly shown and described with reference to a preferred embodiment,
it will be understood by those skilled in the art that various changes in form and detail may be made therein
without departing from the scope of the invention.

APPENDIX A

main()

PID pid;
PIDFactory pidfact;
Account accnt;
boolean done;
string acentNo;

pidfact = PIDFactoryNew()
pid = create_PID_from_key(pidfact, "PID_DB2")
acent _ AccountNew();

__set_dbalias(pid, "SAMPLE");
__set_userid(pid, "Sherlock Holmes")
__set_password(pid, "Pipe");
_open_datastore(pid);

done = FALSE;

while (!'done) {
accentNo =readAccntNumber() ;
_put_string item(pid, acentNo);
_restore(acent, pid);
updateAccount(accnt) ;
_store(acent, pid);

};

¥ ... ¥/

_close_datastore(pid);

10

18

20

25

30

35

40

45

50

55

EP 0 680 000 A1

APPENDIX B

#ifndef opspid_idl
#define opspid_idl

#include <somobj.id>

interface xxxPID : SOMObject {
attribute string datastore_type;
string get PIDString();
implementation {

datastore_type: nodata;

releaseorder: _get datastore_type, _set_datastore type,

get PIDString;
b
b

#endif /* opspid_idl */

ooo

oooooooooooooooo

#ifndef pid_ds_idl
#define pid_ds_idl

#include <opspid.idl>

/%
Forward Declarations.

_____________________ */

interface xxxMemoryStream;

/%
Interface definition.

_____________________ */
interface xxxPID DS : xxxPID {

[* Constant declarations.
______________________ */

const char stringSep = '"';

[* Method declarations.

10

18

20

25

30

35

40

45

50

55

EP 0 680 000 A1

void set_PIDString(in string buffer);

void updatePIDStream(); /* be sure to override */
void readFromPIDStream(); /* be sure to override */

void open_datastore(); /* client method */
void close_datastore(); /* client method */
void *get datastore_handle(); /* PDS/SM method */

xxXMemoryStream get_stream();

/* Implementation section.

_____ */
xxxMemoryStream stream;
string datastore_type;

/* Overrides.
__________ 7
_get_datastore_type: override;
_set_datastore_type: override;
get PIDString: override;

somlnit: override;
somUninit: override;

/* Administrivia.

______________ */

releaseorder: set_PIDString, updatePIDStream,
readFromPIDStream,

get_stream, open_datastore, close datastore,

get_datastore_handle;
3
3

#endif /* pid_ds _idl */

...

................

#ifndef mpid_ds_idl
#define mpid_ds_idl

10

18

20

25

30

35

40

45

50

55

EP 0 680 000 A1

#include <someclis.idl>
#include <pid_ds.idD

interface xxxM_PID DS : SOMClass {

struct entry {

void *key;

long count;

void *connection handle;
}s

const long maxElements = 20;

void open_datastore(in xxxPID_DS pid);
void close_datastore(in xxxPID_DS pid);
void *get_datastore_handle(in xxxPID DS pid);

void *connect_to_ds(in xxxPID DS pid); /* to be
overriden */

void disconnect_from_ds(in xxxPID DS pid); /* to be
overriden */

void *pid_to_key(in xxxPID DS pid); /* to be

overriden */
boolean compare_key(in void *keyl, in void *key2); /* to be
overriden */

/* Private Methods.
________________ *
boolean find_connection(in void *key, out long entry);
long add_entry(in void *key, in void *connection handle);
void delete_entry(in void *key);

/* Debugging Methods.
__________________ */

void dump_connectionTable (in void *output);
implementation {

/* Data Members.
_____________ */
entry connectionTable[maxElements];
long nEntries;
long latch; /* get type right later */

/* Overrides.

__________ * |
somlInit: override;
somUninit: override;

10

15

20

25

30

35

40

45

50

55

EP 0 680 000 A1

/* Administrivia.
______________ *
releaseorder: open_datastore, close datastore,
get_datastore_handle,
connect_to_ds, disconnect_from ds, pid_to key,
compare key,
find_connection, add_entry, delete entry,
dump_connectionTable;
};
3

#endif /* mpid_ds_idl */

ooo

#define xxxM_PID_DS_Class_Source
#define SOMClass_Class_Source

#include <stdio.h>
#include <pid_ds.h>
#include <mpid_ds.ih>

/*

ek okook ok kKR AR ok ok ok o ok sk ok kil ok ks ok ok sk ok o ok sk ok ook sk e o ok s ook ok ok sk sk ok ok ok sk ke
Aok

Method: open_datastore

Purpose: implements the connect logic common to all datastore

types
Called by: PID DS

Bese e st b e stk ok oo ok e o sk s ok skl ok ook ok el sl ok s ok s sk ok o 3K 3k ok o ok ok ok e s sk ok sk ki e sk sk o ok ok sk sk ok ok
ks ekl ek

*/

SOM_Scope void SOMLINK open_datastore(xxxM_PID DS
somSelf,

Environment *ev,
xxxPID_DS pid)

{
void *key; /* key extracted from the PID */
long index; /¥ connection table index */
void *connection_handle; /* connection handle */
/* Set up

10

10

18

20

25

30

35

40

45

50

55

EP 0 680 000 A1

xxxM_PID_DSData *somThis = xxxM_PID DSGetData(somSelf);

xxxM_PID_DSMethodDebug("xxxM_PID DS", "open_datastore");
printf("mpid_ds::open_datastore\n");

/* Latch connection table.

key = _pid_to_key(somSelf, ev, pid); /* allocate memory for

key */
printf("----> key = %s\n", (char *) key);

if (_find_connection(somSelf, ev, key, &index)) {

_connectionTable[index].count++;
printf("----> KEY FOUND\n");

} else {
printf("----> KEY NOT FOUND\n");
connection_handle = _connect_to_ds(somSelf, ev, pid);
index = add_entry(somSelf, ev, key, connection_handle);
_connectionTable[index].count++;

} /* endif */

/* Unlatch connection table.

SOMFree(key);
SOMFree(connection_handle) ;

_dump_connectionTable(somSelf, ev, stdout);
return;

}
[*

ek ok b sk ok ok ok o ok ok ok sk o s e s ook skl o s ok ok ok ok sk o o s sk e e sk sk ok o ok ok ok ok ok sk sk sk sk sk ok sk sk ok ok ok ok o

*okdkokkokk

Method: close_datastore

Purpose: implements the disconnect logic common to all
datastores

11

10

18

20

25

30

35

40

45

50

55

EP 0 680 000 A1

Called by: PID DS

kool ok okok ok ok ook ok R kK SR AR Rk sk SRRk sk ok ok sk sk ok
ok ok ok
*/
SOM_Scope void SOMLINK close_datastore(xxxM_PID DS
somSelf,
Environment *ev,
xxxPID DS pid)
{

/* Variable Declarations.

void *key;
long entry;

xxxM_PID_DSData *somThis = xxxM_PID DSGetData(somSelf);

xxxM_PID_DSMethodDebug("xxxM_PID DS", "close_datastore");
printf("mpid_ds::close_datastore\n");

/* Latch connection table

key = _pid_to_key(somSelf, ev, pid); /* allocate memory for
key */

if (_find_connection(somSelf, ev, key, &entry)) {
_connectionTable[entry].count--;
if (_connectionTable[entry].count == 0) {
_disconnect_from_ds(somSelf, ev, pid);
delete_entry(somSelf, ev, key);
}
}

/* Unlatch connection table

SOMFree(key) ;

_dump_connectionTable(somSelf, ev, stdout);
return;

12

10

15

20

25

30

35

40

45

50

55

EP 0 680 000 A1

/*

ek e e o K e o e e e e o o e ke b e sk e ke e sk e e e ok ok 3k ke ok sk ok ok 3 ke sk sk s s b ol s ol o e ke ok Sk Sk ok e ek sk ok ok sk 3k ok ok ok
Aok dkkkokok
Method: get_datastore handle

Purpose: returns the datastore connection handle
Called by: PDS

ek ofe o s ok o ok s ofe e e ok sk sk e ok Sk sk sk ok ok ok ok ok ok ok ok sk ok s sk sk e e ok sk ok s e e sk sk ok o e ok sk sk sk sk s sk o sk ok ok ok ok ok ok ok
AFkokokkkok

*/
SOM_Scope void* SOMLINK get_datastore_handle(xxxM PID DS
somSelf,

Environment *ev,
xxxPID_DS pid)
{

/* Variable Declarations.
void *key;
long entry;
______ %[
xxxM_PID DSData *somThis = xxxM_PID DSGetData(somSelf);
xxxM_PID_DSMethodDebug("xxxM_PID_DS","get_datastore_handl
e");
printf("mpid_ds::get_datastore_handle\n");
/* lookup the connection table.
key = _pid_to_key(somSelf, ev, pid);

if (!_find_connection(somSelf, ev, key, &entry))
/* return an exception */

/* Return connection handle.

return(_connectionTable entryo. connection_handle);

}
/%

13

10

15

20

25

30

35

40

45

50

55

EP 0 680 000 A1

0ok ke ok ok o o ok ke ok ok ok ok ok sk ok ok o ok sk ok ok ok ok ok ok ok sk ok ok ok kokok sk ok ok ok ok sk kk koK kK KR kKRR K KRR S S
ok ok ok Xk ok ok

Method: compare key

Purpose: compares 2 connection keys
Called by: open_datastore, close_datastore
Overriden: Yes

ke ol ke sde ke s e ol sk sfe s she e ok sk sfe s o ok sk abe ook she sk sk ok sbe ke sk sk sfe sk s ke e sfe ke e sk she sk s ok e ok ok sk o e ok sfe e s ke sk S e e ke 3k e ok
3 ok ok ok ke sk ok
*/
SOM_Scope boolean SOMLINK compare key(xxxM PID DS
somSelf,

Environment *ev,

void* keyl,

void* key?2)

{

/* Set up.
_______ * /
xxxM_PID_DSData *somThis = xxxM PID DSGetData(somSelf);
xxxXM_PID_DSMethodDebug("xxxM_PID_DS","compare_key");
printf("mpid_ds::compare key\n");
/* Return statement to be customized: */
return;

}

/*

e 3k e e o s 2k ok ok o o o 3 e e o o s ok ok e ok o ok ok ook e e e e o ok ok ok ok e ok ok ok ok ok 3k 3 3 oK 3k ok oK ok 3 ok ok ol e e ok ok ok o oK sk oK
Kk Kk kkk

Method: connect_to_ds

Purpose: datastore specific connection code
Called by: open datastore
Overriden: Yes

deokok ok kb ko kK sok ok skt ok skolok ok sk ok skl kok Kok ok sk ok ok Aok Aok ok Kook ok
ke Kok
*/
SOM_Scope void* SOMLINK connect_to_ds(xxxM_PID DS
somSelf,

Environment *ev,

xxxPID_DS pid)

_______ */
xxxM_PID_DSData *somThis = xxxM_PID DSGetData(somSelf);
xxXxXM_PID_DSMethodDebug("xxxM_PID_DS","connect_to_ds");

14

10

18

20

25

30

35

40

45

50

55

EP 0 680 000 A1

printf("mpid ds::connect to ds\n");

[* Return statement to be customized: */
return;

/*

3k ok ok ok o 3 3k she ok ok o ok ok s ok ake o ok ke ok ke sk ok ok 3k sk ke ok o 3¢ sk sk 3¢ dfe ke dke ok 3k ok o 3¢ dke o e dke o ok ok sk ok ke ok o e 3k sk o ok ok e ok ke ok
3k ek 3k 3k 3k %k

Method: disconnect_from ds

Purpose: datastore specific disconnect code
Called by: close_datastore
Overriden: Yes

sk e e ok e sk ok ok sk ok ok sk afe ok ok e 0 ok ok ok 3k sk ok ke fe sk e ke o o 3k 3k sk sbe o sk o ke 3k ok sk sk o sk o e Dk ke sfe ok o sk ofe e ke e ke sk ok e ok ok ok
ok kK
*/
SOM_Scope void SOMLINK disconnect_from_ds(xxxM_PID_DS
somSelf,

Environment *ev,

xxxPID_DS pid)

xxxM_PID DSData *somThis = xxxM _PID DSGetData(somSelf) ;

xxxM_PID_DSMethodDebug("xxxM_PID_DS","disconnect_from_ds"
H
printf("mpid: :disconnect_from ds\n");

}
[*

a5 3k ok ok sk ok 3k ok ke ok ok ok ok ok ok sk ok 9k 3k 3k ok sk e ok ok ok sk dke sk ok 2k ok ok ok o ok ok 3k 3K vk ok ok e ok oK ok e ok oK 3k ok ok ok 3k ok ok ok o ke ok K ok ok
sk Kok ok ok
Method: pid_to_key
Purpose: Extracts the datastore key from the PID
Called by:
Overriden: Yes

Aok ok sk ol ARl o sk sk ok sk ok sk sk ok sk sk ks ok ok ok okl ook ok ko ko
e ok sfe ok 3k sk 3k
*/
SOM_Scope void* SOMLINK pid_to_key(xxxM _PID_DS somSelf,
Environment *ev,
xxxPID_DS pid)
{
xxxM PID DSData *somThis = xxxM_PID_DSGetData(somSelf) ;
xxxM_PID_DSMethodDebug("xxxM_PID_DS","pid_to_key");

15

10

15

EP 0 680 000 A1
printf ("mpid: :pid_to_key\n");

/* Return statement to be customized: */
return;

/*

3k o 3k ok 3k ok o e ok ok o s ok 3k ok ok sk sk 3 ok sk ok ok ok ok ok sfe sk 3k 3fe ok ok i sk ok ok ok sk sk o6 o sk ok s sk sk ok e ok ok sk sk ok ok sk ok ok ok ok ok sk sk ok

306 ok ok o ok ok ok

Method: find connection

Purpose: Search a key in the connectionTable.
Output: Returns success (1) or failure (0). If successful,
initializes
entry with the connectionTable index where key was
found.
Called by: open_datastore, close_datastore
Overriden: No

sk 2 3k ok sk 3k ok ok ok 3k 3k ok a5 ok ok o o 3 ok ok o ok 3k sk 3k ok ok ok o ok o ok 3K ok ok ke o sk ok 3k ok 3k ok sk 3k ok ok ok ok 3k ok ok ok sk 3k 3k o ok 3 3k ok ok ok
¢ 3 o ofe ok e ok
*/
SOM_Scope boolean SOMLINK find_connection(xxxM_PID_DS
somSelf,
Environment *ev,
void* key,
long* index)
{

/* Variable Declarations.
boolean match;
long n;
______ */
xxxM PID_DSData *somThis = xxxM_PID_DSGetData(somSelf) ;
xxxM_PID DSMethodDebug("xxxM_PID_DS","find_connection");
printf("mpid_ds: :find_connection\n");
printf("----> input key = $s\n", (char *) key);
/* Find key.

match = FALSE;
for (n=0; n < maxElements; n++) {

16

10

15

20

25

30

35

40

45

50

55

EP 0 680 000 A1

if (_compare_key(somSelf, ev, key,

_connectionTable[n].key)) {

match = TRUE;
*index = n;
printf("----> returned index = %$ld\n", *index);
break;
} /* endif */

} /* end for */

_____ *
printf("----> match = $ld\n", match);
return(match) ;

}
/*

3860 3k e e e e e ke ke vk ke sk e ok ok e o sk Sk ok ok Ok sk ok ke 3k 3 e e sk e ke Sk e sk sk ok sk sk ok sk sk 3K ok 9k 3k 3k ok 3K ok ok 3k ok ok ok 3k ok ok ok ok sk ok
e 3k ok ok ok k

Method: add_entry
Purpose: Add an entry in the first available slot in
connectionTable.
Output: Returns index into connectionTable where key was
added.
Called by: open_datastore
Overriden: No

e ok e sfe ok sk ok o ook sk ke 3k 3k ok sk ok ke ok sk 6 ok sk Sk ok ok sk e s ke ok o ok sk ok e ok sk ok sk ok ok ok sk o sk ok ke sk ok sk ok oK ok 3 sk ok sk ok sk sk ok ok
kkokok ok ke k

*/

SOM_Scope long SOMLINK add_entry(xxxM_PID_ DS somSelf,
Environment *ev,
void* key,
void* connection_handle)

{

/* Variable Declarations.
long index;

entry *cte;

______ */

xxxM_PID_DSData *somThis = xxxM_PID DSGetData(somSelf);
xxxM_PID_DSMethodDebug("xxxM_PID_DS","add_entry");
printf ("mpid_ds::add_entry\n");

/* Find first available entry in the connection Table.

17

10

18

20

25

30

35

40

45

50

55

EP 0 680 000 A1

if (_nEntries < maxElements) {
for (index = 0; index < maxElements; index++) {
if (_connectionTable[index] .key == NULL) {

_connectionTable[index].key = SOMMalloc(strlen(key)
+1);

strcpy(_connectionTable[index]. key, key);

printf ("----> key = %s\n",
_connectionTable[index].key);

_connectionTablefindexo.count = 0;
printf("----> count = %s\n",
_connectionTable[index].count);

_connectionTablefindexo . connection_handle =
SOMMalloc(strlen(connection_handle) + 1) ;

strcpy(_connectionTable[index]. connection_handle,
connection_handle) ;

printf("----> handle = %s\n",
_connectionTable rindexo. connection_handle);

_nEntries++;
break;
}

} /* end for ¥/
} else {

/* return an exception: connection table is full */
printf("----> CONNECTION TABLE FULL\n");

} /* endif */
_____ %/

printf("----> returned index = $d\n", index);
return(index);

}

/*

3 3 e e o s ok ook ok e sk koo ke ok el el s ook s o ok ok ok ok s ke s ok sk sk ok ok e sk s ok ok ok ok ok ok ok sk ke ok e sk s sk sk ok sk ok ok

3% 3k ok s ok ok %k

Method: delete_entry

Purpose: Removes an entry from the connectionTable.
Output: None
Called by: close datastore

18

10

15

20

25

30

35

40

45

50

55

EP 0 680 000 A1

Overriden: No

ke e ok e ke o e e she ke sk o ol e ke e ok ok ok ke sk sfe o s ke ke ok ok e e sk sk s sk e e sk 3k ok o ok A ok sk ke ok ok ok sk ok ok ok ok ok ok ke ok ok 3k sk ok ok ok
sekokkokokok

*/
SOM_Scope void SOMLINK delete_entry(xxxM_PID DS somSelf,
Environment *ev,

void* key)
{
/* Variable Declarations.
_____________________ * |
long index; /* index into the connection table */
entry *cte; /* pointer to a connection table entry */
/* Setup

______ *
xxxM_PID_DSData *somThis = xxxM PID DSGetData(somSelf);
xxxM_PID_DSMethodDebug("xxxM_PID_DS","delete_entry");
printf("mpid_ds::delete_entry\n");

/* Delete entry from the connection table.

for (index = 0; index < maxElements; index++) {

if (_compare key(somSelf, ev,
_connectionTable[index] .key,key)) {

cte = & connectionTable[index];
cte->key = NULL;

cte->count = 0;
cte->connection_handle = NULL;

SOMFree(cte->key);
SOMFree(cte->connection_handle);

_nEntries--;
break;

} /* endif */
} /* end for ¥/

printf("----> deleted index = $d\n", index);

}

/*

19

10

18

20

25

30

35

40

45

50

55

EP 0 680 000 A1

if (_nEntries < maxElements) {
for (index = 0; index < maxElements; index++) {
if (_connectionTable[index].key == NULL) {

_connectionTable[index].key = SOMMalloc(strlen (key)
+1);

strepy(_connectionTable[index].key, key);

printf("----> key = $s\n",
_connectionTable[index].key);

_connectionTablefindexo. count = 0;
printf("----> count = %s\n",
_connectionTable[index].count);

_connectionTable findexo . connection_handle =
SOMMalloc(strlen(connection_handle) + 1);

strepy(_connectionTable[index].connection handle,
connection_handle);

printf ("~---> handle = %s\n",
_connectionTable findexo.connection_handle);

_nEntries++;
break;

}
} /* end for */

} else {

/* return an exception: connection table is full */
printf("~---> CONNECTION TABLE FULL\n");

} /¥ endif */

_____ */
printf("----> returned index = %d\n", index);
return(index);

}
/%

sokokakskok ok ok ok ok sk kok ok ok ok sk ok ook sk skokak e Aok ok ook ko ko ook sk ok ok ok ok sk ok sk ok sk o
Kok ko ok ok

Method: delete_entry

Purpose: Removes an entry from the connectionTable.

Output: None
Called by: close_datastore

20

10

18

20

25

30

35

40

45

50

55

EP 0 680 000 A1

e e e e e ke e e ek sk ok sk ok ok e ok ok e sk e e s kol sk sl ok 2k 3k ok ok Sk i ok o ok ok s e e e ol 3 sl sk 3k ol ok i ok ok ok ok ok 3k 3 ok ok
*kkkkkk

*/

SOM_Scope void SOMLINK somInit(xxxM_PID_ DS somSelf)

{

/¥ Variable Declarations.

______________________ */
long n;
entry cte; /* connection table entry */
/* Set up.
_______ */

xxxM_PID_DSData *somThis = xxxM_PID DSGetData(somSelf);
xxxXM_PID_DSMethodDebug("xxxM_PID DS","somInit");
printf("mpid_ds::somlnit\n");

xxxXM_PID DS parent_SOMClass_somlnit(somSelf) ;

/* Initializes connection table.

_nEntries = 0;
for (n=0; n < maxElements; n++) {
_connectionTable[n].key = NULL;
_connectionTable[n].count = 0;
_connectionTable[n]. connection_handle = NULL;
}
}

/*

e ke she s s e b ke s o ok e she o ok e ke sk ok e o sk ok e e ok e e st e e sl ok o e ke 3K ofe kS ok e e s s e ok e ok s o ke ol ok sk o ke ke ok ok ok ok
ok ok ok ok ok

Method: somUninit
Purpose: Frees up ressources

e e ke e ke e ke ke sk e e sk sk ok sk ok sk e e ke ek o s sk sk o sk e ok 3 ok 5 ok 3k 3 e 3 e sk ke sk 3k 3k s sk ok 3k ok o e e ok ok ke ke e e ok e
ook ok sk ok ok

*/
SOM_Scope void SOMLINK somUninit(xxxM_PID_ DS somSelf)
{

/* Variable Declarations.

long n;
entry *cte; /* pointer to a connection table entry */

/* Set up.

21

10

18

20

25

30

35

40

45

50

55

EP 0 680 000 A1

_______ %/
xxxM_PID_DSData *somThis = xxxM_PID_DSGetData(somSelf);
xxxM_PID_DSMethodDebug("xxxM_PID DS","somUninit");
printf("mpid_ds::somUninit\n");

/* Free connection table.

for (n=0; n < maxElements; n++) {
cte = & connectionTable[n];
if (cte->key !'= NULL) {
SOMFree(cte->key);
SOMFree(cte->connection_handle);
} /* endif */
}

xxxM_PID_DS_parent_SOMClass_somUninit(somSelf);

oooooooooooooooo

#define xxxPID Class_Source
#include <opspid.ih>

/*

e ek e e o e e o s e oo ke sk e s s ok ok e sk s e s e ok ke sk s ook e sk s sk s e s e sk o ok sk ke sk s e sk sk ok sk s e ok e e ke ok ok ok ok
e sje ok ok sk

Method: _get datastore type
Purpose: gets the datastore type for this PID
Overriden: YES - this is overriden by the PID DS

e e s ok ok ok ook s ok o e e ke se sk e sk e e s ok sk sk ook s e o e e sk se sk b ok ok s ke sk ok sk st ok ok sk sk ek ok sk sk s ok sk s ke s ok ok
3k Kok Kk

*/
SOM_Scope string SOMLINK _get_datastore type(xxxPID
somSelf,

Environment *ev)

{
/* xxxPIDData *somThis = xxxPIDGetData(somSelf); */
xxxPIDMethodDebug("xxxPID","_get_datastore_type");

22

10

18

20

25

30

35

40

45

50

55

EP 0 680 000 A1

/* Return statement to be customized: */
return;

}
/*

e e T E r Lt I T a——
Hskok ok kK

Method: _set_datastore type

Purpose: sets the datastore type for this PID
Overriden: YES - this is overriden by the PID_DS

ek ok Kk ok

*/
SOM_Scope void SOMLINK _set_datastore_type(xxxPID somSelf,
Environment *ev,

string datastore_type)
{
/* xxxPIDData *somThis = xxxPIDGetData(somSelf) ; */
xxxPIDMethodDebug("xxxPID","_set_datastore type");

/*

dedkoRokok ok ok Aok sk ok ok sk o sk ok okl sk ook sk Ao ok ok Aok ook sk ok e sk ok sk ok sk ok ok ook ook o
Aok kok ek

Method: get PIDString

Purpose: gets the PID in a string format
Overriden: YES - this is overriden by the PID_DS

e b 3 ok e e ok e o 3 e e 3 3 o 3 ok e ke ke o e ok sk e sk o ke s o ok sk e sk ok s s sk s ke e sk ok sk sk s e sk sk ke ok s e ke sk ok e sk sk sk
%Kok %k 3k %k sk sk

*/
SOM_Scope string SOMLINK get_PIDString(xxxPID somSelf,
Environment *ev)

{
/* xxxPIDData *somThis = xxxPIDGetData(somSelf); */
xxxPIDMethodDebug("xxxPID","get PIDString");

/* Return statement to be customized: */
return;

................

23

10

15

20

25

30

35

40

45

50

55

EP 0 680 000 A1

#define xxxPID_DS_Class_Source
#include <stdio.h>

#include <pid_ds.ih>

#include <mpid_ds.h>

#include <{stream.h>

#include <memstrm.h>

/*

e 3k 2k e o sk sk ok ok ok ok ok ok e ok ok ok ok e ok ok sk ok sk sk e o sk sk ok e sk sk e sk sk sk sk ok sk sk sk ok ok sk sk sk sk ok sk ok sk sk sk sk e ok sk ok ok ok ok
*kokokokkokk

Method: set PIDString
Purpose: Take a string and reset the PID
Called by: PID Factory

sk ek sk skl ok sl sk ks sk sk ok ok sk ok sk ok ok ok ok o sk ok sk sk ke sk ok ks sk ek ke
ek ok ok o
*/
SOM_Scope void SOMLINK set_PIDString(xxxPID DS somSelf,
Environment *ev,

string buffer)

xxxPID_DSData *somThis = xxxPID_DSGetData(somSelf) ;
long length;

long n;

xxxPID_DSMethodDebug("xxxPID_DS","set PIDString");

/* Replace string seperator charactor by NULLS.
__ */
printf ("pid_ds::set_PIDString:Replace separator by

NULL\n");
length = strlen(buffer) + 1;
for (n=0; n<=length; n++) {
if (*(buffer+n) == xxxPID DS stringSep) *(buffer+n) = '\0';

}

/* Set stream.
___________ *
printf("pid_ds::set_PIDString: call set buffer\n");
_set_buffer(_stream, ev, buffer, length);
printf("pid_ds::set_PIDString: call readFromPIDStream\n");
_readFromPIDStream(somSelf, ev);

}

/*

24

10

15

20

25

30

35

40

45

50

55

EP 0 680 000 A1

3K 3k 3k 3k ke 3k 3k 3k ok ok 2k e 2k sk 2k 3k S 3k sje sk e sk e 2 ke sk ske sk e ok sk o ke sk sk ok o ok e sfe sk sfe sk sk sk ke sk sk ok sk ke sk e sk sk ok ke e sk ok ke ke ok
e sk ok o ok ok ok

Method: updatePIDStream
Purpose: Add this level's data to the PID stream

Should be overriden by derived classes
Called by: get PIDString

sk e o ok ke ok 3 sk 3 ok shesfe ok ok ok ok o e ok she e sk sbe e ok e e s s e sk she ok ok sk ok ok sk ok ok ok ok ok sk 3K 3k ok ok sk 3K ok ok 3 ok e sk ke sk sk ok sk ok ok
% ok ok Ak ok ok ok

*/
SOM_Scope void SOMLINK updatePIDStream(xxxPID_DS somSelf,
Environment *ev)

_______ */
xxxPID_DSData *somThis = xxxPID_DSGetData(somSelf) ;
string className;

xxxPID_DSMethodDebug("xxxPID DS","updatePIDStream");

/* Add class of PID.
................. * [
className = somGetClassName(somSelf) ;
_put_string_item(_stream, ev, className);
SOMFree(className) ;

/* Add datastore_type of PID.
__________________________ * |

_but_string item(_stream, ev, _datastore type);

}

/*

sk s o ok o ok o ol ok o afe s e e e ke e ke ke ok ke sk ke ke sk e sk sk sk 3k 3 3 3k s sk sk ok sk o s 3k sl ok ok ok ok sk ok ok ok ok o ok sk sk sk sk ke sk seoke s ok
ek skeokskkk

Method: readFromPIDStream
Purpose: Read this level's data from the PID stream
Should be overriden by derived classes
Called by: get PIDString

sk KRRk R R ok ks stk ok ok okoskoksk sk sk kel ok ksl e Rk Aok sk ok ok
sk ok ok ok
*/
SOM_Scope void SOMLINK readFromPIDStream(xxxPID_DS
somSelf,

Environment *ev)

{
/* Set up.

25

10

15

20

25

30

35

40

45

50

55

EP 0 680 000 A1

_______ */

xxxPID DSData *somThis = xxxPID_DSGetData(somSelf) ;
string className;

string dsType;
xxxPID_DSMethodDebug("xxxPID_DS","readFromPIDStream");

/¥ Get class of P1D.

_________________ */
className = _get_string item(_stream, ev);
SOMFree(className) ;

/* Get datastore type of PID.
__________________________ */

dsType = _get_string _item(_stream, ev);
_set_datastore_type(somSelf, ev, dsType);
SOMFree(dsType);

}
/*

3 2k o abe e sk e ok ok e s ok ke o sk ke ok sk e sk o ke o e el st abe s sk ok e sk ke ke sk sk 3K sk ok ok sk ok ok ok sk sk ok ok e sk ok sk ok ke sk ok ok ok ok ok ok ok
ek okkeok

Method: open_datastore
Purpose: Do a logical open on the PID
Called by: client

3k e ok s ke sk e ok ok ok s ok s ke s e ok 3k sk 3 ok 3 ok ke sk sk o ke she 3 ok ok ke ok sk sk ok e sk e ok o o ok ke e ke sk o sk ok ok ok sk ok kol sk ok ok ok ok ok
ok ok ok kokok

*/

SOM_Scope void SOMLINK open_datastore(xxxPID DS somSelf,
Environment *ev)

_______ */
xxXPID DSData *somThis = xxxPID DSGetData(somSelf);
xxxM_PID_DS classObj;
xxxPID_DSMethodDebug("xxxPID_DS","open_datastore");

/¥ Passthru.

......... */
printf("pid_ds::open_datastore\n");

classObj = somGetClass(somSelf) ;
xxxM_PID_DS_open_datastore(classObj, ev, somSelf);

/*

26

10

15

20

25

30

35

40

45

50

55

EP 0 680 000 A1

e e oo e e abe o o 3 afe dbe o afe sk ok ke ok sk o o e ek ol she ok ok ok ok ok ok ok ok k6 ok o ok o4 ok 3K e st sk ok Bk o sk sk e ok 2k ok ok ok ol o ke ok Kk ok Ak
ok ok ok ok ok ok

Method: close_datastore
Purpose: Do a logical close on the PID
Called by: Client

ke sk e s e s ok o e s e e o e o e e s ofe s sk ke s s e ok s e s ke sk s o o s o sk ke o s ke sk s s s e skt s s e ok o sk ke o s ok ok sk ok ok
sk ofe e ke e e ok

*/
SOM_Scope void SOMLINK close_datastore(xxxPID_DS somSelf,
Environment *ev)

xxxPID_DSData *somThis = xxxPID_DSGetData(somSelf) ;
xxxM _PID_DS classObj;
xxxPID_DSMethodDebug("xxxPID_DS","close datastore");

/* Passthru.
_________ */
printf("pid_ds::close datastore\n");
classObj = _somGetClass(somSelf) ;
xxxM_PID_DS_close_datastore(classObj, ev, somSelf);

}
/%

seaksokok ook kR sk ok ok ok Aok sk kskok ks koo sk ok bk sk ook ok ek sk ok ke ok ok o ok ok ok ke ok sk ke
feskokok ok

Method: get datastore_handle

Purpose: Get the datastore handle from the meta class
Called by: PDS

Tk ok sokodorokok kool dok ookl kR skokok ok ok stk ok solokok ok okok ok ok ootk ksl ok ok sk ok ko
ok ok ook

*/

SOM_Scope void* SOMLINK get_datastore_handle(xxxPID_DS

somSelf,
Environment *ev)

_______ * |
xxxPID_DSData *somThis = xxxPID_DSGetData(somSelf) ;

void *handle;
xxxM_PID_DS classObj;

xxxPID_DSMethodDebug("xxxPID_DS","get datastore_handle");

27

10

15

20

25

30

35

40

45

50

55

EP 0 680 000 A1

/* Passthru.

_________ */
classObj = _somGetClass(somSelf);

handle = xxxM_PID_DS_get_datastore_handle(classObj, ev,
somSelf) ;

return handle;

}
/%

koo kool ok ok ok ok ok sk Kok ok sk K ko sk ok ko ok kol sk ok skok sk ok ok ok ok ook ok sk ok skok ok ok
Aok ARk
Method: get_stream

Purpose: Get the stream used for reading and writing to.
Called by: Overriden versions of updatePIDStream

ek ok ok ok o o e ok ke ok sk o ok ke ke sk sk ol ke sk ok sk ok o ok ok ok o e ok ok o ok ok o sk sk 3k o sk sk sk ok ok s e sk sk sk s ok o o ok ok ok sk sk ok ok oK
s ke st e skeoke sk

*/
SOM_Scope xxxMemoryStream SOMLINK get_stream(xxxPID DS
somSelf,
Environment *ev)

{
xxxPID_DSData *somThis = xxxPID_DSGetData(somSelf) ;
xxXxXPID_DSMethodDebug("xxxPID_DS","get stream");

return _stream;

}
J%

ok ok 2k 3 3 o 3l sl e 3 ok ok ok ke e ok sk ok ok e ok e o o S Sk ok e e e s ok ok ok e ke e e ok ok ok o ke sk sk sk ok ke o sk sk ok e o sk sk ok e sk sk ok ok K
Heokeokoe sk kok

Method: _get_ datastore type

Purpose: gets the data store for this PID
Called by: POM

ek sk o ok sk sl o ok sk ok ok s ke ok ok ok ok 3k ok ok ok 3k ok 3k 3 3k sl e e e s e ok sk e ke o ke ke e sk ke ok ke e ok sk ke e ke ok e ok sk ok sk ok sk sk
K3k ok ok ok ok 5k

*/
SOM_Scope string SOMLINK _get_datastore_type(xxxPID DS
somSelf,

Environment *ev)

{
xxXPID_DSData *somThis = xxxPID DSGetData(somSelf);

xxxPID_DSMethodDebug("xxxPID_DS"," get datastore type");
return _datastore_type;

}

28

10

15

20

25

30

35

40

45

50

55

EP 0 680 000 A1

/*

sfesfeok ok o ok ok

Method: _set_datastore type

Purpose: sets the data store for this PID
Called by: client or factory

seskokok sk ok

*/
SOM_Scope void SOMLINK _set datastore _type(xxxPID DS
somSelf,

Environment *ev,
string datastore_type)

xxxXPID_DSData *somThis = xxxPID_DSGetData(somSelf);
long length;

xxxPID_DSMethodDebug("xxxPID DS", "_set_datastore_type");

/* Allocate and return.

____________________ */
if (_datastore_type) SOMFree (_datastore type);

length = strlen(datastore type) + 1;
_datastore type = SOMMalloc(length) ;

strepy (_datastore_type, datastore type);
}

/*

3k 2k ok ok e sk ok

Method: get PIDString
Purpose: get the PID in a string format
Called by: client

3ok ok ok ok sk ok

*/
SOM_Scope string SOMLINK get_PIDString(xxxPID_DS somSelf,
Environment *ev)

....... */
xxxPID_DSData *somThis = xxxPID DSGetData(somSelf);

29

10

15

20

25

30

35

40

45

50

55

EP 0 680 000 A1

string result;

long length;

long n;

xxxPID_DSMethodDebug("xxxPID DS", "get PIDString");

/* Get stream.

___________ */

_reset(_stream, ev);
_updatePIDStream(somSelf, ev);
result = _get_buffer(stream, ev);

/* Replace string nulls by string seperator.

length = _get length(_stream, ev);
for (n=0; n<=length; n++) {

if (*(result+n) == '\0') *(result+n) = xxxPID DS _stringSep;
}

/* Replace trailing string seperators by nulls.

n = length;
for (53) {
if (*(result+n) != xxxXPID DS stringSep) {
break;
}

*(result+n) = '\0';
n--;
}

return result;

}
J%

Aeokoksiokok ok skl skl ok dekolosk sk sk skl ool el o s o sk sk sk sk ok ook sk ok o sk ok ok ok sk sk kK
3k 3¢ o6 ok 3¢ 3¢

Method: somlnit

Purpose: Initialize object
Called by: som run time

kol ok sk ok ok

*/
SOM_Scope void SOMLINK somlnit(xxxPID_DS somSelf)

_______ */
xxxPID_DSData *somThis = xxxPID_ DSGetData(somSelf) ;
Environment *ev;

xxxPID_DSMethodDebug("xxxPID_DS","somInit");
xxxPID_DS_parent_xxxPID_somlInit(somSelf);

30

10

18

20

25

30

35

40

45

50

55

EP 0 680 000 A1

ev = SOM_CreateLocalEnvironment();
/* Initialize our data.

_datastore_type = 0;
_set_datastore_type(somSelf, ev, "Unknown");
_Stream = xxxMemoryStreamNew() ;

/* Finished.
_________ %/

SOM_DestroyLocalEnvironment(ev);

/*

Aok KAk Kok Rk Ak ok ok R kok sk sk ok kol Rkl sk sk ok sk ok ok o ok ok sk ok sk e e sk ok
Heokoleok A ok ok

Method: somUninit

Purpose: Free object resources
Called by: som Run Time

3 sk e e ok ke 3 s ok e sk sk ok ok ok o o e sk e sk s ke ok ok ok e o e ok sk 3 ok sk ok sk 3k 3K 3k sk e e ok sk ke e ok o ol ok 3 ok ol ke 3k ke ke e ke e ok ok
sfe sfe ofe dk¢ ok ke sk

*/

SOM_Scope void SOMLINK somUninit(xxxPID_DS somSelf)

_______ */
xxxPID_DSData *somThis = xxxPID_DSGetData(somSelf) ;
xxxXPID_DSMethodDebug("xxxPID _DS","somUninit");

/* Free object resources.

______________________ *
SOMFree(_datastore type);

_somFree(_stream);
xxxPID_DS parent xxxPID_somUninit(somSelf);

Claims

1. A method for accessing a Datastore in a data processing system with an object-oriented environment,
wherein said data processing system includes an object and an identification object, wherein said iden-
tification object is within a class object, said method comprising the data processing system implemented

31

10

18

20

25

30

35

40

45

50

55

EP 0 680 000 A1

steps of:

receiving a request to open said Datastore at said identification object;

sending said request from said identification object to said class object in response to receiving
said request;

determining whether said Datastore is open in response to receiving said request at said class ob-
ject;

opening said Datastore in response to determination of said Datastore being closed and sending
a message to said identification object indicating that said Datastore has been opened;

sending a message to said identification object indicating that said Datastore has been opened in
response to a determination that said Datastore is open.

A method as claimed in claim 1 further comprising:

receiving a request to close said Datastore at said identification object;

sending said request from said identification object to said class object in response to receiving
said request at said identification object;

determining whether other objects require said Datastore to remain open;

closing said Datastore in response to a determination that a requirement that said Datastore remain
open is absent; and

sending a message to said identification object indicating that said Datastore has been closed.

A data processing system having an object-oriented environment, wherein said data processing system
includes an object and an identification object, wherein said identification object is within a class object,
said data processing system comprising:

reception means for receiving a request to open a Datastore at said identification object;

first sending means for sending said request from said identification object to said class object in
response to receiving said request;

determination means for determining whether said Datastore is open in response to receiving said
request at said class object;

opening means for opening said Datastore in response to said Datastore being closed and sending
a message to said identification object indicating that said Datastore has been opened; and

second sending means for sending a message to said identification object indicating that said Da-
tastore has been opened in response to a determination that said Datastore is open, wherein access to
said Datastore is optimized.

A data processing system as claimed in claim 3 further comprising:

second receiving means for receiving a request to close said Datastore at said identification object;

third sending means for sending said request from said identification object to said class object in
response to receiving said request at said identification object;

second determination means for determining whether other objects require said Datastore to re-
main open;

closing means for closing said Datastore in response to a determination that a requirement that
said Datastore remain open is absent; and

fourth sending means for sending a message to said identification object indicating that said Da-
tastore has been closed.

Adata processing system as claimed in claim 3 or claim 4, wherein said Datastore is a relational database.

A data processing system as claimed in any of claims 3 to 5, wherein the reception means receives a re-
quest from a client object.

A data processing system having means for supporting persistent objects comprising:

a reception means for receiving a request from a requesting object to access a Datastore;

access means for accessing said Datastore in response to receiving said request, said access
means including:

first determination means, responsive to receiving a request to open said Datastore at said recep-
tion means, for determining whether said Datastore is open;

first opening means for opening said Datastore, responsive to a determination that said Datastore
is closed;

32

10

18

20

25

30

35

40

45

50

55

EP 0 680 000 A1

second opening means for virtually opening said Datastore, responsive to a determination that said
Datastore is already opened;

second determination means, responsive receiving a request to close said Datastore at said re-
ception means, for determining whether a requirement exists for said Datastore to remain open;

first closing means for closing said Datastore responsive to a determination that a requirement that
said Datastore remain open is absent; and

second closing means for virtually closing said Datastore, responsive to a determination that a re-
quirement exists for said Datastore to remain open.

33

EP 0 680 000 A1

Frg. 1

34

EP 0 680 000 A1

rrecscacne

X -r-1--cte

[}
1] L]
! WOY .om*
m \l’l\huﬂ m L "
1
: woy-ao
m ~q9¥
PN G R WS M AT SR R W W R W S W R e e TR N SR SR M MR e W D Em R S TR R R WD G T S M W AR WS M SR e e ar R W OR AD P R A W Y SN SN AN W ----"-'-"‘
viep Lrowaw i<, 8NqQ [oUURYD OJOIW
riur ¥8|p piey
06 se)nq 1A/ 97
GWZ teuopido u,e» weusp [~ . ejep b
791 967 1018 O/ Py
Xnw
gnz |suoido .U dis wesp P ssouppe o
9 1A =2
anz 1suondo -] die weup 3 oposen 0 ynq g 8y
091 s89 ‘sw)) @ |
| 0S~b onuos 4 19)1qe
awL ojseq dis wep |®jued
. . 19}10J}U0D
mnw om ‘seo ‘suy JSlIONUO neos =) 7
swp
wmw om.w mmw NNM va (8 5
wou Jewpy seidepe aﬁ.ﬂo weiAy sojdepe| | serdepe-(/ \.mm S 1213l uc v
CILILL] / Y9010 onoxsip| | Amdsip 3 m 21a W
J9podep 3 w o
e, HH
9)nq Burwp
/ 10JJU09
H yoie| snq Q¢
N ssaippe
—_— snq
BiEp 9 enq o/t Jeueid T *nq wejsks J0)nq 1ev0]
|oJjUuOD
d 1w it =2
ieidep®| | gonow s \\:*N
cees) pieoqhey 0£
, P m e iccccaceccaaacccaencegaaeeameanq | OYOwO
: v 19§]013U0D
:wmr _, h,; m 2 L Suowo
) ST ST) y [T} T
jojeuuos g v q\v ¢ [iosseo 8¢
zZezsl uod uod N . .% _ ' | “oidos ._ONMM_o..”._a.;
0l (74 wew g7

g gt

L T g g

35

Fag. 3

EP 0 680 000 A1

36

118

EP 0 680 000 A1

37

5204

206

5214

CLASS
OBJECT

EP 0 680 000 A1

C seomn)

C seon)

_5320

5328

RECEIVE
CLOSE REQUEST
FROM PID

COUNT =107

OPEN DATASTORE

5306

END)

Fag. 7

C

3262 '

38

END

Fig. 6

SET COUNT =0

EP 0 680 000 A1

Q) European Patent EUROPEAN SEARCH REPORT Application Number
Office EP 95 30 2661

EPO FORM 1503 03.82 (P04CO1)

DOCUMENTS CONSIDERED TO BE RELEVANT

Category Citation of document with indication, where appropriate, Relevant CLASSIFICATION OF THE
of relevant passages to claim APPLICATION (Int.Cl.6)
A HEWLETT-PACKARD JOURNAL s 1,3,7 GO6F17/30
vol. 44, no. 3, 1 June 1993 GO6F9/44

pages 20-30, XP 000303911

RAFIUL AHAD ET AL 'HP OPENODB: AN
OBJECT-ORIENTED DATABASE MANAGEMENT SYSTEM
FOR COMMERCIAL APPLICATIONS'

* the whole document *

TECHNICAL FIELDS

SEARCHED (Int.CL6)
GO6F
The present search report has been drawn up for all claims
Place of search Date of completion of the search Examiner
THE HAGUE 8 August 1995 Katerbau, R
CATEGORY OF CITED DOCUMENTS T : theory or principle underlying the invention
E : earlier patent document, but published on, or
X : particularly relevant if taken aione after the filing date
Y : particularly rel if bined with th D : document cited in the application
document of the same category L : document cited for other reasons
A : technological background
O : non-written disciosure & : member of the same patent family, corresponding
P : intermediate document document

39

	bibliography
	description
	claims
	drawings
	search report

