BACKGROUND OF INVENTION
[0001] This invention relates generally to the beneficial treatment of organics-contaminated
water, and more specifically relates to method and apparatus for remediating groundwater
which has become contaminated with hydrocarbons.
[0002] Groundwater contamination, typically arising from petroleum storage tank spills or
from intentional or accidental discharge of liquid hydrocarbons or compositions containing
same, has become a problem of increasing concern in virtually all areas of the world
where human activities occur. Aside from contamination of this type which results
from industrial complexes, it has unfortunately been found that even suburban neighborhoods
which would appear to be havens from such phenomena, have increasingly been found
to the consternation of the residents to harbor pools of hydrocarbon pollutants, the
source of which is very commonly automobile service station sites at which antiquated
or abandoned storage tanks have released gasoline, fuel oils, lubricants and the like
into the local groundwater. Other common sources of such noxious material can include
dry cleaning establishments and/or manufacturers or distributors of the tetrachloroethane
which is used in dry cleaning. Other well-known hazardous hydrocarbon materials include
polychlorinated phenols (e.g. PCB's), pentachlorophenols (PCP's), and various aliphatic
and aromatic hydrocarbons, as for example gasoline, benzene, naphthalene and various
petroleum and petroleum derivative products. Certain particularly pernicious compounds
of this type are often considered under the grouping "BTEX", which is understood by
those familiar with the art to refer to benzene, toluene, ethyl benzene and the xylenes
(m-, p-, and o-). The BTEX content of groundwater or other contaminated sites is frequently
regarded as a principle measure of the acceptability of the water in question for
human consumption and use and other purposes.
[0003] Various remediation techniques have been utilized in the past for treatment of groundwater
which has been thus contaminated. Among the most predominate type of systems in present
use are those based on so-called "pump and treat" technology. In this method the contaminated
groundwater and possibly a phase-separated product is withdrawn from a recovery well
sunk into the groundwater and pumped to an above ground treatment facility.
Various treatment techniques are thereupon used, such as diffused air treatment and
air stripping. Inline filters can also be used; and similarly carbon adsorption can
serve to remove contaminants from the displaced groundwater. Systems of the pump and
treat type are considered expensive to install and operate. In many instances they
basically result in separation or adsorption of the contaminants, and while purified
water may result from the treatment, the problem often remains of disposing of the
contaminants which have thus been separated.
[0004] In recent years increasing interest has also been evidenced in bioremediation technology.
The technology has been of great interest, but its effective use in treating groundwater
has been limited. The procedures are very complex, involving the use of expensive
and complex reactors, and can cause adverse geochemical reactions, and can even introduce
new toxic compounds beyond those which are being treated.
[0005] Pursuant to the foregoing, techniques have been sought which would serve to directly
treat the contaminated groundwater in both effective and economical fashion.
[0006] It has long been recognized that the hydrocarbons representing the source of contamination
in the subject matter of interest, can by ordinary chemical reactions be oxidized
to harmless constituents. In principle, all such hydrocarbons can under proper conditions
be oxidized to harmless end products, such as water and carbon dioxide. To date, practical
methodology to achieve such results, however, have not been widely adopted. Among
the strong oxidizing agents which in principle could serve these purposes is hydrogen
peroxide, a composition which is readily available and at reasonable cost. Some efforts
have indeed been made to utilize this oxidizing agent for these purposes. In
Brown et al., U.S. Patent No. 4,591,443, for example, an aqueous solution containing hydrogen peroxide,
together with a compound for controlling the mobility of the aqueous solution by modifying
the viscosity or other flow properties, is introduced into a permeable subterranean
formation. It is not contemplated that the groundwater can be treated directly in
this disclosure.
[0007] Forte et al., U.S. Patent No. 4,167,973, discloses the use of strong oxidizing agents, which can
include hydrogen peroxide, for treating contaminated water and the like which has
been withdrawn from an underground source and is thereupon treated in a mixing device.
The methodology is therefore of the pump and treat system type, and the treatment
of the groundwater is not in situ.
[0008] Other patents of interest include U.S. Nos. 4,927,293 to
Campbell, and 4,978,508 to
Hansen et al.
[0009] Among the other deficiencies of the prior art, is the failure to define a system
wherein a strong oxidizing agent such as hydrogen peroxide may be directly injected
into groundwater in a manner such that it can react in situ with the hydrocarbon contaminants
present in same, while at the same time providing techniques to assure the efficacy
of the said method.
[0010] Pursuant to the foregoing it may be regarded as an object of the present invention
to provide a method and system which enable economical, effective and rapid treatment
of groundwater contaminated with hydrocarbons, so as to destroy the said hydrocarbons
or reduce same to a level below that which is considered detrimental to human use.
[0011] It is a further object of the present invention to provide a method and apparatus
of the foregoing character, which utilizes safe and readily available treatment chemicals,
and which moreover results in output products which are harmless and safe.
[0012] It is a still further object of the invention to provide a method and apparatus which
can be practiced with use of relatively simple equipment, and by relatively unskilled
personnel.
SUMMARY OF INVENTION
[0013] Now in accordance with the present invention, a method is provided for remediating
a hydrocarbon contaminated region of a subterranean body of groundwater, which is
effective to destroy or reduce the initial concentration level of hydrocarbon contaminants,
beneath that level which is considered detrimental or dangerous to humans.
[0014] Pursuant to the invention, a plurality of mutually spaced wells are provided by sinking
same into the groundwater region, with which the bottoms of the wells intersect so
as to provide means for injection of the reactants used in the invention. In the course
of practicing the invention, a treating flow of a hydrogen peroxide solution is provided
from one or more of the wells. Periodically the treating flow may be stopped and a
determination made of the hydrocarbon contaminant levels at each said well, the process
being continued until the initial contaminant concentration levels drop below predetermined
acceptable values. The treating flow may additionally contain reaction surface enhancing
reagents, i.e. reagents such as dispersions of lime or the like, which provide increase
or provide surfaces at which the reaction between the hydrogen peroxide and the hydrocarbon
contaminants may occur. Similarly, effective amounts of catalytic agents may be incorporated
into the treating solution or preferably are provided as a preinjection into the groundwater
region to be treated. Typical such catalysts are initiation catalysts of various types
known in the art to promote the desired reaction between the hydrogen peroxide and
hydrocarbons. These reagents are particularly appropriate, e.g. where saturated alkanes
are involved, which do not efficiently and readily react without an initiation catalyst.
Typical catalysts of this nature can include dispersions of iron filings and/or dispersions
of elemental silver or other metals known to be useful for this purpose. Other additives
can also be employed to modify the rheology of the treating flow; and stabilizers
and the like may be present in the hydrogen peroxide solution to inhibit premature
reaction or decomposition of the oxidizer.
[0015] The reaction products of the method constitute innocuous substances, principally
water and carbon dioxide predominantly with some associated oxygen and trace element
oxidations all of which are lower order of concentrations. Peroxide cleaves aromatic
ring structures, and oxidizes the resulting straight-chain or branched-chain alkanes.
The oxidation proceeds through progressively shorter hydrocarbon chains, eventually
resulting in carbon dioxide and water. The peroxide reduction leaves no hazardous
residue itself. The hydrogen peroxide may be used in concentrations of from about
to 10 to 35% by weight solutions, which are available commercially from many sources.
[0016] Typical flow rates used in the foregoing process can be of the order of 3.8 - 22.7
litres (1 to 6 gallons) of hydrogen peroxide solution per minute per well, expressed
on the basis of a 35% by weight solution of hydrogen peroxide.
[0017] In a preferred mode of practicing the present invention, the existence of acceptable
continuity and well interflow paths for the groundwater region to be treated is established
by initially generating a test flow of a solution of hydrogen peroxide from one of
the wells and monitoring pH changes at each other of the wells as a function of time.
A pH drop of at least 0.2 is considered to be indicative of satisfactory conditions.
The pH changes are characteristic of the REDOX reactions involved in the invention
and are believed to result from the formation of carboxylic acids during the reaction
between the hydrogen peroxide and hydrocarbons. Typical such products are acetic acid
and certain alkyls. None of these components are hazardous, but if desired, they can
be neutralized as part of the overall treatment process. Subsequent to detecting the
said pH drop, a treating flow of the hydrogen peroxide solution is then provided from
one or more of the wells. The treating flow is again periodically stopped and the
hydrocarbon contaminant levels measured at each well until the initial concentration
levels drop below predetermined acceptable values.
[0018] Typical treating flows are at the rate of 3.8 - 22.7 litres of (1 to 6 gallons) of
hydrogen peroxide per minute per well, expressed on the basis of a 35 weight percent
solution of hydrogen peroxide. The treating flow is provided under a pressure not
more than the hydrostatic head relative to ground surface at the point of treating
flow discharge from the well. If the pressure exceeds this, it is possible for some
of the reactants to pass upwardly through the porous overburden and create undesirable
conditions on the ground surface. Very typically in most installations the treating
flow is under a pressure of about 0.14-0.37 MPa (6 to 40 psig), subject to the boundary
condition indicated in the foregoing.
[0019] The total treating flow of hydrogen peroxide solution will generally be in the range
of 1 to 5% by weight of the effective volume of contaminated water which is to be
treated, expressed on the basis again of a 35% solution of hydrogen peroxide. The
"effective volume" is considered for purposes of this specification includes not only
the pooled or possibly slowly flowing groundwater region per se, but as well the overburden
which defines the region between the top of the groundwater and the overlying surface
accessible to atmosphere. This is considered appropriate in that the communication
between overburden and groundwater is such that water can flow with relative ease
between the surface overburden and groundwater, and hence in calculating quantities
of treating reactants, account should desirably be taken of this factor. "Effective
volume" also reflects the apparent interflow from adjacent regions into the region
being treated. Boundary interflow can be evaluated by observing how rapidly the pH
may change as a function of time at the various wells after a test flow is completed,
i.e. a relatively rapid change will indicate that flow from adjacent regions is relatively
high, leading to an adjustment in the initially calculated effective volume of the
order of 10 to 20%.
[0020] The total volume utilized in the test flow is typically 0.5 to 1% by weight of the
effective volume of the contaminated water, expressed on the basis of a 35% hydrogen
peroxide solution.
[0021] In typical treatment arrangements pursuant to the invention at least three injection
wells are utilized which are spaced about the periphery of the groundwater region
to be treated. The test flow is injected at one said well and the pH changes are monitored
at the other said wells.
[0022] In a further aspect of the invention, it has been found that in addition to the pH
change serving as a sensitive indicator of interflow and continuity, temperature changes
also resulting from the aforementioned REDOX reactions may serve as an additional
monitoring parameter. Thus in this aspect of the invention the temperature changes
are monitored at one or more other of the wells during the test flow process. A temperature
rise of at least 1.1°C (2°F) at each well spaced from the injection well is considered
a confirmatory indicator of the acceptable continuity and well interflow paths.
[0023] In the special case in which a static plume is found to exist, same being indicated
by observing following moderate atmospheric precipitation that the water levels in
the plurality of spaced wells show common changes in height, the treatment regime
involves confirming the existence of the static plume by generating a test flow of
a solution of hydrogen peroxide from one of the said wells and monitoring the absence
of pH changes at each other of the said wells as a function of time. A 35 treating
flow of hydrogen peroxide solution from each of the wells is then provided at a representative
rate of 3.8-22.7 l/min (1 to 6 gallons/minute) to establish a radial sweep about each
said well, the total volume of treating solution being again from 1 to 5% by weight
of the effective volume of contaminated water expressed on the basis of a 35% hydrogen
peroxide solution.
BRIEF DESCRIPTION OF DRAWINGS
[0024] The invention is diagrammatically illustrated, by way of example, in the drawings
appended hereto in which:
FIGURE 1 is plan elevational view, diagrammatic in nature of the topography of a site
at which groundwater is to be treated;
FIGURE 2 is a cross-sectional view taken along the line 2-2 of Figure 1, and illustrating
in the subterranean characteristics of the mapped portion of Figure 1; and
FIGURE 3 is a schematic cross-sectional view through a representative monitoring end
injection well of the type utilized in Figures 1 and 2. The control elements used
in connection with the method and system are schematically illustrated in this Figure.
DESCRIPTION OF PREFERRED EMBODIMENT
[0025] Referring to Figures 1 and 2, plan and cross-sectional views are shown of a typical
site in which the method of the invention may be utilized. Contours and topography
are indicated by appropriate indicia in feet and inches. The groundwater reservoir
to be treated is shown in outline at 10 in Figure 1, at which it is seen that four
monitoring and injecting wells 12, 14, 16 and 18 are provided, generally around the
periphery of the groundwater reservoir 10 to be treated. As best seen in the cross-sectional
view of Figure 2, each of the wells extend to intersect groundwater reservoir 10.
Reservoir 10 may be considered to be polluted with various organic contaminants of
the type previously discussed. The groundwater reservoir 10 lies atop an impermeable
clay layer 20 underneath which bedrock 22 is present. Atop the groundwater reservoir,
in order is a silty sand with clay and some gravel layer 24; a silty sand with clay
and gravel layer 26; and finally a sand with silt and gravel layer 28. The soil layers
atop the reservoir are generally porous and permit with relative ease communication
of atmospheric precipitation with the said reservoir. The present reservoir 10 may
be considered as not being a static plume; i.e. flow to and from same is readily possible,
although obviously is impeded by the surrounding surfaces and boundaries.
[0026] Details of a specific monitoring and injection well 30 are seen in Figure 3. A borehole
32 is provided in which a well casing 34 typically of a PVC material, is inserted
as a liner. This liner, as is well known in the art, is provided beneath seal 35 with
a slotted well screen 36, i.e. the PVC is provided with multiple fine slots to create
the screened effect. A sand/gravel pack 37 surrounds slotted screen 36. An injection
string 38 extends to the interior of the well. A valve 40 is provided and a temperature
transducer 42 and a pressure transducer 44 are connected to the upper, i.e. above-ground
portion of injection string 38 between valve 40 and a valve 46. A quick connect assembly
is provided at 48. Schematically shown in Figure 2 are a series of supply tanks 50,
52, 54, 56, 58 and 60, respectively being used for the hydrogen peroxide treating
solution, catalyst, stabilizer, enhancer, acids, and alkalies as required. Additional
tanks may be provided e.g. when more than one catalyst is used. Pumps 62, 64, 66 and
68 may dispense these components to the quick connect assembly and thereby to the
injection and monitoring well 30. Each of the pumps are under control of a control
station 70 including a control console 72. Monitoring display 74 provides data and
information to the operator, including pressures and temperatures from the transducers
at 42 and 44. A chart recorder 76 is similarly provided at the control station 70.
A portable test set 78 may be used to establish such parameters as pH, temperature,
salinity, conductivity and the like. When needed, deionized water from tank 80 and
potable water from tank 82 can also be provided via pumps 84 and 86 to the quick connect
assembly 48. The entire system is highly portable; an A.C. power generator 88 is provided,
and may be driven by a gasoline or other motor. This provides power for all control
units including the central control station 70. It will be appreciated that a monitoring
flow can be withdrawn from the well, as can a treating or test flow be injected via
the well into the groundwater which the well intersects.
[0027] The volume of groundwater reservoir 10 is known in advance from the plurality of
wells, which have served to establish the level of the reservoir and depth of the
water in same, and the general contours of same. It will be clear that from these
considerations the effective volume, i.e. including the reservoir and overburden is
calculable -- which effective volume may include a 10 to 20% additive factor for porous
flow to adjacent zones which are lateral to the region of interest. In the course
of operating the present system, and pursuant to the foregoing discussion, the existence
of acceptable continuity and well interflow paths for the region to be treated is
established by generating a test flow from one of the wells and monitoring pH changes
at the other of the wells as a function of time. A pH drop of at least 0.2 is taken
as indication of satisfactory well interflow paths and continuity. Thereafter the
treating flow of hydrogen peroxide solution is initiated from the tank 62.
[0028] As also mentioned, and in advance of this, an initiation catalyst can be injected
from tank 52, as can the other additives if desired, such as stabilizers from tank
54, enhancers from tank 56, and acid and alkali adjustments from tanks 58 and 60.
[0029] Among the additives which may be utilized in the present process, are silicate-based
inorganic polymers which can serve as finely divided high surface area powders used
as adsorbent catalysts. As mentioned, finely divided iron filings and potable water
can be used as an initiation catalyst by injection in advance of the treating solution.
Other initiation catalyst water solutions include molybdenum, nickel, silver, platinum,
and gold, all of which can be added in catalytically effective quantities. Powdered
lime can be used as an enhancer with water to encourage saturated alkanes, i.e. unleaded
gas and oil, to adsorb onto the lime surface along with hydrogen peroxide. Other additives
such as hydralizable polymers can be used to increase viscosity and control diffusion
through the groundwater. Various viscosity modifiers in a potable water mix can include
ordinary compatible household laundry soaps, mixtures of sodium hydroxide and sodium
lauryl sulfate, lime, magnesium oxide, diatamaceous earth anionic, cationic and nonionic
polymers. Alkaline agent enhancers may be used to accelerate aromatic ring structures
dehalogenation and decomposition. Also, as known in the art of conducting reactions
with hydrogen peroxide, stabilizer solutions can be used, including amino trimethylene
phosphonic acid; and other organophosphorus compounds. It should be appreciated that
the reactions between hydrogen peroxide and hydrocarbons are not per se of the present
invention, and the invention encompasses use of various catalysts and other additives
which facilitate or accelerate these reactions as are known in the art.
[0030] The invention is further illustrated in the following example, which is illustrative
of the efficacy of the present invention, without being, however, intended to be delimitative
thereof.
Example
[0031] In this Example the site remediated pursuant to the invention was an abandoned gasoline
service station at which a subterranean groundwater reservoir similar to that in Figures
1 and 2 was present, which was heavily contaminated with hydrocarbons. Four wells
were sunk into the reservoir, generally about the periphery of the reservoir. Depth
characteristics for the reservoir and initial BTEX contamination was measured, and
are shown in Table I.
[0032] In order to establish the acceptability of continuity and well interflow paths, a
35% H
2O
2 solution was injected into Well No. 1 (situated updip in the groundwater reservoir
structure) at a rate of 3.8 litres (1 gallon)per minute for a period appropriate to
provide 1% by weight of the effective volume of contaminated water in the reservoir.
The effective volume included the relatively porous overburden and a 10% additive
factor based on groundwater reservoir structure extending beyond the cleanup site
boundaries. pH at Wells No. 2, 3 and 4 at the start of the test flow was 6.9 avg.
After a period of 7 days, pH was found to have dropped to 5.5 at No. 2, to 6.1 at
No. 3, and to 6.7 at No. 4, indicating acceptable continuity and well interflow paths.
[0033] In a first cycle of treatment 1.4% by weight of the effective contaminated water
volume to be treated, of the 35% H
2O
2 solution was injected via Well No. 1 at a rate of 22.7 litres (6.0 gallons)per minute
(no additives were used). After 5 days, measurements of the BTEX levels at the four
wells was determined. One month later the same injection procedure was repeated for
Wells No. 2 and 4 using the same 1.4% of treating solution (by weight of the effective
volume of contaminated groundwater). BTEX measurements were repeated 10 days after
the second injection. Data for the foregoing are tabulated in Table I below:
Table I
| |
Well 1 |
Well 2 |
Well 3 |
Well 3 |
| Depth to Water (ft) |
3.7 |
3.1 |
2.9 |
3.4 |
| Depth to Bottom (ft) |
13.4 |
11.6 |
11.3 |
11.4 |
| Water Column (ft) |
9.7 |
8.5 |
8.4 |
8.0 |
| Initial Total BTEX (ppm) |
107 |
6310 |
2410 |
10820 |
| First Treatment (%) |
1.4 |
1.4 |
1.4 |
1.4 |
| Total BTEX (ppm) |
0.01 |
8.4 |
0.3 |
580 |
| Second Treatment (%) |
1.4 |
1.4 |
1.4 |
1.4 |
| Total BTEX (ppm) |
0.02 |
3.7 |
0.7 |
22.3 |
[0034] The reduction in BTEX levels is seen to be remarkable. A further cycle in which 1.8%
by weight of the 35% H
2O
2 solution was injected into Wells Nos. 2 and 4 dropped the total BTEX levels even
further, respectively to 0.9 and 1.9 ppm.
[0035] While the present invention has been particularly set forth in terms of specific
embodiments thereof, it will be understood in view of the instant disclosure that
numerous variations on the invention are now enabled to those skilled in the art which
variations yet reside within the present teachings. Accordingly the invention is to
be broadly construed and limited only by the scope of the claims now appended hereto.
1. A method for remediating a hydrocarbon-contaminated region of a subterranean body
of groundwater to destroy or reduce the initial concentration levels of hydrocarbon
contaminants, comprising the steps of:
(a) providing a plurality of mutually spaced wells intersecting said groundwater region;
(b) providing a treating flow of hydrogen peroxide solution into said subterranean
body of groundwater from one or more of said wells.
2. A method as claimed in claim 1 which comprises the further step of: periodically stopping
the treating flow and determining the hydrocarbon contaminant levels measured at each
said well, until the said initial contaminant concentration levels in the groundwater
drop below predetermined acceptable values.
3. A method in accordance with claim 1 or claim 2 wherein said treating flow is at the
rate of 3.8 to 22.7 litres (1 to 6 gallons) of hydrogen peroxide per minute per well,
expressed on the basis of a 35% by weight solution of hydrogen peroxide.
4. A method in accordance with any one of claims 1 to 3, wherein the treating flow is
provided under a pressure not more than the hydrostatic head relative to surface at
the point of treating flow discharge from said well.
5. A method in accordance with claim 4, wherein the treating flow is provided under a
pressure of from 0.14 to 0.37 MPa (6 to 40 psig).
6. A method in accordance with any one of claims 1 to 5, wherein the total of said treating
flow of hydrogen peroxide solution is 1 to 5% by weight of the effective volume of
contaminated water which is treated, expressed on the basis of a 35% solution of hydrogen
peroxide.
7. A method in accordance with any one of claims 1 to 6, wherein said treating solution
includes from 10 to 35% by weight hydrogen peroxide.
8. A method in accordance with any one of claims 1 to 7, wherein prior to step (b) a
treating flow is injected from said one or more wells into said region of groundwater,
which treating flow includes at least one catalytically effective amount of an initiation
catalyst for the redox reaction between said hydrogen peroxide and the hydrocarbon
contaminant sought to be reacted.
9. A method in accordance with claim 8, wherein said treating solution further includes
a reaction surface enhancing reagent.
10. A method in accordance with any one of claims 1 to 9 for use in a groundwater body
having flow of water wherein between steps (a) and (b), the existence of acceptable
continuity and well interflow paths for the said region is determined by generating
a test flow of a solution of hydrogen peroxide from one of said wells and monitoring
pH changes at each other of said wells as a function of time to detect a pH drop of
at least 0.2.
11. A method in accordance with claim 10, wherein the total volume in the test flow is
0.5 to 1.0% by weight of the effective volume of contaminated water, expressed on
the basis of a 35% solution of hydrogen peroxide, and is injected at the rate of 1.1
to 3.8 litres/minute (0.3 to 1 gallon/minute) and at a pressure which is not more
than the hydrostatic head relative to surface at the point of treating flow discharge
from said well
12. A method in accordance with claim 10 or claim 11, wherein said test flow is injected
at one said well and the said pH change monitored at said other wells.
13. A method in accordance with any one of claims 10 to 12, further including the step
of monitoring temperature changes at one or more other of said wells to detect a temperature
rise of at least 1°C (2°F) as a confirmatory indicator of said acceptable continuity
and well interflow paths.
14. A method in accordance with claim 1 wherein the subterranean body of groundwater is
a static plume which comprises the steps of:
(a) providing as plurality of mutually spaced wells intersecting said static plume
of groundwater;
(b) measuring the change in water depth at each of said wells following atmospheric
precipitation, to determine by common depth changes the likelihood of said plume;
(c) confirming the existence of the static plume by generating a test flow of a solution
of hydrogen peroxide from one of said wells and monitoring the absence of pH changes
at each other of said wells as a function of time; and
(d) providing a treating flow of said hydrogen peroxide solution from each of said
wells at a rate of from 3.8 to 22.7 litres (1 to 6 gallons) per minute per well to
establish a radial sweep about each said well, the total volume of treating solution
being from 1 to 5% by weight of the effective volume of contaminated water, expressed
on the basis of a 35% solution of hydrogen peroxide.
15. A method in accordance with claim 14, wherein the treating flow is periodically stopped
and the hydrocarbon contaminant levels measured at each said well, until the said
initial contaminant concentration levels drop below predetermined acceptable values.
16. A method in accordance with claim 14 or claim 15, wherein the treating flow is provided
under a pressure not more than the hydrostatic head relative to surface at the point
of treating flow discharge from said well.
17. A method in accordance with claim 16, wherein the treating flow is provided under
a pressure of from 0.14 to 0.37 MPa (6 to 40 psig).
18. A system for remediating a hydrocarbon-contaminated region of a subterranean body
of groundwater to destroy or reduce the initial concentration levels of hydrocarbon
contaminants, comprising:
(a) a plurality of mutually spaced wells disposed to intersect said groundwater region;
(b) means for generating a test flow of a solution of hydrogen peroxide from one of
said wells;
(c) means for monitoring pH changes at each other of said wells as a function of time
to detect a pH drop of at least 0.2, whereby to establish the existence of acceptable
continuity and well interflow paths for the said region; and
(d) means for providing, subsequent to detecting said pH drop, a treating flow of
said hydrogen peroxide solution from one or more of said wells.
19. A system in accordance with claim 18 including at least 3 said wells, which are spaced
around the periphery of the groundwater region.
1. Methode für die Sanierung eines durch Kohlenwasserstoffe verschmutzten Bereichs einer
unterirdischen Grundwassermasse zur Vernichtung oder Reduzierung der anfänglichen
Konzentrationsgrade der Kohlenwasserstoffverschmutzungen, welche Methode folgende
Schritte umfasst:
(a) Bereitstellen einer Anzahl voneinander im Abstand gehaltener Quellen, die durch
den Grundwasserbereich hindurchgehen;
(b) Bereitstellen einer aus einer Wasserstoffperoxidlösung bestehenden Behandlungsströmung
durch Eingabe in die unterirdische Grundwassermasse aus einer oder mehreren der Quellen.
2. Methode nach Anspruch 1, die den folgenden weiteren Schritt umfasst:
periodisches Stoppen der Behandlungsströmung und Bestimmen der bei jeder der Quellen
gemessen Grade der Kohlenwasserstoffverschmutzung, bis die anfänglichen Konzentrationsgrade
der Verschmutzung im Grundwasser unter vorbestimmte akzeptable Werte fallen.
3. Methode nach Anspruch 1 oder 2, bei der die Behandlungsströmung eine Geschwindigkeit
von 3,8 bis 22,7 Liter (1 bis 6 Gallonen) Wasserstoffperoxid pro Minute pro Quelle,
auf der Basis einer Wasserstoffperoxidlösung von 35 Gew.-% ausgedrückt, aufweist.
4. Methode nach einem der Ansprüche 1 bis 3, bei der die Behandlungsströmung unter einem
Druck bereitgestellt wird, der den Flüssigkeitsdruck mit Bezug auf die Erdoberfläche
an der Austrittsstelle der Behandlungsströmung aus der Quelle nicht übersteigt.
5. Methode nach Anspruch 4, bei der die Behandlungsströmung unter einem Druck von 0,14
bis 0,37 MPa (6 bis 40 psi Überdruck) bereitgestellt wird.
6. Methode nach einem der Ansprüche 1 bis 5, bei der die aus Wasserstoffperoxidlösung
bestehende Behandlungsströmung aus insgesamt 1 bis 5 Gew.-% des effektiven Volumen
des behandelten verschmutzten Wassers, auf der Basis einer 35%igen Wasserstoffperoxidlösung
ausgedrückt, beträgt.
7. Methode nach einem der Ansprüche 1 bis 6, bei der die Behandlungslösung 10 bis 35
Gew.-% Wasserstoffperoxid enthält.
8. Methode nach einem der Ansprüche 1 bis 7, bei der vor Schritt (b) eine Behandlungsströmung
aus der einen oder mehreren Quellen in den Grundwasserbereich injiziert wird, welche
Behandlungsströmung mindestens eine katalytisch wirksame Menge eines Initiationskatalysators
für die Redoxreaktion zwischen dem Wasserstoffperoxid und der Kohlenwasserstoffverschmutzung,
die reagiert werden soll, enthält.
9. Methode nach Anspruch 8, bei der die Behandlungslösung des weiteren ein die Reaktionsoberfläche
verbesserndes Reagens enthält.
10. Methode nach einem der Ansprüche 1 bis 9 zur Verwendung in einer Grundwassermasse
mit einer darin vorkommenden Wasserströmung, bei der zwischen den Schritten (a) und
(b) das Vorliegen einer akzeptablen Kontinuität und von Fließwegen zwischen den Quellen
für den Bereich dadurch bestimmt wird, dass eine aus einer Wasserstoffperoxidlösung
bestehende Testströmung aus einer der Quellen erzeugt und die Änderungen des pH-Werts
an jeder der anderen Quellen in Abhängigkeit von der zum Bestimmen einer Abnahme des
pH-Werts von mindestens 0,2 erforderlichen Zeit überwacht wird.
11. Methode nach Anspruch 10, bei der das Gesamtvolumen der Testströmung 0,5 bis 1,0 Gew.-%
des effektiven Volumens des verschmutzten Wassers, auf der Basis einer 35%igen Wasserstoffperoxidlösung
ausgedrückt, beträgt und mit einer Geschwindigkeit von 1,1 bis 3,8 Litern/Minute (0,3
bis 1 Gallone/Minute) und unter einem Druck injiziert wird, der den Flüssigkeitsdruck
mit Bezug auf die Erdoberfläche an der Austrittsstelle der Behandlungsströmung aus
der Quelle nicht übersteigt.
12. Methode nach Anspruch 10 oder Anspruch 11, bei der die Testströmung bei einer Quelle
injiziert und die Änderung des pH-Werts an den anderen Quellen überwacht wird.
13. Methode nach einem der Ansprüche 10 bis 12, die des weiteren den Schritt des Überwachens
von Temperaturänderungen an einer oder mehreren anderen Quellen umfasst, um einen
Temperaturanstieg von mindestens 1°C (2°F) als bestätigendes Anzeichen der akzeptablen
Kontinuität und der Fließwege zwischen den Quellen zu erfassen.
14. Methode nach Anspruch 1, bei der die unterirdische Grundwassermasse eine statische
Wassersäule darstellt, welche Methode folgende Schritte umfasst:
(a) Bereitstellen einer Anzahl voneinander im Abstand gehaltener Quellen, die durch
die statische Grundwassersäule hindurchgehen;
(b) Messen der Änderung der Wassertiefe bei jeder der Quellen auf Niederschläge hin
zum Bestimmen der Wahrscheinlichkeit der Wassersäule durch Änderungen in der gemeinsamen
Tiefe;
(c ) Bestätigen des Vorliegens einer statischen Wassersäule durch Erzeugen einer aus
einer Wasserstoffperoxidlösung bestehende Testströmung aus einer der Quellen und Überwachen
der Abwesenheit von Änderungen des pH-Werts an jeder der anderen Quellen in Abhängigkeit
von der Zeit; und
(d) Bereitstellen einer aus Wasserstoffperoxidlösung bestehenden Behandlungsströmung
aus jeder der Quellen mit einer Geschwindigkeit von 3,8 bis 22,7 Litern (1 bis 6 Gallonen)
pro Minute pro Quelle, um eine radial fegende Bewegung um jede Quelle hervorzurufen,
wobei das Gesamtvolumen der Behandlungslösung 1 bis 5 Gew.-% des effektiven Volumen
des verschmutzten Wassers, auf der Basis einer 35%igen Wasserstoffperoxidlösung ausgedrückt,
beträgt.
15. Methode nach Anspruch 14, bei der die Behandlungsströmung periodisch gestoppt wird
und die Grade der Kohlenwasserstoffverschmutzung bei jeder Quelle gemessen wird, bis
die Grade der anfänglichen Verschmutzungskonzentration unter vorbestimmte akzeptable
Werte fallen.
16. Methode nach Anspruch 14 oder 15, bei der die Behandlungsströmung unter einem Druck
bereitgestellt wird, der den Flüssigkeitsdruck mit Bezug auf die Erdoberfläche an
der Stelle, an der Austrittsstelle der Behandlungsströmung aus der Quelle nicht übersteigt.
17. Methode nach Anspruch 16, bei der die Behandlungsströmung unter einem Druck von 0,14
bis 0,37 MPa (6 bis 40 psi Überdruck) bereitgestellt wird.
18. System für die Sanierung eines durch Kohlenwasserstoffe verschmutzten Bereichs einer
unterirdischen Grundwassermasse zur Vernichtung oder Reduzierung der anfänglichen
Konzentrationsgrade der Kohlenwasserstoffverschmutzungen, welche Methode Folgendes
umfasst:
(a) Bereitstellen einer Anzahl voneinander im Abstand gehaltener Quellen, die durch
den Grundwasserbereich hindurchgehen;
(b) Mittel zur Erzeugung einer aus Wasserstoffperoxid bestehenden Testströmung aus
einer der Quellen;
(c) Mittel zum Überwachen der Änderungen des pH-Werts an jeder der anderen Quellen
in Abhängigkeit von der zum Bestimmen einer Abnahme des pH-Werts von mindestens 0,2
erforderlichen Zeit, um das Vorliegen einer akzeptablen Kontinuität und von Fließwegen
zwischen den Quellen für den Bereich zu bestimmen; und
(d) Mittel zum Bereitstellen, auf das Erfassen der Abnahme des pH-Werts hin, einer
aus Wasserstoffperoxidlösung bestehenden Behandlungsströmung aus einer oder mehrerer
der Quellen.
19. System nach Anspruch 18, das mindestens 3 Quellen umfasst, die um die Peripherie des
Grundwasserbereichs herum in Abständen voneinander angeordnet sind.
1. Procédé d'exécution de mesures palliatives au bénéfice d'une région contaminée aux
hydrocarbures d'un corps souterrain d'eau souterraine, destinées à détruire ou à réduire
les niveaux de concentration initiale des contaminants d'hydrocarbures, comprenant
les étapes :
(a) de mise à disposition d'une pluralité de puits à une certaine distance mutuelle
les uns des autres, entrecoupant ladite région d'eau souterraine ;
(b) de mise à disposition d'un courant de traitement de solution de peroxyde d'hydrogène
dans ledit corps souterrain d'eau souterraine en provenance d'un ou de plusieurs desdits
puits.
2. Procédé selon la revendication 1, qui comprend l'étape supplémentaire d'un arrêt périodique
du courant de traitement et d'une détermination périodique des niveaux de contaminants
d'hydrocarbures à chaque dit puits, jusqu'à ce que lesdits niveaux de concentration
initiale dans l'eau souterraine tombent en dessous de valeurs acceptables prédéterminées.
3. Procédé selon la revendication 1 ou la revendication 2, caractérisé en ce que ledit courant de traitement possède une vitesse de 3,8 à 22,7 litres (1 à 6 gallons)
de peroxyde d'hydrogène par minute par puits, exprimée sur la base d'une solution
à raison de 35 % en poids de peroxyde d'hydrogène.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le courant de traitement est fourni sous une pression qui n'est pas supérieure à
la charge hydrostatique relative à la surface au point de décharge du courant de traitement
en provenance dudit puits.
5. Procédé selon la revendication 4, caractérisé en ce que le courant de traitement est fourni sous une pression allant de 0,14 à 0,37 MPa (6
à 40 psig).
6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le total dudit courant de traitement de solution de peroxyde d'hydrogène est de 1
à 5% en poids du volume effectif d'eau contaminée qui est traitée, exprimé sur la
base d'une solution à raison de 35% de peroxyde d'hydrogène.
7. Méthode selon l'une quelconque des revendications 1 à 6, caractérisé en ce que ladite solution de traitement inclut de 10 à 35% en poids de peroxyde d'hydrogène.
8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'avant l'étape (b), un courant de traitement est injecté à partir d'un ou de plusieurs
desdits puits dans ladite région d'eau souterraine, lequel courant comprend au moins
une quantité efficace du point de vue catalytique d'un catalyseur d'initiation pour
la réaction rédox entre ledit peroxyde d'hydrogène et le contaminant d'hydrocarbure
que l'on cherche à faire réagir.
9. Procédé selon la revendication 8, caractérisé en ce que ladite solution de traitement comprend en outre un réactif d'amélioration de la surface
de réaction.
10. Procédé selon l'une quelconque des revendications 1 à 9 pour utilisation dans un corps
d'eau souterraine ayant un courant d'eau, caractérisé en ce qu'entre les étapes (a) et (b), l'existence de trajets de continuité acceptable et d'échange
réciproque de puits à puits pour ladite région est déterminée par la génération d'un
courant d'essai d'une solution de peroxyde d'hydrogène en provenance de l'un desdits
puits et par la surveillance des changements de pH à chacun desdits autres puits en
fonction du temps pour détecter une chute de pH d'au moins 0,2.
11. Procédé selon la revendication 10, caractérisé en ce que le volume total dans le courant d'essai est de 0,5 à 1,0% en poids du volume effectif
d'eau contaminée, exprimé sur la base d'une solution à raison de 35% de peroxyde d'hydrogène,
et est injecté à la vitesse de 1,1 à 3,8 litres/minute (0,3 à 1 gallon/minute) et
sous une pression qui n'est pas supérieure à la charge hydrostatique relative à la
surface au point de décharge du courant de traitement en provenance dudit puits.
12. Procédé selon la revendication 10 ou la revendication 11, caractérisé en ce que ledit courant d'essai est injecté à undit puits et en ce que ledit changement de pH est surveillé auxdits autres puits.
13. Procédé selon l'une quelconque des revendications 10 à 12, comprenant en sus l'étape
de surveillances des changements de température à un ou plusieurs desdits puits pour
détecter une augmentation de température d'au moins 1°C (2°F) en tant qu'indicateur
de confirmation desdits trajets de continuité acceptable et d'échange réciproque de
puits à puits.
14. Procédé selon la revendication 1,
caractérisé en ce que le corps souterrain d'eau souterraine est un panache statique qui comprend les étapes
:
(a) de mise à disposition d'une pluralité de puits à une certaine distance mutuelle
les uns des autres, entrecoupant ledit panache statique d'eau souterraine ;
(b) de mesure du changement de la profondeur de l'eau à chacun desdits puits à la
suite de précipitations atmosphériques, pour déterminer la probabilité dudit panache
grâce aux changements de profondeur communs ;
(c) de confirmation de l'existence du panache statique par la génération d'un courant
d'essai d'une solution de peroxyde d'hydrogène en provenance de l'un desdits puits
et de surveillance de l'absence de changements de pH à chacun desdits autres puits
en fonction du temps ; et
(d) de mise à disposition d'un courant de traitement de ladite solution de peroxyde
d'hydrogène en provenance de chacun desdits puits à une vitesse allant de 3,8 à 22,7
litres (1 à 6 gallons) par minute par puits, pour établir un balayage radial autour
de chaque dit puits, le volume total de solution de traitement étant de 1 à 5% en
poids du volume effectif d'eau contaminée, exprimé sur la base d'une solution à raison
de 35% de peroxyde d'hydrogène.
15. Procédé selon la revendication 14, caractérisé en ce que le courant de traitement est arrêté périodiquement et en ce que les niveaux de contaminants d'hydrocarbures sont mesurés à chaque dit puits, jusqu'à
ce que les niveaux de concentration initiale de contaminants tombent en dessous de
valeurs acceptables prédéterminées.
16. Procédé selon la revendication 14 ou la revendication 15, caractérisé en ce que le courant de traitement est fourni sous une pression qui n'est pas supérieure à
la charge hydrostatique relative à la surface au point de décharge du courant de traitement
en provenance dudit puits.
17. Procédé selon la revendication 16, caractérisé en ce que le courant de traitement est fourni sous une pression allant de 0,14 à 0,37 MPa (6
à 40 psig).
18. Système d'exécution de mesures palliatives au bénéfice d'une région contaminée aux
hydrocarbures d'un corps souterrain d'eau souterraine, destinées à détruire ou à réduire
les niveaux de concentration initiale des contaminants d'hydrocarbures, comprenant
:
(a) une pluralité de puits à une certaine distance mutuelle les uns des autres, disposés
d'une manière à entrecouper ladite région d'eau souterraine ;
(b) des moyens de génération d'un courant d'essai d'une solution de peroxyde d'hydrogène
en provenance de l'un desdits puits ;
(c) des moyens de surveillance des changements de pH à chacun desdits autres puits
en fonction du temps pour détecter une chute de pH d'au moins 0,2, pour établir ainsi
l'existence de trajets de continuité acceptable et d'échange réciproque de puits à
puits pour ladite région ; et
(d) des moyens de mise à disposition, consécutivement à la détection de ladite chute
de pH, d'un courant de traitement de ladite solution de peroxyde d'hydrogène en provenance
d'un ou des plusieurs desdits puits.
19. Système selon la revendication 18, comprenant au moins 3 dits puits, qui sont espacés
les uns des autres sur la périphérie de la région d'eau souterraine.