

(1) Veröffentlichungsnummer: 0 685 828 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 95108628.9

(22) Anmeldetag: 06.06.95

(51) Int. Cl.6: G08G 1/0967

30 Priorität : 03.06.94 DE 9409056 U

19.12.94 DE 4445248

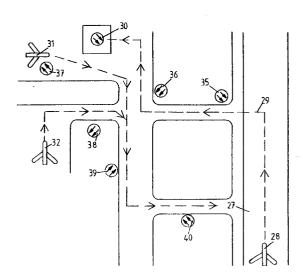
(43) Veröffentlichungstag der Anmeldung : 06.12.95 Patentblatt 95/49

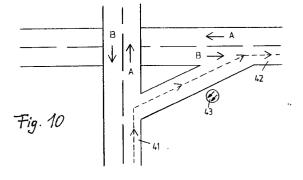
Benannte Vertragsstaaten :
AT BE CH DE ES FR GB IT LI LU NL

(1) Anmelder: Schüssler, Heinrich Prof. Dipl.-Ing. Untertürkheimer Strasse 23 D-66117 Saarbrücken (DE)

(1) Anmelder: Schüssler, Jürgen Untertürkheimer Strasse 23 D-66117 Saarbrücken (DE) (72) Erfinder: Schüssler, Heinrich, Prof. Dipl.-Ing.

Untertürkheimer Strasse 23 D-66117 Saarbrücken (DE)


Erfinder : Barbian, Dieter, Dipl.-Ing.(FH)


Waldwiesenstrasse 18 D-66538 Neunkirchen (DE)

74) Vertreter: Vièl, Christof Patentanwälte VIEL & VIEL Weinbergweg 15 D-66119 Saarbrücken (DE)

(54) Datenübertragung von einer Feststation zu einem bewegten Körper.

Die Erfindung betrifft eine Datenübertragungseinrichtung mittels Infrarotlicht, mit der ein Datenwort in Puls-Pausen-Modulation von einer Feststation zu einem bewegten Körper übertragen werden kann. Gemäß der Erfindung enthält das zu übertragende Datenwort zwei die Bewegungsrichtung des Körpers kennzeichnende Richtungsbits, ein Richtungsänderungsbit und mindestens ein Auswertebit. Das Richtungsänderungsbit dient zu Anpassung der Richtungsbits nach Änderungen der Bewegungsrichtung des Körpers. Die Belegung der Auswertebits ist beliebig. Die Datenübertragungseinrichtung kann z.B. im Straßenverkehr oder im Bereich der Luftfahrt eingesetzt werden.

Die Erfindung betrifft eine Datenübertragungseinrichtung zur Übertragung eines Datenwortes von einer Feststation zu einem bewegten Körper mit mindestens einer entlang der Bewegungsstrecke befindlichen Datensendeeinheit zur Aussendung eines Sendesignals und einer an einem bewegten Körper befindlichen Datenempfängereinheit zum Empfangen der Sendesignale sowie mit mindestens einer im Datenempfänger enthaltenen Speichereinheit zum Speichern der Daten, mindestens einer im Datenempfänger enthaltenden Datenauswerteeinheit zum Auswerten der Daten und mindestens einer im Datenempfänger enthaltenen Anzeigeeinheit zum Anzeigen der Daten. Die Erfindung betrifft weiterhin ein entsprechendes Verfahren zur Übertragung von Daten und die Verwendung der Datenübertragungseinrichtung und des Verfahrens zur automatischen Erfasssung von Signalen.

5

10

20

25

35

40

45

50

55

Datenübertragungssysteme sind in unterschiedlichen Bauformen bekannt und vielfach dort eingesetzt, wo ein Teil des Übertragungssystems frei beweglich ist sowie die zu überbrückende Entfernung sich auf wenige Meter beschränkt. Insbesondere im Bereich der automatischen Laufwegsteuerung von Transporteinrichtungen haben sich Infrarot-(IR)-Übertragungssysteme bewährt. Von besonderem Vorteil sind solche Übertragungssysteme dann, wenn in der Umgebung mehrere, von einander unabhängige Systeme parallel eingesetzt werden. Andere Übertragungsmedien, wie zum Beispiel die hochfrequenten Signale bis zu Frequenzen von einigen hundert MHz, lassen sich für solche Übertragungsstrecken praktisch nicht nutzen, da - beim Einsatz mehrerer Sender mit gleicher Frequenz - eine Entkopplung der Signale praktisch nicht möglich ist. Aber auch bei unterschiedlichen Frequenzen ist nicht immer der Einsatz hochfrequenter Signale möglich, wenn in der örtlichen Umgebung elektromagnetische Störfelder vorhanden sind (WO 86/02637).

Bezüglich der Übertragungsart wird bei IR-Übertragungssystemen oft die Puls-Code-Modulation eingesetzt.

Außer den zu übertragenden Daten sind eine nicht geringe Anzahl von systemeigenen Synchronisationszeichen, wie Start-Bit, Rücksetz-Bit, mit zu übertragen. So sind z.B. für die relativ geringe Datenmenge von 4 Bit zusätzlich 6 Bit zur Steuerung des 4-Bit-Datenwortes erforderlich (DE-A-31 46 251).

Sind größere Datenmengen zu übertragen, müssen relativ lange Übertragungszeiten in Kauf genommen werden. Durch Datenaufteilung in mehrere Blöcke und paralleler statt serieller Übertragung, läßt sich die Übertragungszeit zwar verkürzen, bedingt aber einen größeren Schaltungsaufwand, da mehrere Datensender und mehrere Datenempfänger für Parallelbetrieb erforderlich sind (DE-C-36 15 825).

Ein Anwendungsgebiet für derartige Datenübertragungseinrichtungen ist die automatische Erfasssung von Signalen für den Straßenverkehr und zur Wiedergabe dieser Signale in Kraftfahrzeugen. Derartige Vorrichtungen haben zur Aufgabe, es dem Fahrer eines Kraftfahrzeuges zu ermöglichen, die in dem von ihm befahrenen Straßenabschnitt geltenden Verkehrszeichen in seinem Kraftfahrzeug abzurufen (DE-U-94 09 056).

Um das zu übertragene Datenwort mit nur einem Datensender von einer Feststation zu einem an einem bewegten Körper befindlichen Datenempfänger zu übertragen, die Übertragungszeit durch Einsparung von Steuerzeichen zu verkürzen, und zusätzlich in das Datenwort seine Gültigkeit bezüglich der Bewegungsrichtung des Körpers codiert mit zu übertragen, mußte ein neues Übertragungsverfahren erfunden werden, das die Nachteile bekannter Systeme vermeidet.

Ausgehend vom Stand der Technik liegt der Erfindung die Aufgabe zugrunde, eine Datenübertragungseinrichtung mittels Infrarotlicht zu schaffen, mit der eine relativ geringe Datenmenge von einer Feststation zu einem bewegten Körper übertragen werden kann, wobei zwischen zwei Bewegungsrichtungen des Körpers unterschieden wird, die im Datenwort bezüglich ihrer Gültigkeit als Richtungsbits erkennbar sind. Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß das übertragene Datenwort mindestens ein die Bewegungsrichtung des Körpers kennzeichnendes Richtungsbit und mindestens ein Richtungsänderungsbit sowie mindestens ein Auswertebit enthält, und daß die Datensende- und Empfängereinheiten mit in Puls-Pausen-Modulation arbeitenden Infrarot-Sende- und Empfangseinrichtungen ausgestattet sind.

Der entscheidende Vorteil der erfindungsgemäßen Datenübertragungseinrichtung besteht darin, daß statt der üblicherweise eingesetzten Puls-Code-Modulation, die Puls-Pausen-Modulation eingesetzt wird, und daß gleichzeitig in dem zu übertragenden Datenwort eine Richtungscodierung enthalten ist.

Ein weiterer entscheidender Vorteil der erfindungsgemäßen Datenübertragungseinrichtung besteht darin, daß durch die Puls-Pausen-Modulation der Sendeteil und der Stromversorgungsteil der Datensendeeinrichtung erheblich entlastet werden, da die Puls-Pausen gleichbedeutend mit weniger Strom und damit weniger Leistung zu setzen sind. Dieser Vorteil kommt insbesondere dann zu tragen, wenn z.B. der Datensender netzunabhängig im Freien aus einer Batterie oder einem Akkumulator gespeist wird. Wird beispielsweise für den Datensender ein Akku als Stromquelle eingesetzt, der seinerseits über Solarzellen gepuffert ist, so reduziert sich durch den Einsatz der Puls-Pausen-Modulation auch der Aufwand hinsichtlich der erforderlichen Anzahl von Solarzellen.

Es ist ein besonderer Vorteil der Datenübertragungseinrichtung gemäß der Erfindung, daß die Datenübertragungseinrichtung Änderungen der Bewegungsrichtung des Körpers berücksichtigt, wodurch nur Datenwörtragungseinrichtung des Körpers berücksichtigt des Körpers berücksichtigen des Körpers berücksichtigen des Körpers berücksichtigt des Körpers berücksichtigen des Körpers berücksicht

ter im Datenempfänger verarbeitet werden, die entsprechend der Bewegungsrichtung des Körpers und ihrer zugeordneten Richtungscodierung Gültigkeit haben.

Eine Ausbildung der Erfindung besteht darin, daß im übertragenen Datenwort zwei die Bewegungsrichtung des Körpers kennzeichnenden Richtungsbits und ein Richtungsänderungsbit sowie mindestens ein Auswertebit enthalten sind, und die Dateneinheiten mit in Puls-Pausen-Modulation arbeitenden Infrarot-Sende- und Empfangseinrichtungen ausgestattet sind.

Erfindungsgemäß ist vorgesehen, daß das zu übertragende Datenwort von der Datensendeeinheit zyklisch als Dauersignal aussendbar ist.

Vorteilhaft ist, daß beim Empfang eines Datenworts in Datenempfängern, in denen noch kein Richtungsbit gespeichert ist, das im Datenwort enthaltene Richtungsbit übernehmbar und im Datenempfänger als Richtungsbit speicherbar ist, wenn im Datenwort das Richtungsbit nicht gesetzt ist.

Es liegt im Rahmen der Erfindung, daß beim Empfang eines Datenworts, in dem sowohl Richtungsbit als auch Richtungsänderungsbit gesetzt sind, in Datenempfängern, in denen noch kein Richtungsbit gespeichert ist, im Datenempfänger das im Datenwort nicht gesetzte Richtungsbit invertiert übernehmbar und speicherbar ist.

Weiterhin ist es zweckmäßig, daß beim Empfang eines Datenwoltes in Datenempfängern, in gleich sind, und die im Datenwort enthaltenen Auswertebits sich in mindestens einem Bit von den im Zwischenspeicher gespeicherten Daten unterscheiden, unabhängig davon, ob im Datenwort das Richtungsänderungsbit gesetzt ist.

Eine Weiterbildung der Erfindung besteht darin, daß die Übernahme der Auswertebits in den Zwischenspeicher durch einen Übernahme-Impuls auslösbar ist.

Erfindungsgemäß ist, daß beim Empfang eines Datenworts, bei dem das Richtungsänderungsbit-, jedoch kein Richtungsbit gesetzt ist, in Datenempfängern, in denen ein Richtungsbit gespeichert ist, das gespeicherte Richtungsbit und alle Anzeigen der Auswertebits löschbar sind.

Vorteilhaft ist, daß beim Empfang eines Datenworts, bei dem das Richtungsänderungsbit, jedoch kein Richtungsbit gesetzt ist, in Datenempfängern, in denen kein Richtungsbit gespeichert ist, das Datenwort nicht übernehmbar ist.

Das erfindungsgemäße Verfahren zur Übertragung eines Datenwortes von einer Feststation zu einem bewegten Körper, wobei entlang der Bewegungsstrecke mindestens eine Datensendeeinheit zur Aussendung eines Sendesignals und einer an dem bewegten Körper befindlichen Datenempfängereinheit zum Empfangen der Sendesignale sowie im Datenempfänger mindestens eine Speichereinheit zum Speichern der Daten, mindestens eine Datenauswerteeinheit und mindestens eine Anzeigeeinheit zum Anzeigen der Daten angeordnet sind, ist gekennzeichnet durch folgende Verfahrensschritte:

- das zu übertragende Datenwort besteht aus mindestens einem, die Bewegungsrichtung des Körpers kennzeichnenden Richtungsbit, einem Richtungsänderungsbit sowie mindestens einem Auswertebit und wird zyklisch ausgesandt,
- beim Empfang eines Datenwortes in Datenempfängern, in denen noch kein Richtungsbit gespeichert ist, wird das im Datenwort enthaltene Richtungsbit übernommen und im Datenempfänger als Richtungsbit gespeichert, wenn im Datenwort das Richtungsänderungsbit nicht gesetzt ist,
- beim Empfang eines Datenwortes, in dem sowohl Richtungsbit als auch Richtungsänderungsbit gesetzt sind, in Datenempfängern, in denen noch kein Richtungsbit gespeichert ist, wird das im Datenwort nicht gesetzte Richtungsbit invertiert übernommen und gespeichert,
- beim Empfang eines Datenwortes in Datenempfängern, in denen bereits ein Richtungsbit gesetzt ist, werden nur dann die Auswertebits in einen Zwischenspeicher übernommen und von der Auswerteeinheit ausgewertet, wenn das im Datenwort enthaltene Richtungsbit und das im Datenempfänger gespeicherte Richtungsänderungsbit gleich sind, und sich die im Datenwort enthaltenen Auswertebits in mindestens einem Bit von den im Zwischenspeicher gespeicherten Daten unterscheiden, unabhängig davon, ob im Datenwort das Richtungsänderungsbit gesetzt ist,
- beim Empfang eines Datenwortes, bei dem das Richtungsänderungsbit, jedoch kein Richtungsbit gesetzt ist, werden in Datenempfängern, in denen ein Richtungsbit gespeichert ist, das gespeicherte Richtungsbit und alle Anzeigen der Auswertebits gelöscht,
- beim Empfang eines Datenwortes, bei dem das Richtungsänderungsbit, jedoch kein Richtungsbit gesetzt ist, wird in Datenempfängern, in denen kein Richtungsbit gespeichert ist, das Datenwort nicht übernommen und nicht ausgewertet.

Eine Weiterbildung des Verfahrens besteht darin, daß die Übernahme der Auswertebits in den Zwischenspeicher durch einen Übernahme-Impuls ausgelöst wird.

Erfindungsgemäß ist auch die Verwendung der Datenübertragungseinrichtung oder des Verfahrens zur Übertragung von Daten in einer Vorrichtung zur automatischen Erfassung von Signalen für den Straßenver-

3

35

10

15

20

25

40

45

50

kehr und zur Wiedergabe dieser Signale in Kraftfahrzeugen.

Erfindungsgemäß ist weiterhin die Verwendung der Datenübertragungseinrichtung oder des Verfahrens zur Übertragung von Daten in einer Vorrichtung zur automatischen Erfassung von Rollinformationen auf Flughäfen und zur Wiedergabe der Rollinformationen in Flugzeugen.

Einzelheiten und Vorteile einer beispielhaften erfindungsgemäßen Datenübertragungseinrichtung werden nachfolgend anhand von Zeichnungen näher erläutert.

Es zeigen:

5

20

25

50

- Fig. 1 schematisch die in Puls-Pausen-Modulation arbeitende Datensendeeinrichtung am Beispiel eines 10-Bit-Datenwortes;
- 10 Fig. 2 schematisch die in Puls-Pausen-Modulation arbeitende Datenempfangseinrichtung;
 - Fig. 3 schematisch die Schaltung, der im Datenempfänger enthaltenen Richtungsdecodierung;
 - Fig. 4 die Wahrheitstabelle zu der in der Richtungsdecodierung enthaltenen Richtungslogik;
 - Fig. 5 die Schaltung zur Übernahme der im Datenwort enthaltenen Auswertebits;
 - Fig. 6 die Schaltung zur Decodierung der Auswertebits mit dem Anzeigeteil;
- Fig. 7 ein Beispiel zur Realisierung, der in der Wahrheitstabelle (Fig. 4) enthaltenen Ausgangsgröße T1' mit digitalen Schaltgliedern;
 - Fig. 8 Beispiel zur Realisierung der in der Wahrheitstabelle (Fig. 4) enthaltenen Ausgangsgröße T2' mit digitalen Schaltgliedern;
 - Fig. 9 Beispiel zur Realisierung der in der Wahrheitstabelle (Fig. 4) enthaltenen Ausgangsgrößen RS' und Ü mit digitalen Schaltgliedern;
 - Fig. 10 zwei Zeichnungen zu den beiden Anwendungsbeispielen der erfindungsgemäßen Datenübertragungseinrichtung.

Im einzelnen zeigt Fig. 1 die Datensendeeinrichtung mit einem integrierten Schaltkreis 1, der ein an den Eingängen 2, die mit D1 bis D10 bezeichnet sind, parallel anliegendes Datenwort in einen seriellen Datenstrom umwandelt. Hierbei wird das Datenwort in eine Folge von Einzelimpulsen umgewandelt, wobei dem Zustand logisch "0" eine kurze Pause zwischen zwei Einzelimpulsen und dem Zustand logisch "1" eine lange Pause zwischen zwei Einzelimpulsen zugeordnet wird. Das Pausenverhältnis beträgt hier 1: 1,8. Der Ausgang 3 der integrierten Schaltung steuert über die Verstärkerstufe 4 die Infrarotsendediode 5, die ihrerseits den seriellen Datenstrom als Einzelimpulsfolge abstrahlt. Mit dem RC-Glied 6 wird die interne Taktfrequenz des ICs festgelegt. Ein günstiger Wert hierfür ist beispielsweise 500 KHz. Die Dauer eines Einzelimpulses ist gleich der Periodendauer der Taktfrequenz (hier: 2μs). Die Dauer der Puls-Pause für logisch "0" beträgt 10 Taktperioden (hier: 20μs), und die Dauer der Puls-Pause für logisch "1" beträgt 18 Taktperioden (hier: 36μs). Das Bitmuster 7 zeigt ein Beispiel eines 10-Bit-Datenwortes, das aus 11 Impulsen besteht. Wird bei der integrierten Schaltung 1 die Betriebsart Dauersignal gewählt, so wiederholt sich die Aussendung des Datenwortes zyklisch, wobei sich zwischen den Aussendungen der Datenwörter eine Pause von 8192 Taktimpulsen einstellt. Die Zeitabstände der Datenwortaussendungen betragen demnach ca. 17 ms.

Die 10 Bit des Datenwortes sind wie folgt definiert:

- D1 Richtungsbit für Bewegungsrichtung A des Körpers
- D2 Richtungsbit für Bewegungsrichtung B des Körpers
- 40 D3 Richtungsänderungsbit
 - D4 bis D10 Auswertebits.

Im einzelnen zeigt Fig. 2 die Datenempfangseinrichtung mit einem integrierten Schaltkreis 8, der über den Infrarot-Sensor 9 das serielle Datenwort empfängt und dem IC 8 zuführt. Mit dem RC-Glied 10 wird die interne Taktfrequenz des ICs 8 eingestellt. Sie entspricht der gleichen Frequenz, wie die des Datensenders ICs 1. Hat der Datenempfänger ein komplettes Datenwort empfangen, so werden die 10 Bit des Datenwortes von dem IC 8 wieder von einem seriellen Datenwort in ein paralleles Datenwort zurückgewandelt und an die Ausgänge D1 bis D10 11 angelegt. Ein Strobe-Impuls 12 gibt die Übernahme des Datenwortes frei.

In Fig. 3 ist die erfindungsgemäße Richtungsdecodierung des Datenempfängers dargestellt. Sie besteht aus der Richtungslogik 13, den beiden Flip-Flops 14A, 14B zur Speicherung der Richtungsbits, 3 Und-Gliedern 15 zur Verknüpfung der Logik-Ausgangsgrößen RS', T2' und T1' mit dem Strobe-Impuls und einem Oder-Glied 16 zur Dunkelsteuerung des Anzeigeteils, welches später erläutert wird.

Es bedeuten im einzelnen:

- D3 Richtungsänderungsbit vom Ausgang des Datenempfängers 8
- D1 Richtungsbit für Bewegungsrichtung A des Körpers
- 55 D2 Richtungsbit für Bewegungsrichtung B des Körpers
 - ST Strobe-Impuls vom Ausgang des Datenempfängers 8 zur Datenfreigabe
 - T1 Takt für Flip-Flop 14A der Bewegungsrichtung A
 - T2 Takt für Flip-Flop 14B der Bewegungsrichtung B

- RS Reset zum Rücksetzen der beiden Flip-Flops 14A, 14B
- QA gespeichertes Richtungsbit für Bewegungsrichtung A
- QB gespeichertes Richtungsbit für Bewegungsrichtung B
- Übernahme-Impuls 18 zur Übernahme der Auswertebits D 4 bis D 10 17 in den Zwischenspeicher 19
 Freigabesignal 20 zur Anzeige der Auswertebits bzw. zur Dunkelsteuerung der Anzeigen 21 und 25.

Der Zusammenhang der Eingangsvariablen D1, D2, D3, QA und QB mit den Ausgangsvariablen T2', T1', RS' und Ü ist in der Wahrheitstabelle (Fig. 4) zusammengestellt.

Die linke Spalte der Tabelle numeriert die möglichen Kombinationen der Eingangsvariablen von 1 bis 32. Die folgenden Erläuterungen beschränken sich auf die Eingangskombinationen, die im Bereich des erfindungsgemäßen Datenübertragungssystems auftreten können. Die Eingangskombinationen, die nicht auftreten können, sind daran zu erkennen, daß die dazugehörigen Ausgangsvariablen als "don't care terms" mit einem Kreuz gekennzeichnet sind.

Im Folgenden werden die Eingangskombinationen der Richtungslogik erläutert, die im Betrieb auftreten können. Anschließend erfolgt ein Ausführungsbeispiel zur Umsetzung der aus der Wahrheitstabelle gefundenen Gleichungen mit Hilfe diskreter digitaler Schaltglieder.

Die Eingangszustände der Nummern 5 und 9 bedeuten, daß der Datenempfänger ab dem Zeitpunkt seiner Inbetriebnahme noch kein Datenwort empfangen hat. Empfängt nun der Datenempfänger ein Datenwort, bei dem das Richtungsbit D1 gesetzt ist, so wird mit dem Takt T1 das Richtungsbit D1 in das Richtungs-Flip-Flop 14A geladen bzw. bei Nr. 9 das Richtungsbit D2 mit dem Takt T2 in das Richtungs-Flip-Flop 14B. In beiden Fällen werden die Auswertebits D4 bis D10 17 mit dem Übernahme-Impuls Ü 18 von dem Datenempfänger IC 8 in den Zwischenspeicher 19 geladen und mit dem Freigabesignal F 20 zu den Anzeigen 21 und 25 freigegeben.

Die Eingangszustände der Nummern 6 und 11 bedeuten, daß ein Richtungsbit im Datenempfänger bereits gespeichert ist und im empfangenen Datenwort das gleiche Richtungsbit enthalten ist, wodurch der Übernahme-Impuls Ü 18 eine Übernahme der Auswertebits D4 bis D10 17 erlaubt. Dieser Fall tritt ein, wenn der Datenempfänger ein für ihn gültiges Datenwort empfängt.

Die Eingangszustände mit den Nummern 7, 10, 23 und 26 bedeuten, daß das gespeicherte Richtungsbit und das im Datenwort übertragene Richtungsbit nicht identisch sind, wodurch das empfangene Datenwort nicht übernommen und nicht ausgewertet wird. In diesen Fällen ist das Datenwort für Empfänger bestimmt, bei denen die Bewegungsrichtung ihrer Körper nicht mit der Bewegungsrichtung des Körpers übereinstimmt, der dieses Richtungsbit gespeichert hat.

Die Eingangszustände mit den Nummern 21 und 25 bedeuten, daß im Datenwort sowohl das Richtungsänderungsbit D3 und ein Richtungsbit gesetzt sind. Da jedoch der Datenempfänger seit einer Inbetriebnahme noch kein Datenwort empfangen hatte, was an den ungesetzten Richtungs-Flip-Flops 14A, 14B zu erkennen ist, werden im Datenempfänger die Auswertebits 17 mit dem Übernahme-Impuls 18 übernommen und danach das nicht übertragene Richtungsbit invertiert und im entsprechenden Flip-Flop gespeichert. Dieser Fall tritt ein, wenn das Richtungsbit geändert werden soll, ohne daß im Datenempfänger ein Richtungsbit gespeichert war.

Die Eingangszustände mit den Nummern 22 und 27 bedeuten, daß im Datenwort sowohl Richtungsänderungsbit D3 und ein Richtungsbit gesetzt sind. Da das gespeicherte Richtungsbit und das Richtungsbit im Datenwort identisch sind, ist eine Übernahme der Auswertebits 17 erlaubt. Danach ergeht über T1 und T2 ein Impuls an beide Richtungs-Flip-Flops 14A, 14B, wodurch ihre Ausgänge sich umkehren und die Änderung des gespeicherten Richtungsbits vollzogen ist. Dieser Fall tritt ein, wenn das gespeicherte Richtungsbit geändert werden soll, aufgrund der Änderung der Bewegungsrichtung des Körpers.

Die Eingangszustände mit den Nummern 17, 18 und 19 bedeuten, daß unabhängig davon, ob im Datenempfänger ein Richtungsbit gespeichert ist, alle Anzeigen dunkel gesteuert werden sollen und in den Fällen der Nummern 18 und 19 beide Flip-Flops 14A, 14B über RS gelöscht werden. Dieser Fall tritt ein, wenn der bewegte Körper seinen Zielpunkt erreicht hat, bei dem die gespeicherten und angezeigten Daten ihre Gültigkeit verlieren.

Die Übertragung der Wahrheitstabelle (Fig. 4) in KV-Diagramme liefert - unter Berücksichtigung von Schaltnetzvereinfachungen - folgende Gleichungen:

$$\begin{array}{lll} T2' &=& (D3*((D1*\overline{QB})+(D2*\overline{QB})))+((\overline{D3}*D2)*(\overline{QB}*\overline{QA})) \\ T1' &=& (D3*((D1*QA)+(D2*\overline{QA})))+((\overline{D3}*\overline{D2})*(\overline{QB}*\overline{QA})) \\ RS' &=& ((\overline{D2}*\overline{D1})*D3)*(QA+QB) \\ \ddot{U} &=& (D2*\overline{QA})+(D1*\overline{QB}) \end{array}$$

mit

5

10

15

20

25

35

40

45

50

- * Und-Verknüpfung
- + Oder-Verknüpfung

- Negation

10

15

20

25

35

50

55

Die Umsetzung o.a. Gleichungen mit diskreten digitalen Schaltgliedern zeigen die Fig. 7 bis Fig. 9. Aufgrund der heute verfügbaren frei programmierbaren Logikbausteine (Generic Array Logic, GALS) lassen sich die Gleichungen für T2', T1', RS' und Ü mit einem Baustein dieser Serie aufbauen. Zur Speicherung der Richtungsbits sind D-Flip-Flops 14A, 14B, eingesetzt.

Fig. 5 zeigt die Schaltung zur Übernahme der Auswertebits D4 bis D10 17 vom Empfänger IC 8 in die Zwischenspeicher 19. Jedes Auswertebit wird mit einem Äquivalenz-Glied 22 auf Gleichheit mit dem im Zwischenspeicher 19 gespeicherten und an den Ausgängen 23 anliegenden Bit verglichen. Die Ausgänge der 7 Äquivalenz-Glieder sind über ein Nand-Glied 24 zusammengefaßt. Das Und-Glied 25 verknüpft das Ausgangssignal des Nand-Gliedes mit dem Übernahme-Impuls Ü 18 und dem Strobe-Impuls 12 des Datenempfängers ICs 8. Sind ein oder mehrere Auswertebits 17 verschieden von den gespeicherten Daten Q4 bis Q10 und liegen gleichzeitig ein Strobe-Impuls 12 und ein Übernahme-Impuls 18 am Eingang des Und-Gliedes an, so ergeht ein Takt-Impuls an alle Takteingänge der Zwischenspeicher Flip-Flops 19, wodurch die Auswertebits 17 übernommen werden und an den Ausgängen Q4 bis Q10 23 zur Auswertung bereitgestellt werden. In allen anderen Fällen ergeht keine Übernahme der Auswertebits in die Zwischenspeicher.

Fig. 6 zeigt die Schaltung zur Auswertung und Anzeige der Auswertebits. Die Belegung der Auswertebits ist beliebig. Die hier dargestellte Schaltung entspricht dem Auswerte- und Anzeigeteil des zweiten Anwendungsbeispiels, das später erläutert wird. Im einzelnen zeigt Fig. 6 die Auswertelogik 24 zur Codeumwandlung der Daten Q4 bis Q7 23A von binär zu BCD, so daß eine 3-stellige-Dezimalzahl von 10 bis 130 in 10er-Schritten mit 7-Segment-Anzeigen 21 angezeigt werden kann. Die Daten Q8 bis Q10 23B werden zur Signalisierung 25 genutzt. Die Treiberstufen 26 sind Und-Glieder zur Dunkelsteuerung der Anzeigeelemente 21 und 25 mit dem Freigabesignal F 20 und liefern im Falle der Anzeigenfreigabe den erforderlichen Strom.

Die Anwendung der erfindungsgemäßen Datenübertragungseinrichtung wird an den beiden folgenden Beispielen erläutert:

Anwendungsbeispiel 1

In Fig. 10 ist im oberen Teil schematisch ein Flughafen mit der Start- und Landebahn 27, einem landenden Flugzeug 28, seinem Rollweg 29 und seiner Spur zur Parkposition 30 dargestellt. Zur Einweisung des Flugzeuges in seine Parkposition wird die erfindungsgemäße Datenübertragungseinrichtung benutzt. Zwei weitere Flugzeuge 31 und 32 sollen mit der erfindungsgemäßen Datenübertragungseinrichtung aus ihrer Parkpositionen zur Startbahn geführt werden. Die zu übertragende Information besteht aus den Rollanweisungen:

R = nächste Zubringerstraße rechts abbiegen

L = nächste Zubringerstraße links abbiegen

G = geradeaus.

Der Rollweg des landenden Flugzeuges sei Richtung A, die Rollwege der startenden Flugzeuge seien Richtung B. An allen Flugzeugen befindet sich ein Datenempfänger gemäß der Erfindung. Im Falle des landenden Flugzeuges sei der Datenempfänger unmittelbar vor Erreichen des erfindungsgemäßen Datensenders 35 eingeschaltet worden. Im Datenwort des Senders 35 ist das Richtungsbit D1 gesetzt und in den Auswertebits D4 bis D10 17 sei codiert der Buchstabe R enthalten. Sobald der Datenempfänger das Datenwort des Datensenders 35 empfängt, wird das Richtungsbit A im Richtungs-Flip-Flop 14A des Datenempfängers gespeichert und gleichzeitig wird mit dem Übernahme-Impuls 18 die codierte Information R dem Anzeigeteil übergeben und mit dem Freigabesignal 20 auf dem Display des Datenempfängers angezeigt. Im Datenwort des Senders 36 ist ebenfalls das Richtungsbit A gesetzt, jedoch enthalten die Auswertebits codiert die Richtungsinformation L. Da das Richtungsbit des Datensenders und das gespeicherte Richtungsbit im Datenempfänger übereinstimmen und die im Datenwort enthaltenen Auswertebits verschieden von den gepeicherten Daten im Zwischenspeicher sind, werden die aktuellen Auswertebits in den Zwischenspeicher geladen und die Information L zur Anzeige gebracht. Am Zielpunkt 30 befindet sich ebenfalls ein erfindungsgemäßer Datensender, dessen Datenwort kein Richtungsbit, jedoch das gesetzte Richtungsänderungsbit enthält. Empfängt der Datenempfänger dieses Datenwort, so werden die im Datenempfänger befindlichen Richtungs-Flip-Flops 14A, 14B gelöscht, wodurch über das Freigabesignal F alle Anzeigen dunkel geschaltet werden. In den Flugzeugen 31 und 32 befinden sich ebenfalls erfindungsgemäße Datensender in deren Datenwort das Richtungsbit D2, entsprechend der Richtung B, gesetzt ist. Die Datenwörter der Sender 37 und 38 enthalten sowohl das Richtungsbit D2, als auch die codierte Information R als Bewegungsrichtung, die von den Datenempfängern beider Flugzeuge 31 und 32 übernommen und angezeigt werden. Im Datenwort des Senders 39 ist ebenfalls das Richtungsbit D2 gesetzt, jedoch enthalten die Auswertebis codiert die Information L, die von den Datenempfängern der Flugzeuge 31 und 32 übernommen werden. Am Zielpunkt 40 werden die Richtungs-Flip-Flops der Datenempfänger gelöscht und die Anzeigen dunkel gesteuert, da im Datenwort 40 kein

Richtungsbit, jedoch das Richtungsänderungsbit gesetzt ist. Der Vorteil der erfindungsgemäßen Datenübertragungseinrichtung ist besonders darin zu sehen, daß in Bereichen, in denen Sender mit verschiedenen Richtungscodierungen vorhanden sind, die Datenempfänger stets nur das Datenwort empfangen und auswerten, das aufgrund ihrer Richtungscodierung Gültigkeit hat.

5

10

Anwendungsbeispiel 2

In Fig. 10 ist im unteren Teil schematisch eine Autobahnabfahrt dargestellt. Es wird angenommen, daß ein Fahrzeug die Fahrtrichtung 41 verläßt und auf die Fahrspur 42 wechselt. Da die Fahrspur 41 als Richtung A definiert ist, enthalten alle Datenwörter, die von Datensender, die sich entlang der Fahrspur 41 befinden, gesendet werden, das gesetzte Richtungsbit D1. Die Information, die codiert in den Auswertebits enthalten ist, beinhaltet hier den Straßenverkehr betreffende Daten, z. B. Geschwindigkeitsbeschränkungen von 10 km/h bis 130 km/h in Schritten von 10 km/h. Für diese Datenmenge sind die Auswertebits Q4 bis Q7 23A, binär codiert, vorgesehen.

15

20

Die Auswertebits Q8 bis Q10 23B können auch für andere, den Straßenverkehr betreffende Informationen, z. B. Überholverbot, genutzt werden. Die in Fig. 6 dargestellte Logik 24 dient dazu, die Code-Umwandlung binär zur BCD durchzuführen. Verläßt nun ein Fahrzeug die Autobahn 41 durch Abbiegen nach rechts auf die Autobahn 42, deren Fahrtrichtung B definitionsgemäß dem Richtungsbit D2 zugeordnet ist, so muß auch das im Datenempfänger gespeicherte Richtungsbit von A nach B geändert werden. Mit der erfindungsgemäßen Datenübertragungseinrichtung läßt sich diese Änderung durchführen, indem im Datenwort des Datensenders 43, außer dem für die Fahrtrichtung 41 gültigen Richtungsbit D1, zusätzlich das Richtungsänderungsbit D3 gesetzt ist. Daraufhin erhalten im Datenempfänger beide Richtungs-Flip-Flops 14A, 14B über T1 und T2 einen Taktimpuls, wodurch beide Flip-Flops ihren Zustand ändern. Auf diese Weise ist die Änderung der Richtungs-Flip-Flops 14A, 14B vollzogen.

25

Patentansprüche

30

1. Datenübertragungseinrichtung zur Übertragung eines Datenwortes von einer Feststation zu einem bewegten Körper mit mindestens einer entlang der Bewegungsstrecke befindlichen Datensendeeinheit zur Aussendung eines Sendesignals und einer an einem bewegten Körper befindlichen Datenempfängereinheit zum Empfangen der Sendesignale sowie mit mindestens einer im Datenempfänger enthaltenen Speichereinheit zum Speichern der Daten, mindestens einer im Datenempfänger enthaltenden Datenauswerteeinheit zum Auswerten der Daten und mindestens einer im Datenempfänger enthaltenen Anzeigeeinheit zum Anzeigen der Daten, dadurch gekennzeichnet, daß das übertragene Datenwort mindestens ein die Bewegungsrichtung des Körpers kennzeichnendes Richtungsbit und mindestens ein Richtungsänderungsbit sowie mindestens ein Auswertebit enthält, und daß die Datensende- und Empfängereinheiten mit in Puls-Pausen-Modulation arbeitenden Infrarot-Sende- und Empfangseinrichtungen ausgestattet sind.

40

35

2. Datenübertragungseinrichtung gemäß Anspruch 1, dadurch gekennzeichnet, daß im übertragenen Datenwort zwei die Bewegungsrichtung des Körpers kennzeichnende Richtungsbits und ein Richtungsänderungsbit sowie mindestens ein Auswertebit enthalten sind, und die Dateneinheiten mit in Puls-Pausen-Modulation arbeitenden Infrarot-Sende- und Empfangseinrichtungen ausgestattet sind.

45

3. Datenübertragungseinrichtung gemäß Anspruch 1 oder 2, **dadurch gekennzeichnet**, daß das zu übertragende Datenwort von der Datensendeeinheit zyklisch als Dauersignal aussendbar ist.

50

4. Datenübertragungseinrichtung gemäß Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß beim Empfang eines Datenworts in Datenempfängern, in denen noch kein Richtungsbit gespeichert ist, das im Datenwort enthaltene Richtungsbit übernehmbar und im Datenempfänger als Richtungsbit speicherbar ist, wenn im Datenwort das Richtungsänderungsbit nicht gesetzt ist.

55

5. Datenübertragungseinrichtung gemäß Anspruch 1 bis 4, dadurch gekennzeichnet, daß beim Empfang eines Datenworts, in dem sowohl Richtungsbit als auch Richtungsänderungsbit gesetzt sind, in Datenempfängern, in denen noch kein Richtungsbit gespeichert ist, im Datenempfänger das im Datenwort nicht gesetzte Richtungsbit invertiert übernehmbar und speicherbar ist.

- 6. Datenübertragungseinrichtung gemäß Anspruch 1 bis 5, dadurch gekennzeichnet, daß beim Empfang eines Datenwortes in Datenempfängern, in denen bereits ein Richtungsbit gesetzt ist, die Auswertebits in einen Zwischenspeicher der Speichereinheit übernehmbar und von der Auswerteeinheit auswertbar sind, wenn das im Datenwort enthaltene Richtungsbit und das im Datenempfänger gespeicherte Richtungsbit gleich sind, und die im Datenwort enthaltenen Auswertebits sich in mindestens einem Bit von den im Zwischenspeicher gespeicherten Daten unterscheiden, unabhängig davon, ob im Datenwort das Richtungsänderungsbit gesetzt ist.
- 7. Datenübertragungseinrichtung gemäß Anspruch 1 bis 6, **dadurch gekennzeichnet**, daß die Übernahme der Auswertebits in den Zwischenspeicher durch einen Übernahme-Impuls auslösbar ist.

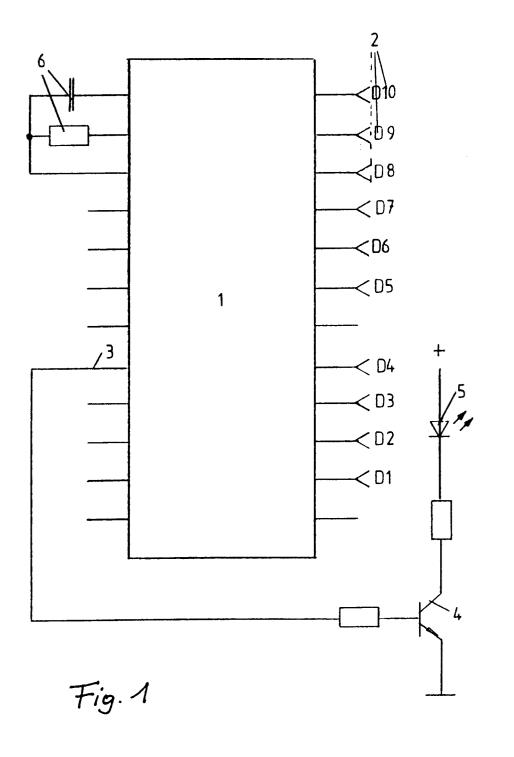
5

15

20

25

30


35

40

45

50

- 8. Datenübertragungseinrichtung gemäß Anspruch 1 bis 7, **dadurch gekennzeichnet**, daß beim Empfang eines Datenworts, bei dem das Richtungsänderungsbit, jedoch kein Richtungsbit gesetzt ist, in Datenempfängern, in denen ein Richtungsbit gespeichert ist, das gespeicherte Richtungsbit und alle Anzeigen der Auswertebits löschbar sind.
- 9. Datenübertragungseinrichtung gemäß Anspruch 1 bis 8, dadurch gekennzeichnet, daß beim Empfang eines Datenworts, bei dem das Richtungsänderungsbit, jedoch kein Richtungsbit gesetzt ist, in Datenempfängern, in denen kein Richtungsbit gespeichert ist, das Datenwort nicht übernehmbar ist.
- 10. Verfahren zur Übertragung eines Datenwortes von einer Feststation zu einem bewegten K\u00f6rper, wobei entlang der Bewegungsstrecke mindestens eine Datensendeeinheit zur Aussendung eines Sendesignals und einer an dem bewegten K\u00f6rper befindlichen Datenempf\u00e4ngereinheit zum Empfangen der Sendesignale sowie im Datenempf\u00e4nger mindestens eine Speichereinheit zum Speichern der Daten, mindestens eine Datenauswerteeinheit und mindestens eine Anzeigeeinheit zum Anzeigen der Daten angeordnet sind, gekennzeichnet durch folgende Verfahrensschritte:
 - das zu übertragende Datenwort besteht aus mindestens einem, die Bewegungsrichtung des Körpers kennzeichnenden Richtungsbit, einem Richtungsänderungsbit sowie mindestens einem Auswertebit und wird zyklisch ausgesandt,
 - beim Empfang eines Datenwortes in Datenempfängern, in denen noch kein Richtungsbit gespeichert ist, wird das im Datenwort enthaltene Richtungsbit übernommen und im Datenempfänger als Richtungsbit gespeichert, wenn im Datenwort das Richtungsänderungsbit nicht gesetzt ist,
 - beim Empfang eines Datenwortes, in dem sowohl Richtungsbit als auch Richtungsänderungsbit gesetzt sind, in Datenempfängern, in denen noch kein Richtungsbit gespeichert ist, wird das im Datenwort nicht gesetzte Richtungsbit invertiert übernommen und gespeichert,
 - beim Empfang eines Datenwortes in Datenempfängern, in denen bereits ein Richtungsbit gesetzt ist, werden nur dann die Auswertebits in einen Zwischenspeicher übernommen und von der Auswerteeinheit ausgewertet, wenn das im Datenwort enthaltene Richtungsbit und das im Datenempfänger gespeicherte Richtungsänderungsbit gleich sind, und sich die im Datenwort enthaltenen Auswertebits in mindestens einem Bit von den im Zwischenspeicher gespeicherten Daten unterscheiden, unabhängig davon, ob im Datenwort das Richtungsänderungsbit gesetzt ist,
 - beim Empfang eines Datenwortes, bei dem das Richtungsänderungsbit, jedoch kein Richtungsbit gesetzt ist, werden in Datenempfängern, in denen ein Richtungsbit gespeichert ist, das gespeicherte Richtungsbit und alle Anzeigen der Auswertebits gelöscht,
 - beim Empfang eines Datenwortes, bei dem das Richtungsänderungsbit, jedoch kein Richtungsbit gesetzt ist, wird in Datenempfängern, in denen kein Richtungsbit gespeichert ist, das Datenwort nicht übernommen und nicht ausgewertet.
- 11. Verfahren gemäß Anspruch 10, dadurch gekennzeichnet, daß die Übernahme der Auswertebits in den Zwischenspeicher durch einen Übernahme-Impuls ausgelöst wird.
- 12. Verwendung der Datenübertragungseinrichtung gemäß Anspruch 1 bis 9 oder des Verfahrens zur Übertragung von Daten gemäß Anspruch 10 oder 11 in einer Vorrichtung zur automatischen Erfassung von Signalen für den Straßenverkehr und zur Wiedergabe dieser Signale in Kraftfahrzeugen.
- 13. Verwendung der Datenübertragungseinrichtung gemäß Anspruch 1 bis 9 oder des Verfahrens zur Übertragung von Daten gemäß Anspruch 10 oder 11 in einer Vorrichtung zur automatischen Erfassung von Rollinformationen auf Flughäfen und zur Wiedergabe der Rollinformationen in Flugzeugen.

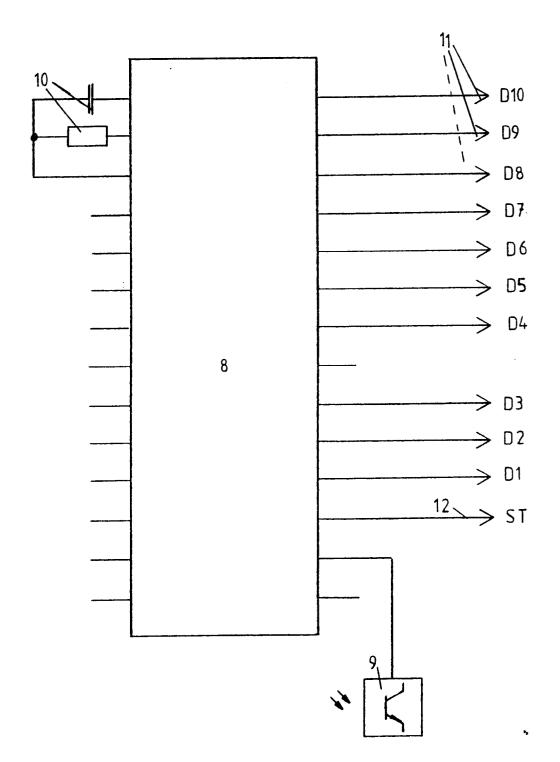


Fig. 2

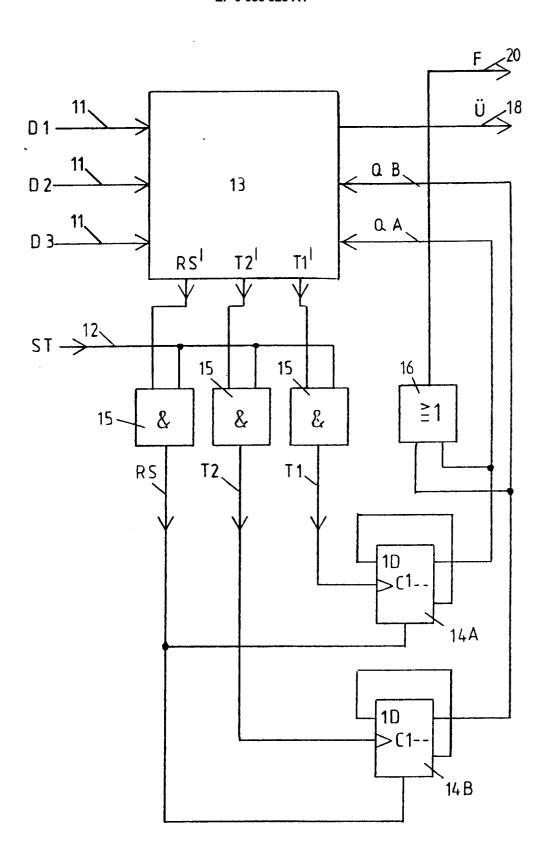
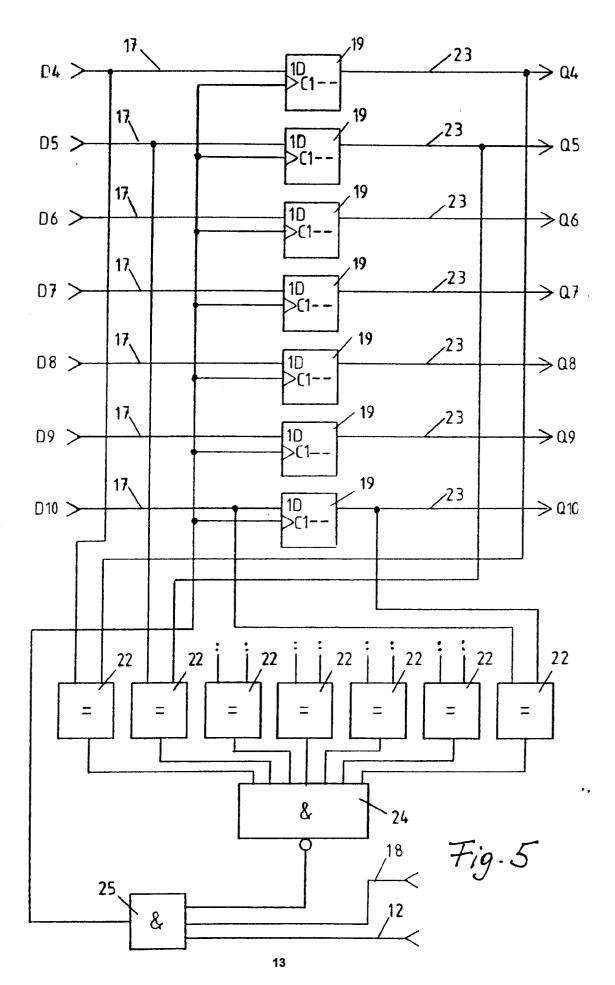
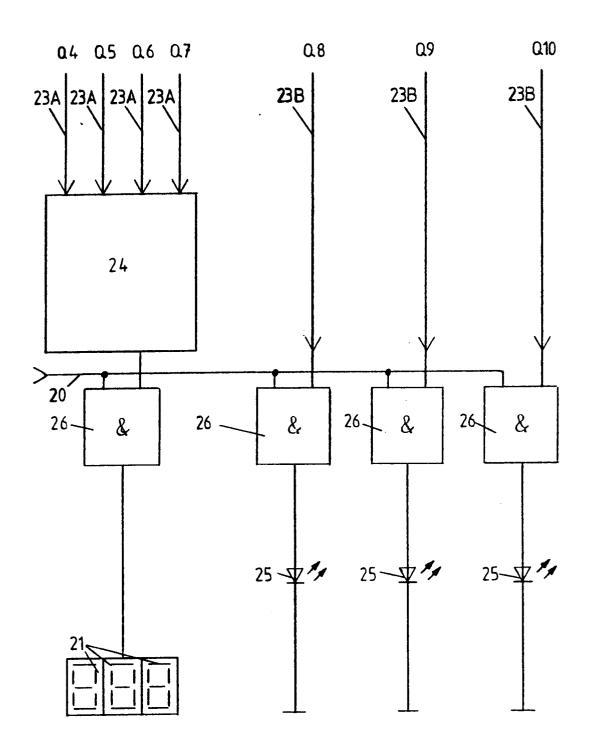
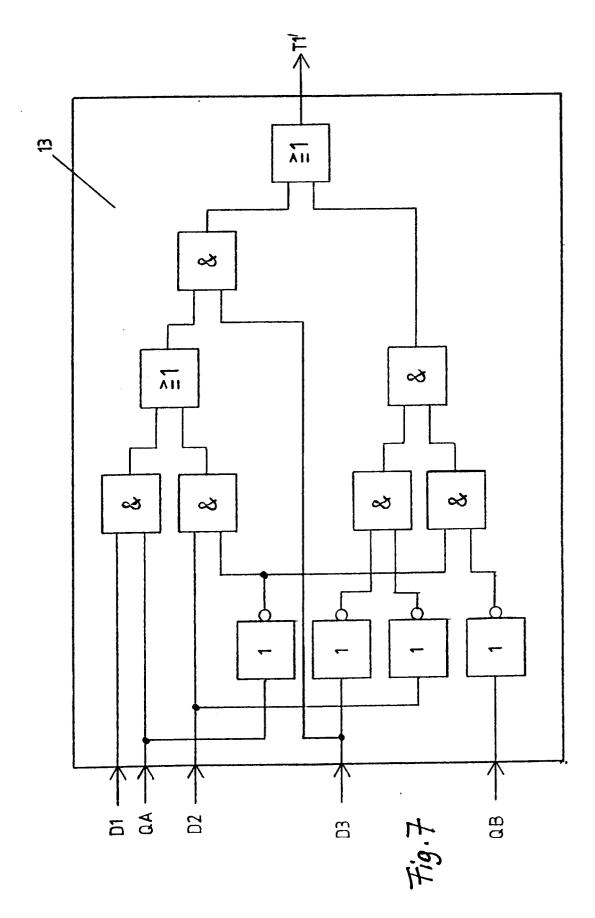
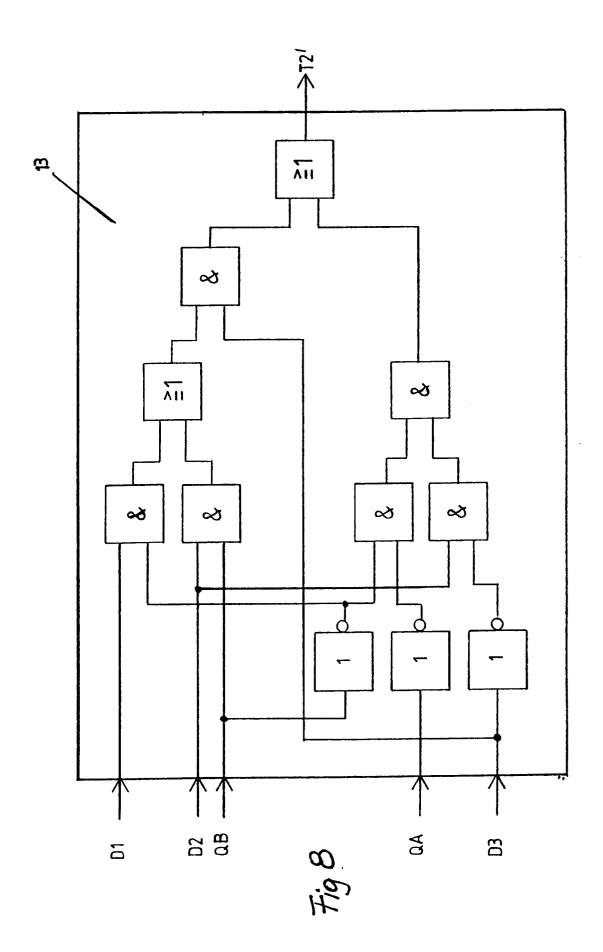
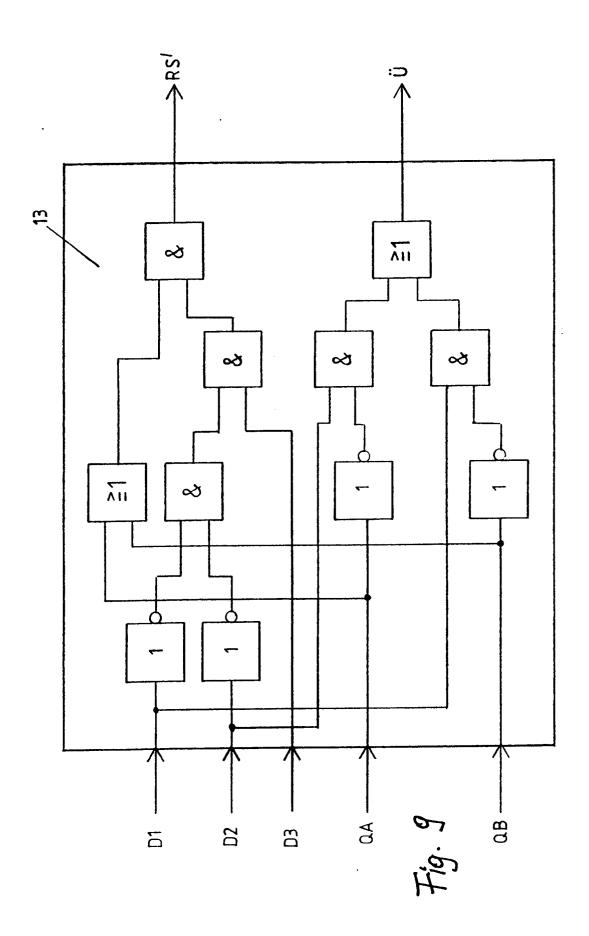
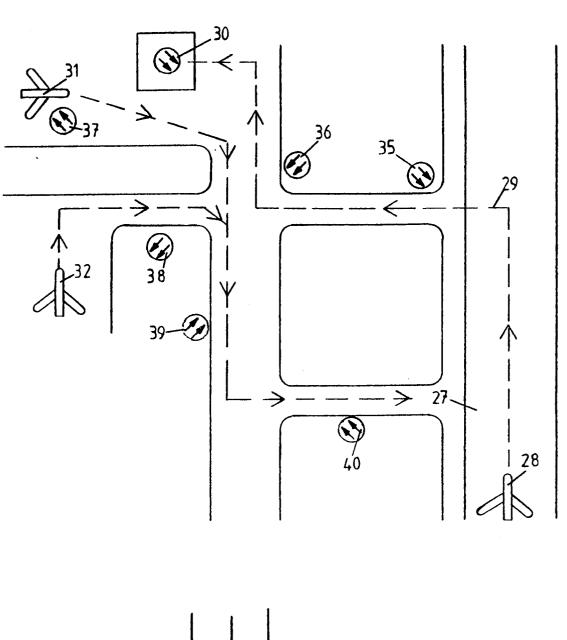
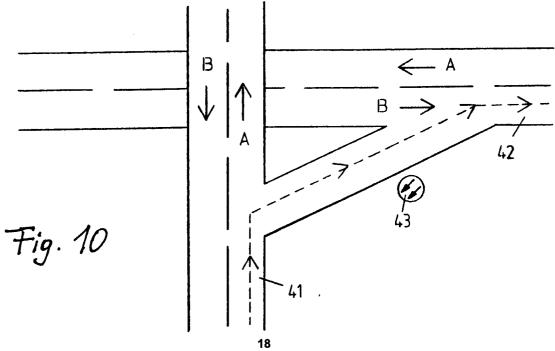



Fig.3

Nr.	D3	D2	Ď1	αв	QA		T21	T1 '	RS ¹	Ü
1	0	0	0	0	0	I	X	X	X	X
2	0	0	0	0	1	П	X	X	X	X
3	0	0	0	1	0	Ħ	X	X	X	X
4	0	0	0	1	1		X	X	X	X
5	0	0	1	0	0		0	1	0	1
6	0	0	1	0	1		0	0	0	1
7	0	0	1	1	0		0	0	0	0
8	0	0	1	1	1		X	X	X	X
9	0	1	0	0	0		1	0	0	1
10	0	1	0	0	1	П	0	0	0	0
11	0	1	0	1	0	П	0	0	. 0	1
12	0	1	0	1	1		X	X	X	X
13	0	1	1	0	0		X	X	X	X
14	0	1	1	0	1	П	X	X X	X	X
15	0		1	1	0		X	X	X	
16	0	1	1	1	1		X	X	X	X
17	1	0	0	0	0		0	0	0	0
18	1	0	0	0	1		0	0	1	0
19	1	0	0	1	0		C	0	1	0 X
20	1	0	0	1	1		X	Χ	X	X
21	1	С	1	0	0		1	0	0	1
22	1	0	1	0	1		1	1	0	1
23	1	0	1	1	0		0	0	0	0
24	1	0	1	1	1		X	Χ	Х	X
25	1	1	0	0	0		0	1	0	X 1
26	1	1	0	0	1	١	0	0	0	0
27	1	1	0	1	0		1	1	0	1
28	1	1	0	1	1	1	X	X	X	X
29	1	1	1	0	0	1	X			
30	1	1	1	Ō	1	1	X	X	X	X
31	1	1	1	1	0	1	X	X	Χ	X X X
32	1	1	1	1	1	1	X	X	X	X

Fig. 4


Fig. 6

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 95 10 8628

	EINSCHLÄGIG	E DOKUMENTE				
Kategorie	Kennzeichnung des Dokume der maßgeblic	nts mit Angabe, soweit erforderlich, ben Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.Cl.6)		
A	EP-A-0 575 907 (MAG A) 29.Dezember 1993 * Zusammenfassung; Abbildungen 1,2 *		1,2,10,	G08G1/0967		
A	EP-A-O 521 846 (ROT 7.Januar 1993 * das ganze Dokumen	·	1,10,12			
A	DE-A-39 11 916 (TEL 10.Mai 1990 * das ganze Dokumen	EFUNKEN SYSTEMTECHNIK	1,10,12,			
A	ELEKTRONIK, Bd. 39, Nr. 16, 3.A Seiten 63-64, PELTZ G 'RICHTUNGS INFRAROT-SIGNALWEIC * Abbildung 1 *		1			
A,D, P	DE-U-94 09 056 (SCH ING) 11.August 1994 * das ganze Dokumen		1,10,12	RECHERCHIERTE SACHGEBIETE (Int.Cl.6)		
A	EP-A-O 443 187 (BAY AG) 28.August 1991 * das ganze Dokumen	ERISCHE MOTOREN WERKE	1,10,12			
Der vo	orliegende Recherchenbericht wurd	le für alle Patentansprüche erstellt Abschlußdatum der Recherche		Prüfer		
	DEN HAAG	11.September 1	1995 Wan	zeele, R		
X:von Y:von 2nd A:tec O:nic	KATEGORIE DER GENANNTEN L besonderer Bedeutung allein betracht besonderer Bedeutung in Verbindung leren Veröffentlichung derselben Kate hnologischer Hintergrund htschriftliche Offenbarung ischenliteratur	DOKUMENTE T: der Erfindu E: alteres Pate tet nach dem A mit einer D: in der Anm gorie L: aus andern	ng zugrunde liegende antdokument, das jedo unmeldedatum veröffer eldung angeführtes Do Gründen angeführtes	Theorien oder Grundsätze ch erst am oder ntlicht worden ist okument		

EPO FORM 1503 03.82 (P04C03)