(19)
(11) EP 0 688 748 B2

(12) NEW EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mentionof the opposition decision:
14.07.2004 Bulletin 2004/29

(45) Mention of the grant of the patent:
06.05.1998 Bulletin 1998/19

(21) Application number: 94870107.3

(22) Date of filing: 24.06.1994
(51) International Patent Classification (IPC)7C07C 2/20, B01J 27/32

(54)

Method for removing catalyst from an oligomer product

Verfahren zur Entfernung eines Katalysators aus einem Oligomerprodukt

Méthode pour retirer le catalyseur du produit d'oligomérisation


(84) Designated Contracting States:
AT BE CH DE DK ES FR GB GR IT LI LU NL PT SE

(43) Date of publication of application:
27.12.1995 Bulletin 1995/52

(73) Proprietor: Fortum Oil and Gas Oy
02150 Espoo (FI)

(72) Inventors:
  • Nissfolk, Fredrik
    SF-06100 Borgà (FI)
  • Linnaila, Raimo
    SF-06150 Porvoo (FI)
  • Smeets, Ivo
    B-3500 Hasselt (BE)
  • Lehtinen, Vesa Matti
    SF-06400 Porvoo (FI)
  • Alastalo, Kauno
    SF-06400 Porvoo (FI)
  • Thierie, Filip
    B-3840 Borgloon (BE)

(74) Representative: Claeys, Pierre et al
Gevers & Vander Haeghen, Intellectual Property House, Brussels Airport Business Park Holidaystraat 5
1831 Diegem
1831 Diegem (BE)


(56) References cited: : 
EP-A- 0 318 186
EP-A- 0 364 889
US-A- 4 263 467
EP-A- 0 364 815
EP-A- 0 493 024
   
  • SRI International Report, no. 125, 1979
   


Description


[0001] The present invention relates to a method for removing catalyst from an olefinic oligomerization product, according to the preamble of claim 1.

[0002] Poly-α-olefin type base oils are widely used in high quality lubricants. The most preferred starting material for the poly-α-olefin base oils is 1 -decene, which yields a product with excellent viscosity-volatility relationships and high viscosity indices. Such oligomer derived base oils are especially adapted for use under rigorous conditions and particularly suitable for general use in an arctic environment. Other olefins are also usually used in oligomerization processes, for example straight or branched C4-C20 olefin, advantageously a C6-C12 olefin-1.

[0003] The use of promoted borontrifluoride gives good control of the oligomerization process and furthermore a good conversion of monomer to desired poly-α-olefin base oils. Borontrifluoride alone is not an active catalyst; it requires a promoter in order to perform as an oligomerization catalyst. The promoter or cocatalyst can be water, alcohol, acid, ether, ketone or mixtures of these. The choice of cocatalyst has a significant impact on the oligomerization. Most commonly alcohols as n-propanol and n-butanol are used. Other cocatalysts may also be used as for example C1-C15 alcohols, advantageously a C1-C10 alcohol, a polyol or C1-C7 carboxylic acids.

[0004] BF3 forms complexes with the cocatalysts. The activity and performance of the BF3-complexes as oligomerization catalysts is improved by supplying BF3 in excess to what is needed for formation of the catalyst complex. Excess BF3 is supplied by either bubbling BF3-gas through the reaction mixture or by carrying out the reaction under BF3-pressure.

[0005] The BF3-cocatalyst complex is either formed in situ in the oligomerization process or it is prepared by contacting BF3 and cocatalyst prior to introduction to the process.

[0006] For those skilled in the art it is obvious that the oligomerization can be carried out in various types of reactor systems, where the free BF3, the catalyst complex and the monomer are brought together. In general the catalyst complexes are not very well soluble in neither monomer nor the oligomers formed in the process. Good contact between the three phases is essential in order to achieve an efficient oligomerization process. The oligomerization reaction as well as the formation of BF3-cocatalyst complex are exothermic reactions and in order to enable a controlled oligomerization path the oligomerization system has to be equipped with an adequate cooling system.

[0007] Various kinds of reactor systems known as prior art for use in oligomerization by liquid phase catalyst complexes are e.g. stirred tank reactors operated either in batch or continuous mode, loop reactors, tubular reactors or combinations of the latter. For operation in continuous mode the process can also be carried out in two or more serial connected reactors. Fixed bed reactors may be used when the catalyst complex is present as a solid.

[0008] The oligomerization reactor product consists of unreacted monomer, dimers, trimers and higher oligomers, free and dissolved BF3 and catalyst complex.

[0009] Due to the toxicity and corrosion risks the catalyst complex and free BF3 have to be carefully removed from the oligomer product. Especially fluor compounds are harmful for the generally used nickel based catalyst used for hydrogenating the final products.

[0010] Removal of the BF3 catalyst can be acheived by washing the reactor product with caustic water solution or ammonia water solutions. The alkaline wash is generally followed by aqueous wash in one or more steps to achieve a sufficiently clean oligomer mixture for further processing.

[0011] When a catalyst recovery is applied e.g. by water extraction of BF3 (EP-A-0349277 and EP-A-0364815) or by gravitational separation (EP-A-0364889 or US-A-4239930) there is still a need to subject the oligomer product to additional washing steps.

[0012] A catalyst recovery comprising a vacuum distillation procedure of the oligomerization product and a step of recyding the vaporised BF3 cocatalyst complex is disclosed in EP-A-0318186. However said procedure still needs a washing with an alkaline solution and the bottom product contains a part of the monomer fraction of the oligomerization product.

[0013] Applying alkaline and aqueous washing generates quantitative amounts of waste water containing various fluor and boron salts, which for environmental reasons have to be treated in a proper way. The disposal of this type of waste water is costly. Another disadvantage of the oligomer washing is a possible formation of oligomer-water emulsions, which cause operational problems for the washing process. In worst case the emulsion formation may cause loss of product. Furthermore the washed product tends to contain dissolved water, which may have to be removed by drying processes before the product can be further treated. Especially if oligomer separation by vacuum distillation is carried out subsequent to the washing process, any water present in the distillation feed will cause disturbances in the distillation.

[0014] Accordingly, the object of present invention is to provide a process for recovering the BF3-cocatalyst complex and to achieve efficient removal of BF3-cocatalyst traces from the oligomer product without subjecting the oligomeric product to any kind of aqueous washing. Another object of the present invention is to separate during said recovery the BF3-cocatalyst complex, free and dissolved BF3 and unreacted monomer, in order to obtain an oligomer product consisting of dimer, trimer, tetramer and heavier oligomers essentially free of BF3-residues.

[0015] According to the invention use is made of a method having the characteristic features of claim 1. Other advantageous features of the method according to the invention result from the subsidiary claims.

[0016] According to the method of the invention, during the distillation step, no dimer is preferably entrained in the top portion of the distillation column. Depending on the used monomer to oligomerize, the conditions in the distillation column are selected in order that all BF3-residues be vaporized from the bottom product and also all unreacted monomer. In these conditions, no washing step of the oligomerization product is necessary. Remarkable savings are achieved in the total catalyst consumption and in the expenses incurred in removing residues.

[0017] The invention will now be described more in detail with the aid of a non limitative example and with reference to the Figure which represents a flow diagram of the vacuum distillation step according to the invention.

[0018] In this example the oligomerization is carried out in a continuous stirred tank reactor, which is continuously charged with fresh and recycled monomer and with recycled catalyst complex and which is pressurized with BF3 in order to establish an excess of BF3. Cooling is provided by circulating the reactor content via an external heat-exchanger. For example 1-decene is used as monomer and n-butanol as cocatalyst. The temperature is set on -10°C to + 70°C, preferably on 0 to 50°C, for example on 30°C. BF3 gas is supplied at constant rate to obtain the quantity required in producing BF3-BuOH complex. The pressure is maintained to 0.05 to 10 bars, preferably to 1.5 to 4 bars.

[0019] Subsequent to oligomerization the reactor product, consisting of unreacted monomer, dimers, trimers and higher oligomers, free and dissolved BF3 and catalyst complex, is fed in 1 to a distillation column 2 operated under vacuum. Pressure at top 3 of the column is lower than 30 mbar, preferably lower than 15 mbar, for example of 10 mbar. The temperature is maintained as low as possible in the upper part of the column, which is located above the feed position 1, for example to 50-60°C. In any case at the top 3 of the column the temperature is less than 70°C, preferably of 45-50°C. Above 70-80°C, the catalyst complex of the present example starts to decompose into undesired products. Preferably, the temperature at the top 3 of the column 2 is also lower than the boiling temperature of the dimer fraction resulting from the oligomerization, in order to avoid a distillation of any dimer. Vaporization of the catalyst complex and unreacted monomer at low temperature is achieved while operating at the above disclosed low pressures.

[0020] In order to obtain an essentially complete removal of both unreacted monomer and BF3-residues from the bottom product, the pressure at the lower packing 4 of the column is maintained lower than 50 mbar, preferably lower than 25 mbar. Here, the temperature is lower than the boiling temperature of the dimer fraction, and lower than the decomposition temperature of the cocatalyst complex, at the applied pressures, and higher than the boiling temperature of the unreacted monomer and of the cocatalyst complex.

[0021] In the present example, at the lower packing 4 of the column, a temperature of 70-80°C is maintained at pressure of 15 mbar.

[0022] In the illustrated example, a reboiler 5 is mounted to receive the bottom product of the column 2 and to heat the latter. This product is completely free of cocatalyst complex and of monomer. In a following flash drum 6 a portion of vaporized dimer is separated from the heated oligomerized product at a temperature of for example 200-220°C and said vaporized dimer portion is recycled in 7 into the bottom 11 of the distillation column.

[0023] By means of a pump 8, the product issuing from the bottom of the flash drum 6 and consisting of the desired products (dimers, trimers, tetramers and heavier oligomers) essentially free from monomer and BF3-residues is transferred towards the next treatment.

[0024] At the outlet of the pump 8, bottom product still at its boiling point is recycled via a minimum-flow line 10 into the bottom 11 of the distillation column.

[0025] In the illustrated example the bottom 11 of the distillation column is consequently a contact zone for a liquid coming down from the lower packing 4, a dimer vapor rising from the flash drum 6 and a bottom product at its boiling point issuing from the outlet of the pump 8. If residual monomer and catalyst complex are still included in the liquid from the lower packing 4, they are evaporated in the bottom 11 of the column by the heat inputs via lines 7 and 10.

[0026] In this way, by a direct heating, it is possible to prevent especially the catalyst complex from entering the reboiler 5, where catalyst residues can cause severe corrosion. The evaporation of said components is advantageously achieved without exposing the catalyst complex to hot heat-transfer surfaces. Obviously the step of heating the bottom product in the bottom 11 of the column could be obtained also by other means, for example by heat exchangers.

[0027] Obviously the introduction in 7 of the vaporized dimer and in 10 of a fraction of vaporized bottom product may be controlled by any known means. Said introduction must regulate the required heat for monomer and catalyst complex evaporation and enable a good temperature control of the bottom 11 of the column. In the bottom 11 of the column, at a pressure of approximately 15 mbar, the temperature is in the present example regulated advantageously to a temperature of 130-150° C.

[0028] The distillate fraction leaving in 9 the distillation column 2 consists of free BF3, catalyst complex and monomer. Distillate vapor is condensed and catalyst complex is separated from the monomer phase by gravitation and the two are independently recycled back to the oligomerization process. Uncondensable BF3-gas is optionally trapped in a vacuum system such as the system disclosed in EP-A-0493024. The catalyst complex formed in the vacuum system as a result of the reaction between BF3 and n-butanol is also recycled to the oligomerization process.

[0029] It is also possible to conceive a direct recycling of the condensed distillate without previous separation of the monomer from the cocatalyst complex. A separation of the condensed vapour may also be carried out for example by means of a centrifuge or cyclone system.


Claims

1. Method for removing catalyst from an olefinic oligomerization product, comprising the steps of

- oligomerizing one or more olefins in presence of a BF3 cocatalyst complex,

- distilling at low pressure and temperature the oligomerization product by feeding the latter into a distillation column, between its top and its bottom, and

- separating a distillate and a bottom product, the distillate containing vaporized BF3 cocatalyst complex and the bottom product containing dimers, trimers and higher oligomers,

   characterized in that the distillation comprises

- maintaining at the top of said distillation column a temperature higher than the boiling temperature of the unreacted monomer and of the cocatalyst complex and lower than the decomposition temperature of said cocatalyst complex at the applied pressure,

- maintaining in a portion of said distillation column, which is located lower than said feeding, a temperature higher than the boiling temperature of the unreacted monomer and of the cocatalyst complex and lower than the boiling temperature of the dimer fraction at the applied pressure, and

- separating at the top of the column a substantially dimer-free distillate containing, simultaneously to said vaporized BF3 cocatalyst complex, vaporized unreacted monomer, and at the bottom of the column a bottom product containing said dimers, trimers and higher oligomer, which is substantially free from BF3 cocatalyst complex and from monomer,

- heating the bottom product within the bottom of the column in order to evaporate optionally residual unreacted monomer and BF3 cocatalyst complex, and

- removing from the bottom of the column a heated bottom product which is free from BF3 cocatalyst complex and from monomere.


 
2. Method according to claim 1, characterized by the steps of condensing the distillate and of isolating the condensed BF3 cocatalyst complex from the condensed monomer.
 
3. Method according to claim 2, characterized in that the condensed BF3 cocatalyst complex is isolated from the condensed monomer by gravitation or centrifugation.
 
4. Method according to claim 2 or 3, characterized in that, during said step of condensing, uncondensable BF3-gas is trapped in a vacuum system wherein trapped BF3 and cocatalyst are reacted to form BF3 cocatalyst complex.
 
5. Method according to any one of claims 2 to 4, characterized by a step of recycling BF3 cocatalyst complex resulting from said step of isolating and/or from said reaction between trapped BF3 and cocatalyst, and/or isolated monomer back to the oligomerization.
 
6. Method according to claim 1, characterized by the steps of condensing the distillate and of recycling the condensed mixture back to the oligomerization.
 
7. Method according to any one of claims 1 to 6, characterized in that the olefin to oligomerize is a straight or branched C4-C20 olefin, advantageously a C6-C12 olefin-1, particularly 1-decene.
 
8. Method according to any one of claims 1 to 7, characterized in that the cocatalyst is a C1-C15 alcohol or a polyol or a C1-C7 carboxylic acid, advantageously a C1-C10 alcohol, particularly n-butanol.
 
9. Method according to any one of claims 1-8, characterized in that the pressure is lower than 30 mbar, advantageously lower than 15 mbar.
 
10. Method according to any one of claims 1-9, characterized in that the temperature at the top of the distillation column is lower than 70°C, preferably of 45-50°C, at a pressure of approximately 10 mbar.
 
11. Method according to any one of claims 1-10, characterized in that the temperature in said portion of the distillation column is equal or lower than 80°C, preferably of 70-80°C, at a pressure of approximately 15 mbar.
 
12. Method according to any one of the claims 1 to 11, characterized in that the temperature in the bottom of the column is of 130-150°C at a pressure of approximately 15 mbar.
 
13. Method according to any one of claims 1 to 12, characterized in that said step of heating comprises an introduction into the bottom of the column of at least one vaporized portion of the bottom product issuing from the distillation column.
 
14. Method according to any one of claims 1 to 13, characterized by the steps of heating the bottom product of the distillation column in a reboiler, of separating vaporized dimer from the heated bottom product and of recycling said vaporized dimer into the bottom of the distillation column.
 
15. Method according to claim 14, characterized by the steps of pumping the heated bottom product from which vaporized dimer was separated and thereafter of recycling a vaporized portion of said pumped bottom product into the bottom of the distillation column.
 


Ansprüche

1. Verfahren zur Entfernung eines Katalysators aus einem olefinischen Oligomerisierungsprodukt, umfassend die Stufen

- Oligomerisieren von einem oder mehreren Olefinen in Gegenwart eines BF3-Cokatalysator-Komplexes,

- Destillieren des Oligomerisierungsprodukts bei niedrigem Druck und niedriger Temperatur durch Zufuhr des Oligomerisierungsprodukts in eine Destillationskolonne zwischen ihrem Kopf und ihrem Sumpf, und

- Abtrennen des Destillats und eines Sumpfprodukts, wobei das Destillat verdampften BF3-Cokatalysator-Komplex enthält und das Sumpfprodukt Dimere, Trimere und höhere Oligomere enthält, dadurch charakterisiert, daß die Destillation umfaßt:

- Aufrechterhaltung einer Temperatur am Kopf der Destillationskolonne, die höher ist als die Siedetemperatur des unreagierten Monomeren und des Cokatalysator-Komplexes und niedriger ist als die Zersetzungstemperatur des Cokatalysator-Komplexes beim angewandten Druck,

- Aufrechterhaltung einer Temperatur, die höher ist als die Siedetemperatur des unreagierten Monomeren und des Cokatalysator- Komplexes und niedriger ist als die Siedetemperatur der Dimerfraktion beim angewandten Druck in einem Teil der Kolonne, der niedriger liegt als die Zuleitung, und

- Abtrennen eines im wesentlichen Dimer-freien Destillats am Kopf der Kolonne, das gleichzeitig mit dem verdampften BF3- Cokatalysator-Komplexes verdampftes unreagiertes Monomer enthält, und eines Sumpfprodukt aus dem Sumpf der Kolonne, das die Dimere, Trimere und höheren Oligomere enthält, und das im wesentlichen frei ist von BF3-Cokatalysator-Komplex und von Monomer,

- Erhitzen des Sumpfproduktes im Sumpf der Kolonne, um gegebenenfalls restliches unreagiertes Monomer und BF3-Cokatalysator-Komplex zu verdampfen, und

- Entfernen eines erhitzten Sumpfproduktes, das frei von BF3-Cokatalysator-Komplex und von Monomer ist, aus dem Sumpf der Kolonne.


 
2. Verfahren entsprechend Anspruch 1, charakterisiert durch die Stufen Kondensation des Destillats und Isolieren des kondensierten BF3-Cokatalysator-Komplexes aus dem kondensierten Monomer.
 
3. Verfahren nach Anspruch 2, dadurch charakterisiert, daß der kondensierte BF3-Cokatalysator-Komplex aus dem kondensierten Monomer durch Gravitation oder Zentrifugation isoliert wird.
 
4. , Verfahren nach Anspruch 2 oder 3, dadurch charakterisiert, daß während der Kondensationsstufen nicht-kondensierbares BF3-Gas in einem Vakuumsystem aufgefangen wird, in dem aufgefangenes BF3 und Cokatalysator zur Bildung von BF3-Cokatalysator-Komplex umgesetzt werden.
 
5. Verfahren nach einem der Ansprüche 2 bis 4, charakterisiert durch eine Stufe der Rückführung von BF3-Cokatalysator-Komplex, der aus der Stufe der Isolierung resultiert, und/oder aus der Reaktion zwischen aufgefangenem BF3 und Cokatalysator, und/oder isoliertem Monomer, in die Oligomerisierung.
 
6. Verfahren nach Anspruch 1, charakterisiert durch die Stufen Kondensation des Destillats und Rückführung der kondensierten Mischung in die Oligomerisierung.
 
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch charakterisiert, daß das zu oligomerisierende Olefin ein geradkettiges oder verzweigtes C4-C20 Olefin ist, vorteilhafterweise ein C6-C12 1-Olefin, insbesondere 1-Decen.
 
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch charakterisiert, daß der Cokatalysator ein C1- C15 Alkohol oder Polyol oder eine C1-C7 Carbonsäure ist, vorteilhafterweise ein C1-C10 Alkohol, insbesondere n-Butanol.
 
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch charakterisiert, daß der Druck niederiger ist als 30 mbar, vorteilhafterweise niedriger als 15 mbar.
 
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch charakterisiert, daß die Temperatur am Kopf der Destillationskolonne niedriger ist als 70°C, bevorzugt 45 bis 50°C, bei einem Druck von ungefähr 10 mbar.
 
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch charakterisiert, daß die Temperatur in diesem Teil der Destillationskolonne gleich oder geringer ist als 80°C, bevorzugt 70 bis 80°C, bei einem Druck von ungefähr 15 mbar.
 
12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch charakterisiert, daß die Temperatur im Kolonnensumpf 130 bis 150°C bei einem Druck von ungefähr 15 mbar ist.
 
13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch charakterisiert, daß die Stufe des Erhitzens die Einleitung von mindestens einem verdampften Anteil des aus der Destillationskolonne austretenden Sumpfprodukts in den Kolonnensumpf umfaßt.
 
14. Verfahren nach einem der Ansprüche 1 bis 13, charakterisiert durch die Schritte Erhitzen des Sumpfproduktes der Destillationskolonne in einem Reboiler, Abtrennen von verdampftem Dimer vom erhitzten Sumpfprodukt und Rückführung des verdampften Dimeren in den Sumpf der Destillationskolonne.
 
15. Verfahren nach Anspruch 14, charakterisiert durch die Stufen Pumpen des erhitzten Sumpfproduktes, aus dem verdampftes Dimer abgetrennt wurde, und anschließend Rückführen eines verdampften Anteils des gepumpten Sumpfproduktes in den Sumpf der Destillationskolonne.
 


Revendications

1. Procédé d'élimination de catalyseur à partir d'un produit d'oligomérisation oléfinique, comprenant les étapes

― d'oligomérisation d'une ou de plusieurs oléfines en présence d'un complexe de BF3-cocatalyseur,

― de distillation à température et pression basses du produit d'oligomérisation par alimentation de ce dernier à une colonne de distillation, entre sa tête et sa queue, et

― de séparation d'un distillat et d'un produit de queue, le distillat contenant du complexe de BF3-cocatalyseur vaporisé et le produit de queue contenant des dimères, trimères et oligomères supérieurs,

caractérisé en ce que la distillation comprend

- un maintien à la tête de la colonne de distillation d'une température supérieure à la température d'ébullition du monomère qui n'a pas réagi et du complexe de cocatalyseur et inférieure à la température de décomposition du complexe de cocatalyseur à la pression appliquée,

- un maintien dans une partie de la colonne de distillation, qui est située en dessous de ladite alimentation, d'une température supérieure à la température d'ébullition du monomère qui n'a pas réagi et du complexe de cocatalyseur et inférieure à la température d'ébullition de la fraction de dimère à la pression appliquée, et

- une séparation, à la tête de la colonne, d'un distillat sensiblement exempt de dimère, contenant du monomère vaporisé qui n'a pas réagi, simultanément au complexe de BF3-cocatalyseur vaporisé, et, à la queue de la colonne, d'un produit de queue contenant lesdits dimères, trimères et oligomères supérieurs, qui est sensiblement exempt de complexe de BF3-cocatalyseur et de monomère,

- un chauffage du produit de queue à l'intérieur de la queue de la colonne, en vue d'évaporer du monomère qui n'a pas réagi et du complexe de BF3-cocatalyseur éventuellement résiduels,

- une élimination à partir de la queue de la colonne d'un produit de queue chauffé qui est exempt de complexe de BF3- cocatalyseur et de monomère.


 
2. Procédé suivant la revendication 1, caractérisé par les étapes de condensation du distillat et d'isolement du complexe de BF3-cocatalyseur condensé par rapport au monomère condensé.
 
3. Procédé suivant la revendication 2, caractérisé en ce que le complexe de BF3-cocatalyseur condensé est isolé du monomère condensé par gravité ou centrifugation.
 
4. Procédé suivant l'une des revendications 2 et 3, caractérisé en ce que, pendant l'étape de condensation, du gaz BF3 non condensable est piégé dans un système sous vide, dans lequel du BF3 piégé et du cocatalyseur sont amenés à réagir pour former un complexe de BF3-cocatalyseur.
 
5. Procédé suivant l'une quelconque des revendications 2 à 4, caractérisé par une étape de recyclage du complexe de BF3-cocatalyseur résultant de l'étape d'isolement et/ou de la réaction entre du BF3 piégé et du cocatalyseur, et/ou du monomère isolé, vers l'oligomérisation.
 
6. Procédé suivant la revendication 1, caractérisé par les étapes de condensation du distillat et de recyclage du mélange condensé vers l'oligomérisation.
 
7. Procédé suivant l'une quelconque des revendications 1 à 6, caractérisé en ce que l'oléfine à oligomériser est une oléfine en C4-C20 linéaire ou ramifiée, avantageusement une oléfine-1 en C6-C12, en particulier du 1-décène.
 
8. Procédé suivant l'une quelconque des revendications 1 à 7, caractérisé en ce que le cocatalyseur est un alcool en C1-C15 ou un polyol ou un acide carboxylique en C1-C7, avantageusement un alcool en C1-C10, en particulier du n-butanol.
 
9. Procédé suivant l'une quelconque des revendications 1 à 8, caractérisé en ce que la pression est inférieure à 30 mbars, avantageusement à 15 mbars.
 
10. Procédé suivant l'une quelconque des revendications 1 à 9, caractérisé en ce que la température à la tête de la colonne de distillation est inférieure à 70°C, de préférence de 45 à 50°C, à une pression d'environ 10 mbars.
 
11. Procédé suivant l'une quelconque des revendications 1 à 10, caractérisé en ce que la température dans ladite partie de la colonne de distillation est égale ou inférieure à 80°C, de préférence de 70-80°C, à une pression d'environ 15 mbars.
 
12. Procédé suivant l'une quelconque des revendications 1 à 11, caractérisé en ce que la température dans la queue de la colonne est de 130-150°C à une pression d'environ 15 mbars.
 
13. Procédé suivant l'une quelconque des revendications 1 à 12, caractérisé en ce que l'étape de chauffage comprend une introduction dans la queue de la colonne d'au moins une partie évaporée du produit de queue provenant de la colonne de distillation.
 
14. Procédé suivant l'une quelconque des revendications 1 à 13, caractérisé par les étapes de chauffage du produit de queue de la colonne de distillation dans un rebouilleur, de séparation de dimère vaporisé à partir du produit de queue chauffé et de recyclage du dimère vaporisé dans la queue de la colonne de distillation.
 
15. Procédé suivant la revendication 14, caractérisé par les étapes de pompage du produit de queue chauffé à partir duquel du dimère vaporisé a été séparé et ensuite de recyclage d'une partie évaporée du produit de queue pompé à l'intérieur de la queue de la colonne de distillation.
 




Drawing