(19)
(11) EP 0 694 740 A2

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
31.01.1996  Patentblatt  1996/05

(21) Anmeldenummer: 95810442.4

(22) Anmeldetag:  05.07.1995
(51) Internationale Patentklassifikation (IPC)6F23R 3/12, F23R 3/40, F23R 3/34, F23D 17/00
(84) Benannte Vertragsstaaten:
DE FR GB NL

(30) Priorität: 25.07.1994 DE 4426351

(71) Anmelder: ABB RESEARCH LTD.
CH-8050 Zürich 11 (CH)

(72) Erfinder:
  • Sattelmayer, Thomas, Dr.
    CH-5318 Mandach (CH)

(74) Vertreter: Klein, Ernest et al
ABB Management AG TEI-Immaterialgüterrecht Postfach Wiesenstrasse 26/28
CH-5401 Baden
CH-5401 Baden (CH)

   


(54) Brennkammer


(57) Bei einer aus einer ersten Stufe (1) und einer in Strömungsrichtung nachgeschalteten zweiten Stufe (2) bestehenden Brennkammer, wird kopfseitig der ersten Stufe (1) ein Mischer (100) angeordnet, der die Bildung eines Brennstoff/Luft-Gemisches (19) bewerkstelligt. Abströmungsseitig dieses Mischers (100) wirkt ein Katalysator (3), in welchem das genannte Gemisch (19) vollständigt verbrannt wird, wobei die Mischung so gewählt ist, dass eine adiabate Flammentemperatur zwischen 800 und 1100°C entsteht. Abströmungsseitig dieses Katalysators (3) sind Wirbel-Generatoren (200) plaziert, welche für eine wirbelintensive Strömung sorgen. Stromab dieser Wirbel-Generatoren (200) wird Brennstoff (9) eingedüst und Selbstzündung ausgelöst. Ein anschliessender Querschnittssprung (12) im Strömungsquerschnitt der Brennkammer, der den Beginn der zweiten Stufe (2) bildet, sorgt für eine stabilisierende Rückströmzone der Flammenfront (21).




Beschreibung

Technisches Gebiet



[0001] Die vorliegende Erfindung betrifft eine Brennkammer gemäss Oberbegriff des Anspruchs 1.

Stand der Technik



[0002] Bei Brennkammern mit einem breiten Lastbereich stellt sich immer wieder das Problem, wie die Verbrennung bei einem hohen Wirkungsgrad schadstoffarm betrieben werden kann. Dabei stehen zwar mehrheitlich die NOx-Emissionen im Vordergrund, indessen hat es sich gezeigt, dass auch die UHC- (= ungesättigte Kohlen-Wasser-Stoffe) und die CO-Emissionen in Zukunft kräftig minimiert werden müssen. Insbesondere wenn es darum geht, flüssige und/oder gasförmige Brennstoffe zum Einsatz zu bringen, zeigt es sich sehr rasch, dass die Auslegung für die eine Brennstoffart, beispielsweise für Oel, und gerichtet auf Minimierung einer Schadstoff-Emission, beispielsweise der NOx-Emissionen, auf andere Betreibungsarten und andere Schadstoff-Emissionen nicht befriedigend übertragen werden kann. Bei mehrstufigen Brennkammern strebt man an, die zweite Stufe mager zu fahren. Dies ist indessen nur möglich, wenn am Eintritt dieser zweiten Stufe stets eine konstante Temperatur aufweist, damit ein ausreichender Ausbrand in der zweiten Stufe auch bei geringer Brennstoffmenge erreichbar ist, d.h., die Mischung in der ersten Stufe müsste weitgehend konstant gehalten werden, was beispielsweise mit den bekannten Diffusionsbrennern nicht möglich ist. Soweit ersichtlich zählt eine solche Brennkammer nicht zum Stand der Technik.

Darstellung der Erfindung



[0003] Hier will die Erfindung Abhilfe schaffen. Der Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, liegt die Aufgabe zugrunde, bei einer Brennkammer der eingangs genannten Art, sämtliche bei einer Verbrennung auftretende Schadstoff-Emissionen zu minimieren, unabhängig davon, mit welcher Brennstoffart gefahren wird.

[0004] Grundsätzlich geht es hier darum, die Mischung in der ersten Stufe konstant zu halten, damit können die UHC- und CO-Emissionen verhindert werden. Der zum Einsatz kommende Mischer der ersten Stufe vermischt sonach Brennstoff und Luft gleichmässig, wobei im Falle von Oel eine Tropfenverdampfung stattfindet. Kommt für die genannte Vermischung ein Vormischbrenner gemäss EP-A1-0 321 809 zu Einsatz, so erfährt dieser betreffend die Aerodynamik eine Modifikation, die sich darin manifestiert, dass der Drall wesentlich reduziert wird. Dies geschieht durch 20-100% breitere Lufteintrittsschlitze, oder durch eine Erhöhung der Anzahl dieser Schlitze. Sonach zeichnet sich der neue Vormischbrenner dadurch, dass er allein als Mischer eingesetzt und keine Rückströmzone mehr zu erzeugen vermag. Diesem Mischer nachgeschaltet wirkt ein Katalysator, in welchem das Brennstoff/Luft-Gemisch vollständig verbrannt wird. Die Mischung ist so gewählt, dass typische adiabate Flammentemperaturen zwischen 800° und 1100°C erreicht werden, und damit die thermische Zerstörung des Katalysators ausgeschlossen ist. Im Vergleich zu anderen katalytischen Verfahren für hohe Temperaturen ist dies ein grosser Vorteil. Aufgrund der niedrigen Temperaturen findet keine homogene Gasphasenreaktion, sondern nur eine Reaktion an den aktiven Oberflächen statt. Die NOx-Produktion einer solchen chemischen Umsetzung ist sehr niedrig, sehr viel kleiner als 1 ppmv. Am Ende des Katalysators steht ein weitgehend NOx-freies Heissgas zur Verfügung.

[0005] Nach dem Austritt aus dem Katalysator wird die Strömung beschleunigt auf ca. 80-120 m/s. Wirbelgeneratoren sorgen für eine wirbelintensive Strömung, um den stromab eingedüsten Brennstoff möglichst schnell einzumischen. Dabei sorgt die konstante Temperatur am Eintritt der zweiten Stufe für eine sichere Selbstzündung des Gemisches, unabhängig der in die zweite Stufe eingedüsten Brennstoffmenge. Auch hier zeigt es sich, dass die Eindüsung des Brennstoffes in ein Heissgas nur sehr wenig NOx produziert.

[0006] Ein weiterer wesentlicher Vorteil der Erfindung ist darin zu sehen, dass die Leistungsregelung über der Gasturbinenlast im wesentlichen durch die Anpassung der Brennstoffmenge in der zweiten Stufe erfolgen kann.

[0007] Vorteilhafte und zweckmässige Weiterbildungen der erfindungsgemässen Aufgabenlösung sind in den weiteren abhängigen Ansprüchen gekennzeichnet.

[0008] Im folgenden wird anhand der Zeichnungen Ausführungsbeispiele der Erfindung näher erläutert. Alle für das unmittelbare Verständnis der Erfindung nicht erforderlichen Elemente sind fortgelassen. Gleiche Elemente sind in den verschiedenen Figuren mit den gleichen Bezugszeichen versehen. Die Strömungsrichtung der Medien ist mit Pfeilen angegeben.

Kurze Beschreibung der Zeichnungen



[0009] Es zeigt:
Fig. 1
eine Brennkammer, als Ringbrennkammer konzipiert, zwischen zwei Strömungsmaschinen angeordnet,
Fig. 2
einen Mischer in perspektivischer Darstellung, entsprechend aufgeschnitten,
Fig. 3-5
entsprechende Schnitte durch verschiedene Ebenen des Mischers,
Fig. 6
eine perspektivische Darstellung des Wirbel-Generators,
Fig. 7
eine Ausführungsvariante des Wirbel-Genenerators,
Fig. 8
eine Anordnungsvariante des Wirbel-Generators nach Fig. 7,
Fig. 9
einen Wirbel-Generators im Vormischkanal,
Fig. 10-16
Varianten der Brennstoffzuführung im Zusammenhang mit Wirbel-Generatoren.

Wege zur Ausführung der Erfindung, gewerbliche Verwertbarkeit



[0010] Fig. 1 zeigt, wie aus der Wellenachse 16 hervorgeht, eine Ringbrennkammer, welche im wesentlichen die Form eines zusammenhängenden annularen oder quasi-annularen Zylinders aufweist. Darüber hinaus kann eine solche Brennkammer auch aus einer Anzahl axial, quasi-axial oder schraubenförmig angeordneter und einzeln in sich abgeschlossener Brennräume bestehen. An sich kann die Brennkammer auch aus einem einzigen Rohr bestehen. Die Ringbrennkammer gemäss Fig. 1 besteht aus einer ersten 1 und einer zweiten Stufe 2, welche nacheinander geschaltet sind, und wobei die zweite Stufe 2 aus der eigentlichen Verbrennungszone 11 besteht. Die erste Stufe 1 besteht in Strömungsrichtung zunächst aus einer Anzahl von in Umfangsrichtung angeordneten Mischern 100, wobei der Mischer selbst im wesentlichen aus dem Brenner gemäss EP-0 321 809 abgeleitet ist. Was die folgende Beschreibung der Brennkammer betrifft, wird allein auf die eine Schnittebene gemäss Fig. 1 abgestellt. Selbstverständlich sind alle Komponenten der Brennkammer in entsprechender Anzahl in Umfangsrichtung angeordnet. Stromauf dieses Mischers 100 wirkt ein Kompressor 18, in welchem die angesaugte Luft 17 komprimiert wird. Die dann vom Kompressor gelieferte Luft 115 weist einen Druck von 10-40 bar bei einer Temperatur von 300-600°C auf. Diese Luft 115 strömt in den Mischer 100, dessen Betreibungsweise unter den Fig. 2-5 näher beschrieben wird. Nach einem kurzen Uebergangsstück 122 stromab des Mischers 100 erreicht das im Mischer 100 bereitgestellte Brennstoff/Luft-Gemisch 19 einen Katalysator 3, in welchem dieses Gemisch 19 vollständig verbrannt wird. Dabei ist das Gemisch 19 so gewählt, dass typische adiabate Flammentemperaturen zwischen 800 und 1050°C erreicht werden, womit die thermische Zerstörung des Katalysators 3 ausgeschlossen ist. Aufgrund der relativ niedrigen Temperatur findet keine homogene Gasphasenreaktion, sondern nur eine Reaktion an den aktiven Oberflächen des Katalysators 3 statt. Die NOx-Produktion einer solchen chemischen Umsetzung ist sehr niedrig, sehr viel kleiner als 1 ppmv. Am Ende des Katalysators 3 steht somit ein weitgehend NOx-freies Heissgas 4 zur Verfügung. Der Katalysator 3 selbst besteht aus einer ersten sehr aktiven Stufe, welche die Brennstoffumsetzung einleitet. Als Material wird hier vorzugsweise ein Palladiumoxid eingesetzt. Die nächsten Stufen des Katalysators 3 können aus anderen Materialien bestehen, beispielsweise aus Platin. Sonach wird im Katalysator 3 der Brennstoff weitgehend umgesetzt, wobei die Strömungsgeschwindigkeit im Katalysator 3 kleiner als ca. 30 m/s ist. Nach dem Austritt aus dem Katalysator 3 strömen die Heissgase 4 in eine Zuströmzone 5 und werden auf ca. 80-120 m/s beschleunigt. Die Zuströmzone 5 ist innenseitig und in Umfangsrichtung der Kanalwand 6 mit einer Reihe von wirbelerzeugenden Elementen 200, im folgenden nur noch Wirbel-Generatoren genannt, bestückt, auf welche weiter unten noch näher eingegangen wird. Die Heissgase 4 werden durch die Wirbel-Generatoren 200 derart verdrallt, dass in der anschliessenden Vormischstrecke 7 keine Rezirkulationsgebiete mehr im Nachlauf der genannten Wirbel-Generatoren 200 auftreten. In Umfangsrichtung dieser als Venturikanal ausgebildete Vormischstrecke 7 sind mehrere Brennstofflanzen 8 disponiert, welche die Zuführung eines Brennstoffes 9 und einer Stützluft 10 übernehmen. Die Zuführung dieser Medien zu den einzelnen Brennstofflanzen 8 kann bespielsweise über eine nicht gezeigte Ringleitung vorgenommen werden. Die von den Wirbel-Generatoren 200 ausgelöste Drallströmung sorgt für eine grossräumige Verteilung des eingebrachten Brennstoffes 9, allenfalls auch der zugemischten Stützluft 10. Des weiteren sorgt die Drallströmung für eine Homogenisierung des Gemisches aus Verbrennungsluft und Brennstoff. Der durch die Brennstofflanze 8 in die Heissgase 4 eingedüste Brennstoff 9 löst eine Selbstzündung aus, soweit diese Heissgase 4 jene spezifische Temperatur aufweisen, welche die brennstoffabhängige Selbstzündung auszulösen vermag. Wird die Ringbrennkammer mit einem gasförmigen Brennstoff betrieben, muss für die Inizierung einer Selbstzündung eine Temperatur der Heissgase 4 grösser 800°C vorliegen, die hier auch vorhanden ist. Bei einer solchen Verbrennung besteht, wie bereits oben gewürdigt, an sich die Gefahr eines Flammenrückschlages. Dieses Problem wird behoben, indem einerseits die Vormischzone 7 als Venturikanal ausgebildet wird, andererseits indem die Eindüsung des Brennstoffes 9 im Bereich der grössten Einschnürung in der Vormischzone 7 disponiert wird. Durch die Verengung in der Vormischzone 7 wird die Turbulenz durch die Anhebung der Axialgeschwindigkeit vermindert, was die Rückschlaggefahr durch die Verminderung der turbulenten Flammengeschwindigkeit minimiert wird. Andererseits wird die grossräumige Verteilung des Brennstoffes 9 weiterhin gewährleistet, da die Umfangskomponente der von den Wirbel-Generatoren 200 stammenden Drallströmung nicht beeinträchtigt wird. Hinter der relativ kurz gehaltenen Vormischzone 7 schliesst sich die Verbrennungszone 11 an. Der Uebergang zwischen der beiden Zonen wird durch einen radialen Querschnittssprung 12 gebildet, der zunächst den Durchflussquerschnitt der Verbrennungszone 11 indiziert. In der Ebene des Querschnittssprunges 12 stellt sich auch eine Flammenfront 21 ein. Um eine Rückzündung der Flamme ins Innere der Vormischzone 7 zu vermeiden muss die Flammenfront 21 stabil gehalten werden. Zu diesem Zweck werden die Wirbel-Generatoren 200 so ausgelegt, dass in der Vormischzone 7 noch keine Rezirkulation stattfindet; erst nach der plötzlichen Querschnittserweiterung findet das Aufplatzen der Drallströmung statt. Die Drallströmung unterstützt das schnelle Wiederanlegen der Strömung hinter dem Querschnittssprung 12, so dass durch die möglichst vollständige Ausnutzung des Volumens der Verbrennungszone 11 ein hoher Ausbrand bei kurzer Baulänge erzielt werden kann. Innerhalb dieses Querschnittssprunges 12 bildet sich während des Betriebes eine strömungsmässige Randzone, in welcher durch den dort vorherrschenden Unterdruck Wirbelablösungen entstehen, welche dann zu einer Stabilisierung der Flammenfront führen. Diese Eckwirbel 20 bilden auch die Zündzonen innerhalb der zweiten Stufe 2. Die in der Verbrennungszone 11 bereitgestellten heissen Arbeitsgase 13 beaufschlagen anschliessend eine stromab wirkende Turbine 14. Die Abgase 15 können anschliessend zum Betrieb eines Dampfkreislaufes herangezogen werden, wobei im letztgenannten Fall die Schaltung dann eine Kombianlage ist.

[0011] Zusammenfassend lässt sich sagen, dass aufgrund der hohen Strömungsgeschwindigkeit ein Einsetzen der Nachverbrennung im Strömungskanal ausgeschlossen ist. Bei Verbrennung von Oel kann durch Wasserzugabe eine unmittelbare Zündung verhindert werden. Zur Stabilisierung der Nachverbrennung dient, wie bereits erläutert, der Querschnittssprung 12. In den Eckwirbeln 20 erfolgt aufgrund der langen Aufenthaltszeit die Selbstzündung des Gemisches. Die Flammenfront 21 schreitet zur Mitte der Verbrennungszone 11 hin fort. Kurz stromab des Vereinigungspunktes beider Flammenfrontpartien ist auch der CO-Ausbrand abgeschlossen. Typische Verbrennungstemperaturen sind 1300-1600°C. Das Verfahren, Brennstoff in ein Heissgas einzudüsen, ist prädestiniert, nur wenig NOx zu produzieren.

[0012] Das vorgeschlagene Verfahren besitzt auch ein sehr gutes Verhalten hinsichtlich eines breiten Lastbereiches. Da die Mischung in der ersten Stufe 1 immer weitgehend konstant gehalten wird, können auch die UHC- oder CO-Emissionen verhindert werden. Die konstante Temperatur am Eintritt in die zweite Stufe 2 stellt eine sichere Selbstzündung des Gemisches sicher, unabhängig von der Brennstoffmenge in der zweiten Stufe 2. Die Eintrittstemperatur ist weiterhin hoch genug, um einen ausreichenden Ausbrand in der zweiten Stufe 2 auch bei geringer Brennstoffmenge zu erreichen. Die Leistungsregelung über die Gasturbinenlast erfolgt im wesentlichen durch die Anpassung der Brennstoffmenge in der zweiten Stufe 2. Der regelbare Kompressor 18 stellt sicher, dass bei Nullast die oben beschriebene Mindestverbrennungstemperatur am Austritt des Katalysators 3 nicht unterschritten wird.

[0013] Um den Aufbau des Mischers 100 besser zu verstehen, ist es von Vorteil, wenn gleichzeitig zu Fig. 2 die einzelnen Schnitte nach den Figuren 3-5 herangezogen werden. Des weiteren, um Fig. 2 nicht unnötig unübersichtlich zu gestalten, sind in ihr die nach den Figuren 3-5 schematisch gezeigten Leitbleche 121a, 121b nur andeutungsweise aufgenommen worden. Im folgenden wird bei der Beschreibung von Fig. 2 nach Bedarf auf die restlichen Figuren 3-5 hingewiesen.

[0014] Der Mischer 100 nach Fig. 2 besteht aus zwei hohlen kegelförmigen Teilkörpern 101, 102, die versetzt zueinander ineinandergeschachtelt sind. Die Versetzung der jeweiligen Mittelachse oder Längssymmetrieachse 201b, 202b der kegeligen Teilkörper 101, 102 zueinander schafft auf beiden Seiten, in spiegelbildlicher Anordnung, jeweils einen tangentialen Lufteintrittsschlitz 119, 120 frei (Fig. 3-5), durch welche die Verbrennungsluft 115 in Innenraum des Mischers 100, d.h. in den Kegelhohlraum 114 strömt. Die Kegelform der gezeigten Teilkörper 101, 102 in Strömungsrichtung weist einen bestimmten festen Winkel auf. Selbstverständlich, je nach Betriebseinsatz, können die Teilkörper 101, 102 in Strömungsrichtung eine zunehmende oder abnehmende Kegelneigung aufweisen, ähnlich einer Trompete resp. Tulpe. Die beiden letztgenannten Formen sind zeichnerisch nicht erfasst, da sie für den Fachmann ohne weiteres nachempfindbar sind. Die beiden kegeligen Teilkörper 101, 102 weisen je einen zylindrischen Anfangsteil 101a, 102a, die ebenfalls, analog den kegeligen Teilkörpern 101, 102, versetzt zueinander verlaufen, so dass die tangentialen Lufteintrittsschlitze 119, 120 über die ganze Länge des Mischers 100 vorhanden sind. Im Bereich des zylindrischen Anfangsteils ist eine Düse 103 untergebracht, deren Eindüsung 104 in etwa mit dem engsten Querschnitt des durch die kegeligen Teilkörper 101, 102 gebildeten Kegelhohlraum 114 zusammenfällt. Die Eindüsungskapazität und die Art dieser Düse 103 richtet sich nach den vorgegebenen Parametern des jeweiligen Mischers 100. Selbstverständlich kann der Mischer 100 rein kegelig, also ohne zylindrische Anfangsteile 101a, 102a, ausgeführt sein. Die kegeligen Teilkörper 101, 102 weisen des weiteren je eine Brennstoffleitung 108, 109 auf, welche entlang der tangentialen Eintrittsschlitze 119, 120 angeordnet und mit Eindüsungsöffnungen 117 versehen sind, durch welche vorzugsweise ein gasförmiger Brennstoff 113 in die dort durchströmende Verbrennungsluft 115 eingedüst wird, wie dies die Pfeile 116 versinnbildlichen wollen. Diese Brennstoffleitungen 108, 109 sind vorzugsweise spätestens am Ende der tangentialen Einströmung, vor Eintritt in den Kegelhohlraum 114, plaziert, dies um eine optimale Luft/Brennstoff-Mischung zu erhalten. Im Bereich des Uebergangsstückes 122 geht die Ausgangsöffnung des Mischers 100 in eine Frontwand 110 über, in welcher eine Anzahl Bohrungen 110a vorhanden sind. Die letztgenannten treten bei Bedarf in Funktion, und sorgen dafür, dass Verdünnungsluft oder Kühlluft 110b dem vorderen Teil des Uebergangsstückes 122 zugeführt wird. Bei dem durch die Düse 103 herangeführten Brennstoff handelt es sich um einen flüssigen Brennstoff 112, der allenfalls mit einem rückgeführten Abgas angereichert sein kann. Dieser Brennstoff 112 wird unter einem spitzen Winkel in den Kegelhohlraum 114 eingedüst. Aus der Düse 103 bildet sich sonach ein kegeliges Brennstoffprofil 105, das von der tangential einströmenden rotierenden Verbrennungsluft 115 umschlossen wird. In axialer Richtung wird die Konzentration des Brennstoffes 112 fortlaufend durch die einströmenden Verbrennungsluft 115 zu einer optimalen Gemisch abgebaut. Wird der Mischer 100 mit einem gasförmigen Brennstoff 113 betrieben, so geschieht dies vorzugsweise über Oeffnungsdüsen 117, wobei die Bildung dieses Brennstoff/Luft-Gemisches direkt am Ende der Lufteintrittsschlitze 119, 120 zustande kommt. Bei der Eindüsung des Brennstoffes 112 über die Brennstoffdüse 103 wird am Ende des Mischers 100 die optimale, homogene Brennstoffkonzentration über den Querschnitt erreicht. Ist die Verbrennungsluft 115 zusätzlich vorgeheizt oder mit einem rückgeführten Abgas angereichert, so unterstützt dies die Verdampfung des flüssigen Brennstoffes 112 nachhaltig. Die gleichen Ueberlegungen gelten auch, wenn über die Leitungen 108, 109 statt gasförmige flüssige Brennstoffe zugeführt werden. Bei der Gestaltung der kegeligen Teilkörper 101, 102 hinsichtlich Kegelwinkel und Breite der tangentialen Lufteintrittsschlitze 119, 120 sind an sich enge Grenzen einzuhalten, damit sich das gewünschte Strömungsfeld der Verbrennungsluft 115 am Ausgang des Mischers 100 einstellen kann. Allgemein ist zu sagen, dass eine Minimierung des Querschnittes der tangentialen Lufteintrittsschlitze 119, 120 prädestiniert ist, eine Rückströmzone 106 zu bilden. In unserem Fall soll aber gerade keine Rückströmzone gebildet werden, weshalb die Aerodynamik des Mischers 100 so sein muss, dass der Drall wesentlich zu reduzieren ist. Dies geschieht durch 20-100% breitere Lufteintrittsschlitze 119, 120 gegenüber einen gleichem Körper, der als Vormischbrenner dient. Eine andere Möglichkeit, die Bildung einer Rückströmzone zu verhindern, besteht darin, die Anzahl der Lufteintrittschlitze zu vergrössern, wobei zugleich auch die Zahl der Teilkörper entsprechend zunimmt. Die Axialgeschwindigkeit innerhalb des Mischers 100 lässt sich durch eine entsprechende nicht gezeigte Zuführung eines axialen Verbrennungsluftstromes verändern. Die Konstruktion des Mischers 100 eignet sich des weiteren vorzüglich, die Grösse der tangentialen Lufteintrittsschlitze 119, 120 zu verändern, womit ohne Veränderung der Baulänge des Mischers 100 eine relativ grosse betriebliche Bandbreite erfasst werden kann. Selbstverständlich sind die Teilkörper 101, 102 auch in einer anderen Ebene zueinander verschiebbar, wodurch sogar eine Ueberlappung derselben angesteuert werden kann. Es ist sogar möglich, die Teilkörper 101, 102 durch eine gegenläufige drehende Bewegung spiralartig ineinander zu verschachteln.

[0015] Aus Fig. 3-5 geht nunmehr die geometrische Konfiguration der Leitbleche 121a, 121b hervor. Sie haben Strömungseinleitungsfunktion, wobei diese, entsprechend ihrer Länge, das jeweilige Ende der kegeligen Teilkörper 101, 102 in Anströmungsrichtung gegenüber der Verbrennungsluft 115 verlängern. Die Kanalisierung der Verbrennungsluft 115 in den Kegelhohlraum 114 kann durch Oeffnen bzw. Schliessen der Leitbleche 121a, 121b um einen im Bereich des Eintritts dieses Kanals in den Kegelhohlraum 114 plazierten Drehpunkt 123 optimiert werden, insbesondere ist dies vonnöten, wenn die ursprüngliche Spaltgrösse der tangentialen Lufteintrittsschlitze 119, 120 aus oben genannten Motiven zu verändern ist. Selbstverständlich können diese dynamische Vorkehrungen auch statisch vorgesehen werden, indem bedarfsmässige Leitbleche einen festen Bestandteil mit den kegeligen Teilkörpern 101, 102 bilden. Ebenfalls kann der Mischer 100 auch ohne Leitbleche betrieben werden, oder es können andere Hilfsmittel hierfür vogesehen werden.

[0016] In den Figuren 6, 7 und 8 ist die eigentliche Zuströmzone 5 nicht dargestellt. Dargestellt ist hingegen durch einen Pfeil die Strömung der Heissgase 4, womit auch die Strömungsrichtung vorgegeben ist. Gemäss diesen Figuren besteht ein Wirbel-Generator 200, 201, 202 im wesentlichen aus drei frei umströmten dreieckigen Flächen. Es sind dies eine Dachfläche 210 und zwei Seitenflächen 211 und 213. In ihrer Längserstreckung verlaufen diese Flächen unter bestimmten Winkeln in Strömungsrichtung. Die Seitenwände der Wirbel-Generatoren 200, 201, 202, welche vorzugsweise aus rechtwinkligen Dreiecken bestehen, sind mit ihren Längsseiten auf der bereits angesprochenen Kanalwand 6 fixiert, vorzugsweise gasdicht. Sie sind so orientiert, dass sie an ihren Schmalseiten einen Stoss bilden unter Einschluss eines Pfeilwinkels α. Der Stoss ist als scharfe Verbindungskante 216 ausgeführt und steht senkrecht zu jeder Kanalwand 6, mit welcher die Seitenflächen bündig sind. Die beiden den Pfeilwinkel α einschliessenden Seitenflächen 211, 213 sind in Fig. 4 symmetrisch in Form, Grösse und Orientierung, sie sind beidseitig einer Symmetrieachse 217 angeordnet, welche gleichgerichtet wie die Kanalachse ist.
Die Dachfläche 210 liegt mit einer quer zum durchströmten Kanal verlaufenden und sehr schmal ausgebildeten Kante 215 an der gleichen Kanalwand 6 an wie die Seitenflächen 211, 213. Ihre längsgerichteten Kanten 212, 214 sind bündig mit den in den Strömungskanal hineinragenden, längsgerichteten Kanten der Seitenflächen 211, 213. Die Dachfläche 210 verläuft unter einem Anstellwinkel Θ zur Kanalwand 6, deren Längskanten 212, 214 bilden zusammen mit der Verbindungskante 216 eine Spitze 218. Selbstverständlich kann der Wirbel-Generator 200, 201, 202 auch mit einer Bodenfläche versehen sein, mit welcher er auf geeignete Weise an der Kanalwand 6 befestigt ist. Eine derartige Bodenfläche steht indessen in keinem Zusammenhang mit der Wirkungsweise des Elementes.

[0017] Die Wirkungsweise des Wirbel-Generators 200, 201, 202 ist die folgende: Beim Umströmen der Kanten 212 und 214 wird die Hauptströmung in ein Paar gegenläufiger Wirbel umgewandelt, wie dies in den Figuren schematisch skizziert ist. Die Wirbelachsen liegen in der Achse der Hauptströmung. Die Drallzahl und der Ort des Wirbelaufplatzens (Vortex Breakdown), sofern letzteres angestrebt wird, werden durch entsprechende Wahl des Anstellwinkels Θ und des Pfeilwinkels α bestimmt. Mit steigenden Winkeln wird die Wirbelstärke bzw. die Drallzahl erhöht, und der Ort des Wirbelaufplatzens verschiebt sich stromaufwärts bis hin in den Bereich des Wirbel-Generators 200, 201, 202 selbst. Je nach Anwendung sind diese beiden Winkel Θ und α durch konstruktive Gegebenheiten und durch den Prozess selbst vorgegeben. Angepasst werden müssen diese Wirbel-Generatoren nur noch bezüglich Länge und Höhe, wie dies weiter unten unter Fig. 9 noch detailliert zur Ausführung gelangen wird.

[0018] In Fig. 6 bildet die Verbindungskante 216 der beiden Seitenflächen 211, 213 die stromabwärtsseitige Kante des Wirbel-Generators 200. Die quer zum durchströmten Kanal verlaufende Kante 215 der Dachfläche 210 ist somit die von der Kanalströmung zuerst beaufschlagte Kante.

[0019] In Fig. 7 ist ein sogenannter halber "Wirbel-Generator" auf der Basis eines Wirbel-Generators nach Fig. 6 gezeigt. Beim hier gezeigten Wirbel-Generator 201 ist nur die eine der beiden Seitenflächen mit dem Pfeilwinkel α/2 versehen. Die andere Seitenfläche ist gerade und in Strömungsrichtung ausgerichtet. Im Gegensatz zum symmetrischen Wirbel-Generator wird hier nur ein Wirbel an der gepfeilten Seite erzeugt, wie dies in der Figur versinnbildlicht wird. Demnach liegt stromab dieses Wirbel-Generators kein wirbelneutrales Feld vor, sondern der Strömung wird ein Drall aufgezwungen.

[0020] Fig. 8 unterscheidet sich gegenüber Fig. 6 insoweit, als hier die scharfe Verbindungskante 216 des Wirbel-Generators 202 jene Stelle ist, welche von der Kanalströmung zuerst beaufschlagt wird. Das Element ist demnach um 180° gedreht. Wie aus der Darstellung ersichtlich ist, haben die beiden gegenläufigen Wirbel ihren Drehsinn geändert.

[0021] Fig. 9 zeigt die grundsätzliche Geometrie eines in einem Kanal 5 eingebauten Wirbel-Generators 200. In der Regel wird man die Höhe h der Verbindungskante 216 mit der Kanalhöhe H, oder der Höhe des Kanalteils, welchem dem Wirbel-Generator zugeordnet ist, so abstimmen, dass der erzeugte Wirbel unmittelbar stromab des Wirbel-Generators 200 bereits eine solche Grösse erreicht, dergestalt, dass damit die volle Kanalhöhe H ausgefüllt wird. Dies führt zu einer gleichmässigen Geschwindigkeitsverteilung in dem beaufschlagten Querschnitt. Ein weiteres Kriterium, das Einfluss auf das zu wählende Verhältnis der beiden Höhen h/H nehmen kann, ist der Druckabfall, der beim Umströmen des Wirbel-Generators 200 auftritt. Es versteht sich, dass mit grösserem Verhältnis h/H auch der Druckverlustbeiwert ansteigt.

[0022] Die Wirbel-Generatoren 200, 201, 202 werden hauptsächlich dort eingesetzt, wo es darum geht, zwei Strömungen miteinander zu mischen. Die Hauptströmung 4 als Heissgase attackiert in Pfeilrichtung die quergerichtete Kante 215, respektiv die Verbindungskante 216. Die Sekundärströmung in Form eines gasförmigen und/oder flüssigen Brennstoffes, der allenfalls mit einem Anteil Stützluft angereichert ist (Vgl. Fig. 1), weist einen wesentlichen kleineren Massenstrom als die Hauptströmung auf. Diese Sekündärströmung wird im vorliegenden Fall stromab des Wirbel-Generators in die Hauptströmung eingeleitet, wie dies aus Fig. 1 besonders gut hervorgeht.

[0023] Im dargestellten Beispiel gemäss Fig. 1 sind vier Wirbel-Generatoren 200 mit Abstand über den Umfang des Kanals 5 verteilt. Selbstverständlich können die Wirbel-Generatoren in Umfangsrichtung auch so aneinander gereiht werden, dass keine Zwischenräume an der Kanalwand 6 freigelassen werden. Für die Wahl der Anzahl und der Anordnung der Wirbel-Generatoren ist letzlich der zu erzeugenden Wirbel entscheidend.

[0024] Die Figuren 10-16 zeigen weitere mögliche Formen der Einführung des Brennstoffes in die Heissgase 4. Diese Varianten können auf vielfältige Weise miteinander und mit einer zentralen Brennstoffeindüsung, wie sie beispielsweise aus Fig. 1 hervorgeht, kombiniert werden.

[0025] In Fig. 10 wird der Brennstoff, zusätzlich zu Kanalwandbohrungen 220, die sich stromabwärts der Wirbel-Generatoren befinden, auch über Wandbohrungen 221 eingedüst, die sich unmittelbar neben der Seitenflächen 211, 213 und in deren Längserstreckung in der gleichen Kanalwand 6 befinden, an der die Wirbel-Generatoren angeordnet sind. Die Einleitung des Brennstoffes durch die Wandbohrungen 221 verleiht den erzeugten Wirbeln einen zusätzlichen Impuls, was die Lebensdauer des Wirbel-Generators verlängert.

[0026] In Fig. 11 und 12 wird der Brennstoff über einen Schlitz 222 oder über Wandbohrungen 223 eingedüst, wobei sich beide Vorkehrungen unmittelbar vor der quer zum durchströmten Kanal verlaufenden Kante 215 der Dachfläche 210 und in deren Längserstreckung in der gleichen Kanalwand 6 befinden, an der die Wirbel-Generatoren angeordnet sind. Die Geometrie der Wandbohrungen 223 oder des Schlitzes 222 ist so gewählt, dass der Brennstoff unter einem bestimmten Eindüsungswinkel in die Hauptströmung 4 eingegeben wird und den nachplazierten Wirbel-Generator als Schutzfilm gegen die heisse Hauptströmung 4 durch Umströmung weitgehend abschirmt.

[0027] In den nachstehend beschriebenen Beispielen wird die Sekundärströmung (Vgl. oben) zunächst über nicht gezeigte Führungen durch die Kanalwand 6 ins hohle Innere der Wirbel-Generatoren eingeleitet. Damit wird, ohne weitere Dispositiven vorzusehen, eine interne Kühlmöglichkeit für die Wirbel-Generatoren geschaffen.

[0028] In Fig. 13 wird der Brennstoff über Wandbohrungen 224 eingedüst, welche sich innerhalb der Dachfläche 210 unmittelbar hinter und entlang der quer zum durchströmten Kanal verlaufenden Kante 215. Die Kühlung des Wirbel-Generators erfolgt hier mehr extern als intern. Die austretende Sekundärströmung bildet beim Umströmen der Dachfläche 210 eine diese gegen die heisse Hauptströmung 4 abschirmende Schutzschicht.

[0029] In Fig. 14 wird der Brennstoff über Wandbohrungen 225 eingedüst, welche innerhalb der Dachfläche 210 entlang der Symmetrielinie 217 gestaffelt angeordnet sind. Mit dieser Variante werden die Kanalwände 6 besonders gut vor der heissen Hauptströmung 4 geschützt, da der Brennstoff zunächst am Aussenumfang der Wirbel eingeführt wird.

[0030] In Fig. 15 wird der Brennstoff über Wandbohrungen 226 eingedüst, die sich in den längsgerichteten Kanten 212, 214 der Dachfläche 210 befinden. Diese Lösung gewährleistet eine gute Kühlung der Wirbel-Generatoren, da der Brennstoff an dessen Extremitäten austritt und somit die Innenwandungen des Elementes voll umspült. Die Sekundärströmung wird hier direkt in den entstehenden Wirbel hineingegeben, was zu definierten Strömungsverhältnissen führt.

[0031] In Fig. 16 geschieht die Eindüsung über Wandbohrungen 227, die sich in den Seitenflächen 211 und 213 befinden, einerseits im Bereich der Längskanten 212 und 214, andererseits im Bereich der Verbindungskante 216. Diese Variante ist wirkungsähnlich wie jene aus Fig. 10 (Bohrungen 221) und aus Fig. 15 (Bohrungen 226).

Bezugszeichenliste



[0032] 
1
Erste Stufe
2
Zweite Stufe
3
Katalysator
4
Heissgase, Hauptströmung
5
Zuströmzone, Kanal der Zuströmzone
6
Kanalwand der Zuströmzone
7
Vormischzone
8
Brennstofflanze
9
Brennstoff
10
Stützluft
11
Verbrennungszone
12
Querschnittssprung
13
Heisse Arbeitsgase
14
Turbine
15
Abgase
16
Wellenachse
17
Ansaugluft
18
Kompressor
19
Brennstoff/Luft-Gemisch
20
Eckenwirbel, Zündzonen
21
Flammenfront
100
Mischer
101, 102
Teilkörper
101a, 102a
Zylindrische Anfangsteile
101b, 102b
Längssymmetrieachsen
103
Brennstoffdüse
104
Brennstoffeindüsung
105
Brennstoffeindüsungsprofil
108, 109
Brennstoffleitungen
110
Frontwand
110a
Luftbohrungen
110b
Kühlluft
112
Flüssiger Brennstoff
113
Gasförmiger Brennstoff
114
Kegelhohlraum
115
Verbrennungsluft
116
Brennstoff-Eindüsung
117
Brennstoffdüsen
119, 120
Tangentiale Lufteintrittsschlitze
121a, 121b
Leitbleche
122
Uebergangsstück
123
Drehpunkt der Leitbleche
200, 201, 202
Wirbel-Generatoren
210
Dachfläche
211, 213
Seitenflächen
212, 214
Längsgerichtete Kanten
215
Querverlaufende Kante
216
Verbindungskante
217
Symmetrieachse
218
Spitze
220-227
Bohrungen zur Eindüsung eines Brennstoffes
L, h,
Abmessungen des Wirbel-Generators
H
Höhe des Kanals
α
Pfeilwinkel
Θ
Anstellwinkel



Ansprüche

1. Brennkammer, welche im wesentlichen aus einer ersten Stufe (1) und einer in Strömungsrichtung nachgeschalteten zweiten Stufe (2) besteht, wobei die erste Stufe (1) stromab und die zweite Stufe (2) stromauf von Strömungsmaschinen (18, 14) angeordnet sind, dadurch gekennzeichnet, dass die erste Stufe (1) kopfseitig einen Mischer (100) zur Bildung eines Brennstoff/Luft-Gemisches (19) aufweist, dass abströmungsseitig des Mischers (100) ein Katalysator (3) angeordnet ist, dass abströmungsseitig des Katalysators (3) Wirbel-Generatoren (200, 201, 202) vorhanden sind, dass abströmungsseitig der Wirbel-Generatoren (200, 201, 202) ein gasförmiger und/oder flüssiger Brennstoff (9) in eine gasförmige Hauptströmung (4) eindüsbar ist, dass die in Strömungsrichtung anschliessende zweite Stufe (2) einen Querschnittssprung (12) aufweist, der den anfänglichen Strömungsquerschnitt der zweiten Stufe (2) indiziert.
 
2. Brennkammer nach Anspruch 1, dadurch gekennzeichnet, dass die erste Stufe (1) stromab der Wirbel-Generatoren (200, 201, 202) und vor Eintritt in die zweite Stufe (2) ein venturiförmiger Kanal bildet, dass der Brennstoff (9) und eine Stützluft (10) über eine Brennstoffdüse (8) längs und/oder quer zur Hauptströmung (4) im Bereich der grössten Einschnürung des venturiförmigen Kanals eindüsbar ist.
 
3. Brennkammer nach Anspruch 1, dadurch gekennzeichnet, dass ein Wirbel-Generator (200) drei frei umströmte Flächen aufweist, die sich in Strömungsrichtung erstrecken, von denen eine die Dachfläche (210) und die beiden anderen die Seitenflächen (211, 213) bilden, dass die Seitenflächen (211, 213) mit einem gleichen Wandsegment des Kanals (5) bündig sind und miteinander den Pfeilwinkel (α) einschliessen, dass die Dachfläche (210) mit einer quer zum durchströmten Kanal (5) verlaufende Kante (215) am gleichen Wandsegment des Kanals (6) anliegt wie die Seitenflächen (211, 213), und dass längsgerichtete Kanten (212, 214) der Dachfläche (210) bündig mit den in den Kanal (5) hineinragenden längsgerichteten Kanten der Seitenflächen (211, 213) sind und unter einem Anstellwinkel (Θ) zum Wandsegment des Kanals (5) verlaufen.
 
4. Brennkammer nach Anspruch 3, dadurch gekennzeichnet, dass die beiden den Pfeilwinkel (α) einschliessenden Seitenflächen (211, 213) des Wirbel-Generators (200) symmetrisch um eine Symmetrieachse (217) angeordnet sind.
 
5. Brennkammer nach Anspruch 3, dadurch gekennzeichnet, dass die beiden den Pfeilwinkel (α, α/2) einschliessenden Seitenflächen (211, 213) eine Verbindungskante (116) miteinander umfassen, welche zusammen mit den längsgerichteten Kanten (212, 214) der Dachfläche (210) eine Spitze (218) bilden, und dass die Verbindungskante (216) in der Radiale des kreisförmigen Kanals (5) liegt.
 
6. Brennkammer nach Anspruch 5, dadurch gekennzeichnet, dass die Verbindungskante (216) und/oder die längsgerichteten Kanten (212, 214) der Dachfläche (210) zumindest annähernd scharf ausgebildet ist.
 
7. Brennkammer nach den Ansprüchen 1, 3, 4, 5, dadurch gekennzeichnet, dass die Symmetrieachse (217) des Wirbel-Generators (200) parallel zur Kanalachse verläuft, dass die Verbindungskante (216) der beiden Seitenflächen (211, 213) die stromab wärtige Kante des Wirbel-Generators (200) bildet, und dass die quer zum durchströmten Kanal (5) verlaufende Kante (215) der Dachfläche (210) die von der Hauptströmung (4) zuerst beaufschlagte Kante ist.
 
8. Brennkammer nach Anspruch 1, dadurch gekennzeichnet, dass das Verhältnis Höhe (h) des Wirbel-Generators zur Höhe (H) des Kanals (5) so gewählt ist, dass der erzeugte Wirbel unmittelbar stromab des Wirbel-Generators (200) die volle Hohe (H) des Kanals (5) und die volle Höhe (h) des dem Wirbel-Generator (200) zugeordneten Kanalteils ausfüllt.
 
9. Brennkammer nach Anspruch 1, dadurch gekennzeichnet, dass der Brenner (100) aus mindestens zwei hohlen, kegelförmigen, in Strömungsrichtung ineinandergeschachtelten Teilkörpern (101, 102) besteht, deren jeweilige Längssymmetrieachsen (101b, 102b) gegeneinander versetzt verlaufen, dass die benachbarten Wandungen der Teilkörper (101, 102) in deren Längserstreckung tangentiale Kanale (119, 120) für einen Verbrennungsluftstrom (115) bilden, dass im von den Teilkörpern (101, 102) gebildeten Kegelhohlraum (114) mindestens eine Brennstoffdüse (103) vorhanden ist.
 
10. Brennkammer nach Anspruch 9, dadurch gekennzeichnet, dass im Bereich der tangentialen Kanäle (119, 120) in deren Längserstreckung weitere Brennstoffdüsen (117) angeordnet sind.
 
11. Brennkammer nach Anspruch 9, dadurch gekennzeichnet, dass sich die Teilkörper (101, 102) in Strömungsrichtung unter einen festen Winkel erweitern, oder eine zunehmende oder abnehmende Kegelneigung aufweisen.
 
12. Brennkammer nach Anspruch 9, dadurch gekennzeichnet, dass die Teilkörper (101, 102) spiralartig ineinander geschachtelt sind.
 
13. Brennkammer nach Anspruch 1, dadurch gekennzeichnet, dass die Brennkammer eine Ringbrennkammer ist.
 




Zeichnung