BACKGROUND OF THE INVENTION
[0001] This invention relates to microwave ovens particularly, but not exclusively, to industrial
ovens for food products such as biscuits, snacks, chips, meat substitutes. The invention
may however be applied to non-food products, such as to the heating of plastics.
[0002] Continuous ovens for food products such as biscuits can be designed to have a plurality
of zones through which each food product travels in sequence. Such zones can be used
to provide different heating and baking conditions. Multi-media ovens combine different
means of heating a food product in the different zones, such as cyclotherm radiant
heating, gas or electrically heated convection, near infrared radiant heat, and are
well-known in the industry.
[0003] In addition to the usual methods of heating we have shown it to be advantageous to
inject microwave energy into an oven at various positions along the oven length. Such
an oven which employs microwave heating in addition to another form of heating is
hereinafter referred to as a 'combined oven'.
[0004] Microwave heating provides means to induce a rapid transfer of energy to the product,
the level of energy transfer being selected to provide a desired effect within the
product. In a proposed combined microwave-biscuit oven, using four microwave zones,
the first microwave zone induces a rapid rise in temperature within the product, the
second microwave zone enhances development, and the third and fourth microwave zones
reduce the moisture content of the product prior to leaving the oven.
[0005] Conventionally heated industrial ovens for food products generally use a metal band
to support and convey the food products through the oven. The band may be a metal
strip or a mesh band.
[0006] The use of a metal band in a multi-mode microwave oven, however, gives rise to serious
problems. The microwave heating efficiency is found to be reduced to unacceptably
low levels, especially with thin food products such as biscuits.
[0007] Industrial microwave units basically consist of a microwave generator and a microwave
applicator.
[0008] We have appreciated that one of the reasons for the low efficiency of prior art combined
ovens is that the conventional applicators operate in several modes, and that the
use of substantially one or two modes only can provide advantages.
[0009] The terms 'band-parallel' and 'band-normal' used herein are intended to refer to
directions which are parallel to and normal to, respectively, the plane of the oven
band. Whilst the oven band will often be horizontal, it should be appreciated that
the oven band need not always be horizontal since products can be conveyed on a sloping
band.
SUMMARY OF THE INVENTION
[0010] We have previously proposed a microwave tunnel oven comprising a microwave applicator
extending transversely of an electrically conductive oven band and intended to produce
electric fields in the region above the band and adjacent thereto, with a plane of
polarisation substantially perpendicular to said conductive oven band, and propagated
in a direction substantially lengthwise of the band.
[0011] The various aspects of the present invention are concerned with practical arrangements
to achieve such electric fields.
[0012] The band-parallel component (E
h) of the electric field is constrained by the conductive band to be small in the region
closely adjacent to the band. The vertical component (E
v) of the electric field in the region occupied by the product is arranged to be sufficient
to provide heating of the product carried on the conductive band.
[0013] The applicators in accordance with the present invention are essentially configured
to create, in the absence of a product, radiation propagated lengthwise of the band
in the (TEM) transverse electromagnetic mode, or TM
1 mode. The presence of a product will distort the radiation pattern.
[0014] Designs in accordance with the invention aimed at producing such an E-field take
account of the conductive oven band in the overall design of the microwave applicator.
If the head-space between the product and the applicator is small (such as 40 mm),
the equivalent of a parallel-plate transmission line can be created, supporting the
TEM mode. If the head space is greater than 60 mm, a higher order mode can be supported.
[0015] In experiments in which microwaves are simply fed from the sides of the parallel-plate
transmission line formed by the conductive band and a vertically spaced horizontal
plate, and in the presence of the product, there was found to be a high attenuation
of the microwave energy propagating between the band and overlying plate and normal
to the axis of travel of the band. This caused severe non-uniformity of heating of
the product on oven bands of width greater than 100 mm.
[0016] We have designed applicator configurations which launch a quasi-plane wave longitudinally
of the oven band, and thereby provide, in conjunction with the band, the equivalent
of a parallel plate waveguide extending longitudinally of the oven.
[0017] Such an applicator configuration can provide improved heating uniformity across the
oven width.
[0018] This requires a microwave applicator with substantially constant amplitude illumination
in its aperture plane, and preferably utilising one or two modes only.
[0019] Means for broadcasting such a waveform will be described hereinafter, and relate
to a microwave generator frequency of 2450 MHz. Other (lower) frequencies can be used
but, due to the resultant longer wavelength, less uniform illumination will be achieved.
[0020] The microwave applicator preferably comprises an elongate feeder waveguide extending
substantially transversely of the band and positioned above the band, the waveguide
being provided with a plurality of longitudinally spaced-apart radiation emitter means
adapted to emit radiation with a substantially vertically polarised electrical component
in the near vicinity of the band, and preferably substantially throughout the vertical
thickness of the product.
[0021] A phased array of said emitter means is preferably employed to broadcast the waveform,
that is there is a uniform phase difference between adjacent pairs of emitter means
of the plurality of emitter means.
[0022] The feeder waveguide is preferably a rectangular section waveguide.
[0023] The emitter means may be slots in one wall of the waveguide or antenna associated
with respective probes which extend inwardly of the waveguide from a wall of the waveguide.
[0024] The emitter means are preferably spaced-apart along the waveguide on a pitch of substantially
half a guide wavelength.
[0025] When the emitter means are antennas the antennas may be carried on the underside
of the waveguide. Alternatively the antennas could be connected to respective probes
located in the waveguide by respective waveguide links, such as coaxial waveguide
links.
[0026] When the emitter means are slots, each slot is preferably of a length substantially
half a free-space wavelength.
[0027] Such slots are preferably provided in a broad side of the waveguide which is oriented
substantially normal to the band.
[0028] US-A-4570045 (Jeppson) shows an oven comprising an endless band of metal caused to
pass through an oven chamber, whereby coal carried by the band is subjected to microwaves
existing within the treatment space, the microwaves being emitted from slots beneath
aligned slots in waveguides extending transversely of the oven band.
[0029] However, this reference fails to teach the use of microwave launch means whereby
a polarised waveform is caused to exist within the treatment space.
[0030] According to the invention we provide a microwave tunnel oven for subjecting products
conveyed through the oven to microwave radiation comprising a tunnel oven casing the
oven casing comprising spaced apart tunnel oven side-walls and an oven roof connecting
the side-walls, an electrically conductive product- supporting conveyor band positioned
between the side-walls and beneath the roof to extend lengthwise of the tunnel, band
drive means operative to drive the band, a microwave generator means, a microwave
applicator, positioned between the side-walls and above the band, microwave supply
means connecting the generator means to the applicator, the applicator comprising
an elongate microwave emitter assembly extending transversely of the oven band, the
emitter assembly comprising a plurality of spaced-apart microwave emitter means characterised
by the provision of microwave launch means extending longitudinally of the oven and
above the band from adjacent to the emitter assembly, the emitter assembly being operable
to emit radiation into the oven generally in a longitudinal direction of the oven
with a plane of polarisation substantially perpendicular to the oven band, at least
a portion of the launch means and the band defining therebetween a microwave treatment
space through which the products are conveyed in use for being subjected to microwave
radiation, the launch means being configured to maintain the polarisation of the radiation
in the treatment space substantially perpendicular to the oven band, and further characterised
by a microwave containment assembly extending for substantially the full length of
the applicator, in the longitudinal direction of the band, and comprising an electrically
conductive floor extending beneath the band, and spaced-apart electrically conductive
containment side-walls on either side of the band, and connecting the conductive floor
with the applicator.
[0031] The emitter assembly may comprise a feeder waveguide extending transversely of the
oven band, and a plurality of spaced-apart slots in the feeder waveguide, the slots
facing longitudinally of the oven for emitting radiation into the oven generally in
a longitudinal direction of the oven with a plane of polarisation substantially perpendicular
to the oven band at least a portion of the launch means and the band defining therebetween
a microwave treatment through which the products are conveyed in use for being subjected
to microwave radiation, the launch means being configured to maintain the polarisation
of the radiation in the treatment space substantially perpendicular to the oven band,
and the microwave launch means may comprise, as viewed in longitudinal vertical section
of the oven, a first stage positioned adjacent to the feeder waveguide and a second
stage remote from the feeder waveguide, the first stage comprising upper and lower
first stage plates disposed above and below respectively the slots and extending generally
longitudinally of the oven from the feeder waveguide, the second stage comprising
a panel extending closer to the band in proceeding away from the first stage, the
upper first stage plate meeting the second stage panel at a junction therebetween,
and the upper and lower first stage plates as viewed in longitudinal vertical section
of the oven, being essentially mirror images of each other about a longitudinal plane
that extends symmetrically through the plurality of slots and parallel to the band.
[0032] Preferably said upper and lower first stage plates are substantially flat plates,
said upper first stage plate extending upwardly and longitudinally, with respect to
the band, from said feeder waveguide, said lower first stage plate extending downwardly
and longitudinally, with respect to the band, from said feeder waveguide, so as to
define a cavity in the near field of the slots which expands in the direction proceeding
away from said slots.
[0033] A parallel plate portion of the applicator may be provided, said parallel plate portion
extending substantially parallel to the band and away from the launch section of the
applicator, with which the parallel plate portion is continuous. Such a parallel plate
portion effectively extends the length of the applicator in the longitudinal direction
of the band, to retain the polarisation of the waveform when the products to be heated
are low loss products which do not readily absorb the waveform and accordingly allow
the waveform to travel further along the oven.
[0034] The launch means may be configured to maintain the polarisation of the radiation
in the treatment space substantially perpendicular to the oven band characterised
in that the arrangement is such that the mode of radiation in the treatment space
is at least predominantly the TM
1 mode.
[0035] Alternatively, the said plurality of microwave emitter means may comprise a plurality
of antennas depending downwardly from said feeder waveguide, and a plurality of probes
located in said waveguide, each said probe being directly connected to a respective
one of the antennas.
[0036] The plurality of microwave emitter means may be arranged as a phased array, such
that there is a uniform phase difference between adjacent pairs of emitter means of
said plurality of emitter means, and that the feeder waveguide is located externally
of the oven casing, and the plurality of microwave emitter means is connected with
the feeder waveguide by a plurality of coaxial waveguide links, the links extending
through the oven casing.
[0037] Various embodiments of the invention will now be described, by way of example only,
with reference to the accompanying drawings in which:
BRIEF DESCRIPTION OF THE DRAWINGS
[0038]
Figure 1 is a schematic longitudinal vertical cross-section of one of the microwave zones
of a first combined microwave-biscuit oven, in accordance with the invention, showing
an applicator in transverse cross-section, the applicator comprising transverse waveguides
incorporating slots, in combination with associated launch sections,
Figure 2 is a section in the line A-A of Figure 1 and looking in the direction of travel of
the oven band, to show the broad, slotted side of one of the pair of slotted waveguides,
Figure 3 is a schematic longitudinal vertical cross-section of the microwave zone of a second
combined microwave-biscuit oven in accordance with the invention, using transverse
waveguides incorporating probe-fed monopole aerials in combination with associated
launch sections,
Figure 4 is a section on the line B-B of Figure 3 and looking in the direction of travel of
the oven band, of a waveguide incorporating probe-fed monopole aerials,
Figure 5 shows a modification of the oven of Figures 3 and 4 in which the waveguide fitted
with probes is external to the oven housing,
Figure 6 is a section similar to Figure 1 of a modified combined microwave biscuit oven, in
accordance with the invention, and which utilises the TM1 mode as well as the TEM mode,
Figure 7 is a section similar to Figure 3 but of a modification to the oven of Figure 6,
Figure 8 is a side elevation of a parallel plate transmission line supporting the TM1 mode and showing the electric field lines in the volume between the parallel plates,
and
Figure 9 is a schematic vertical cross-section, similar to Figures 2 or 4, of a modification
in accordance with the invention.
[0039] With reference to Figure 1, an oven comprises side-walls S and a roof R. The side
walls S are spaced-apart by a distance of typically 1 or 1.2 metres. Food products
1 are conveyed on a horizontal steel oven band 2 extending between side walls S through
a vertically polarised E-field shown E
v and E
h, broadcast from an array of slots 8 formed on oppositely facing broad sides 3' of
a pair of oblong-rectangular cross-section feeder waveguides 3 of a double applicator.
Launch sections 5 of the applicator consist of first launch stage 6, adjacent to the
respective waveguide 3, and a second launch stage remote from the respective feeder
waveguide 3 in the form of a panel 7, curved at a radius R
1 to connect the end of the first launch stage smoothly with horizontal plates 11 of
the applicator. A respective treatment space 7' is defined between the panel 7 and
the band 2.
[0040] Thus the first stage 6 of each launch section 5 is defined by an upper first stage
plate 6' and a respective lower first stage plate 6". The upper first stage plate
6' in proceeding from the associated waveguide 3 is directed upwardly and longitudinally
of the oven, at an angle of 0 to the plane of band 2, whereas the respective lower
first stage plate 6" lies beneath the upper first stage plate 6' and extends downwardly
in proceeding longitudinally of the oven from the waveguide 3, from below the slots
8, at the same angle 0 relative to the plane of the band 2.
[0041] Thus the upper and lower first stage plate pairs define between them a respective
cavity 15, in the near field of the slots 8, which expands in the direction proceeding
away from the slots of the respective feeder waveguide 3.
[0042] The longer second stage panel 7 extends closer to the band 2 in proceeding longitudinally
of the oven from the connection between the second stage panel 7 and the extremity
of the respective upper first stage plate 6' to merge with the horizontal plates 11
of the applicator.
[0043] The applicator, as shown in Figure 2, extends for almost the full width of the oven,
and the cross-sectional configuration shown in Figure 1 is uniform for that full length
of the applicator. As shown in Figure 2 the feeder waveguides extend through one wall
S of the oven for connection to a remote microwave generator means.
[0044] With reference to Figure 2, food products 1 are conveyed on oven band 2 under the
applicator 3. Slots 8 of length d
1 are formed in one broad side 3' of each waveguide 3 pitched evenly by dimension d
2 and arranged evenly and alternately about the centre-line 4 of the side 3' at a distance
d
3. This may require a flare to compensate for a bias of power transmitted from the
first to the last slot. (Microwave theory would imply that the spacing about the centre-line
of each slot should be different as the effect of neighbouring slots varies from slot
to slot, depending upon their relative positions. (These variations are small in practice
and can be ignored.) The positions of the edges 9 of the first stage plates 6', 6"
of the launch section 5 are arranged so that the centre-line of the slots is equidistant
between the edges 9 and the centre-line 4 of the broad face 3' of the respective waveguide.
[0045] A base plate 13 extends from the lower edges of lower panels 6", and also defines
the lower short side of the feeder waveguides 3, the base plate 13 extending parallel
to the band 2 to define between the plate 13 and band 2 a further treatment space
14. Standing waves created in space 14 by reflections from the launch sections 7 provide
additional heating of the products 1 as they pass beneath plate 13.
[0046] Further treatment spaces 11' are defined between the horizontal plates 11 and band
2. Depending on the nature of the products being heated most of the microwave energy
will have been absorbed by the products in the treatments space 7' and little radiation
will reach space 11'. However, for some products heating will take place in. space
11'.
[0047] In the embodiment of Figure 1 the upper and lower first stage plates 6' and 6" are
set at equal angles 0 relative to the plane of the band 2. In modifications, not illustrated,
the plates 6' and 6" could be of different shape and orientation but best results
are likely to be achieved when the plates 6' and 6" are arranged in mirror image configuration
relative to that plane which includes the centre-line of the slots 8 and is parallel
to the plane of the band 2.
[0048] In Figures 3, 4 and 5 parts corresponding to those of Figures 1 and 2 have been given
corresponding reference numerals.
[0049] Referring now to Figures 3 and 4, food products 1 are conveyed on a steel oven band
2 beneath an applicator which creates a vertically polarised E-field, shown E
v and E
h, broadcast from an array of probe-fed monopole antennas 10 located on the bottom
face of two rectangular cross-section spaced-apart feeder waveguides 3. Each antenna
10 is fed by a respective probe 10'. The launch sections 5 in this case each consist
of a flared panel structure 7 set at a radius R
2 to extend between the waveguide 3 and portions 11 of the applicator parallel to the
band 2. Dimension d
7 is determined by the power requirements.
[0050] In the embodiment of Figures 1 and 2, the applicator uses a pair of waveguides 3
extending substantially transverse to the direction of travel of the steel band conveyor
2, each of the waveguide feeds being of oblong-rectangular cross-section, as shown
in Figure 1, with the longer dimension of this cross-section disposed vertically and
with the slots 8 formed on one of the broad sides 3'. This arrangement is used in
combination with the launch section 5 to direct the waveform 'through' the top plate
of the equivalent parallel plate waveguide. The length of the slots 8 is substantially
one half the free-space wavelength for the chosen frequency and the slots 8 are spaced
apart by one half guide-wavelength. Adjacent slots 8 are arranged alternately on opposite
sides of the centre-line 4 of the broad face 3' of the waveguide 3 to allow for phase
reversal of the waveform in the guide. In this way a substantially uniform microwave
illumination can be achieved.
[0051] Additionally, by arranging a second similar pattern of slots 8 to be repeated on
the outwardly-facing broad face 3' of the second waveguide 3, but out-of-phase, in
the transverse direction of the band, to the first set of slots by an amount equal
to one quarter guide-wavelength, compensation for any non-uniformity of microwave
illumination can be achieved, in that the accumulated exposure of a single product
to the waveform will be evened out when the product has passed through the two fields
generated by the respective waveguides 3.
[0052] The launch section 5 of the applicator of Figures 1 and 2 is arranged initially to
ensure symmetry in the very near field of the slots 8 and then to provide a guide
for the waves 'through' the top plate of the equivalent parallel plate waveguide.
The exact dimensions are determined empirically to achieve a substantially uniform
microwave illumination across the oven band and to maintain vertical polarisation
of the E-field.
[0053] In the arrangement of Figures 3 and 4, the applicator uses an array of probe-fed
monopole antennas distributed across the width of the oven but located on the underside
of the transverse feeder waveguide.
[0054] This arrangement is used in combination with a launch section 5 arranged to direct
the waveform 'through' the top plate of the equivalent parallel plate waveguide. The
length of each of the monopoles 10 is preferably substantially one quarter the wavelength
of the free-space waveform for the chosen frequency.
[0055] Folded monopoles, as shown in Figure 4, are preferred because they are self-supporting
and do not require a ceramic holder.
[0056] The power broadcast from each antenna 10 is proportional to the protrusion of the
associated probe 10' into the waveguide, this being arranged to suit the power transmission
requirements.
[0057] The configuration of the launch sections 5 in Figure 3 is based on similar principles
to those used for the slotted waveguide of Figures 1, 2 but in this case the provision
of plates such as plates 6', 6' used in Figures 1, 2 to ensure symmetry in the near
field is unnecessary. Thus, the curved plate 7 extends directly from the respective
feeder waveguide 3. Additionally, and in a similar manner to the slotted configuration
of Figures 1, 2, the arrangement of probes 10 is repeated on a second waveguide 3
but so as to be out-of-phase with respect to the antennas on the first waveguide 3,
in the transverse direction of the band, by an amount equal to one quarter the guide
wavelength; in a like manner this compensates overall for any non-uniformity of microwave
illumination.
[0058] The exact dimensions of the launch sections 5 are determined empirically to achieve
a substantially uniform microwave illumination across the oven band and to maintain
vertical polarisation of the E-field, but approximate values can be related to the
wavelengths used.
[0059] The wavelengths referred to are determined by the choice of frequency and can be
expressed as follows:

where
- λ
- is the free-space wavelength of the waveform
- f
- is the chosen frequency in Hertz
- c
- is the speed of propagation of the waveform in free-space
- Er
- is the relative dielectric constant
and

where
- λg
- is the guide-wavelength
- λc
- is the factor related to the waveguide, and is typically twice the broad dimension
of waveguide
[0060] With reference to Figures 1, 2, 3 and 4, the dimensions noted have typical values
defined as follows:
- d1 =
- λ/2
- d2 =
- λg/2
- d3
- is symmetrical about the centre-line of the broad face of the waveguide and is found
experimentally by means of power reflection measurements to give equal power drop
per slot pair.
- d4
- should be the minimum possible compatible with the construction of the waveguides.
- d5 =
- 6λ (minimum)
- d6 =
- λ/4
- d7
- is proportional to the power transmission requirement
- d8 =
- 1.3λ (approx)
- d9 =
- 3.3λ
- d10 =
- 40mm (this is selected to be a minimum to clear the product)
- R1 and R2
- are in the range of 4λ to 5λ
- 0
- is in the range of 10 to 20 degrees.
[0061] Figure 5 shows that the feeder waveguide 3 fitted with probes 10' may be positioned
external to the oven, the probes 10' being connected to respective antennas 10 positioned
within the oven by respective coaxial waveguide links 15.
[0062] Whereas the ovens of Figures 1 to 5 utilise the TEM mode, those of Figures 6 and
7 principally utilise the TM
1 mode, but with some TEM mode in the upstream and downstream portions of the applicator.
[0063] In Figures 6 and 7 corresponding reference numerals have been applied to parts which
correspond to the ovens of Figures 1 to 5.
[0064] With reference to Figure 6, the central portion of the applicator, comprising the
pair of waveguides 3 with slots in their broad sides 3', respective upper and lower
plates 6' and 6", and base plate 13, is essentially the same as the central portion
of the applicator of Figure 1, but the upper plates 6' connect with respective horizontal
main applicator plates 20 which extend parallel to the metal band 2 at a spacing d
11 which is greater than 60 mm, typically 70 mm, in order to establish the TM
1 mode in the respective treatment spaces 21 defined between the band 2 and the main
applicator plates 20.
[0065] Figure 8 shows schematically the distribution of the electric field in the equivalent
parallel plate transmission line supporting the TM
1 mode. Immediately above the band the electric field is, in fact, parallel to the
band, but in proceeding away from the band the electric field rapidly becomes normal
to the band, so that effectively the field in the product is perpendicular to the
band. At the mid-height the electric field lines again become horizontal. Therefore
the products would preferably be chosen to have a maximum height less than half d
11, and this represents the effective treatment space in this case.
[0066] As will be appreciated by the skilled addressee, the TM
1 mode may alternatively be designated the TM
01 mode, since there are no loops of the electric field in the direction extending parallel
to but transversely of the metal band 2.
[0067] As shown in Figure 6, the ends of the main plates 20 remote from the waveguides 3
are continuous with downwardly and outwardly sloping flat plates 7, extending at an
angle of typically 45° to the band, the plates 7 connecting with horizontal plates
11 spaced at a distance d
10 above the band 2. The distance d
10 is typically 15 to 20 mm in order to support the TEM mode in the further treatment
spaces 11'.
[0068] Since the products to be heated, biscuits 1 being shown in Figure 6, are supported
on the band 2 and therefore occupy the region immediately above the band, the E-field
to which the products are exposed in the main treatment spaces 21 extends substantially
normal to the plane of band 2.
[0069] The length of d
12 of the main plates 20 in Figures 6 is typically 2
[0070] Figure 7 shows an equivalent arrangement to that of Figure 6 but employing antennas
10 in a similar manner to Figure 3. The dimensions d
10, d
11 and d
12 are typically as given for Figure 6. Again, the TM
1 mode is supported in the main treatment spaces 21, whereas the TEM mode is supported
in the further treatment spaces 11'.
[0071] With reference to Figure 9, a modification is shown which can be applied to any of
the embodiments of Figures 1 to 8. In order to prevent escape of the microwaves from
the sides of the parallel plate transmission line and to contain all microwaves (within
safety limits) inside the treatment space/s, a microwave circuit 22 is defined to
enclose the emitter assembly, launch section and oven band. As shown,the oven band
2 is supported by electrically conductive skids 23, running lengthwise of the band
2, on the base 25 of the microwave containment circuit 22 of channel section, the
band 2 and the applicator panel 11 forming a parallel plate transmission line as previously
described. Chokes are arranged at the opposite ends of the applicator, where the products
enter and leave. The microwave circuit 22 is continuous along the length of the treatment
zone and the sides 26 of the circuit 22 are connected by means of a respective welded
or slideable joint at J to the applicator in such a way as to ensure substantially
no leakage of microwaves at the join.
1. A microwave tunnel oven for subjecting products conveyed through the oven to microwave
radiation comprising a tunnel oven casing (R, S), the oven casing comprising spaced
apart tunnel oven side-walls (S) and an oven roof (R) connecting the side-walls, an
electrically conductive product-supporting conveyor band (2) positioned between the
side-walls (S) and beneath the roof (R) to extend lengthwise of the tunnel, band drive
means operative to drive the band, a microwave generator means, a microwave applicator
(3, 5, 11) positioned between the side-walls and above the band, microwave supply
means connecting the generator means to the microwave applicator, the microwave applicator
comprising an elongate microwave emitter assembly (3) extending transversely of the
oven band, the emitter assembly comprising a plurality of spaced-apart microwave emitter
means characterised by the provision of microwave launch means (5) extending longitudinally
of the oven and above the band (2) from adjacent to the emitter assembly (3), the
emitter assembly (3) being operable to emit radiation into the oven generally in a
longitudinal direction of the oven with a plane of polarisation substantially perpendicular
to the conveyor band (2), at least a portion of the launch means (5) and the band
(2) defining therebetween a microwave treatment space (21) through which the products
are conveyed in use for being subjected to microwave radiation, the launch means (5)
being configured to maintain the polarisation of the radiation in the treatment space
(21) substantially perpendicular to the conveyor band, and by a microwave containment
assembly (22) extending for substantially the full length of the microwave applicator,
in the longitudinal direction of the band (2), and comprising an electrically conductive
floor (25) extending beneath the band (2), and spaced-apart electrically conductive
containment side-walls (26) on either side of the band, and connecting the conductive
floor (25) with the microwave applicator (3, 5, 11).
2. An oven as claimed in claim 1, characterised in that the emitter assembly comprises
a feeder waveguide (3) extending transversely of the oven band (2), and a plurality
of spaced-apart slots (8) in the feeder waveguide, the slots (8) facing longitudinally
of the oven for emitting radiation into the oven generally in a longitudinal direction
of the oven with a plane of polarisation substantially perpendicular to the oven band
(2), at least a portion (7) of the launch means and the band (2) defining therebetween
a microwave treatment space (7') through which the products (1) are conveyed in use
for being subjected to microwave radiation, the launch means being configured to maintain
the polarisation of the radiation in the treatment space (7') substantially perpendicular
to the oven band, and the microwave launch means (5) comprises, as viewed in longitudinal
vertical section of the oven, a first stage (6', 6") positioned adjacent to the feeder
waveguide (3), and a second stage (7) remote from the feeder waveguide, the first
stage comprising upper (6') and lower (6") first stage plates disposed above and below
respectively the slots (8), and extending generally longitudinally of the oven from
the feeder waveguide, the second stage comprising a panel (7) extending closer to
the band (2) in proceeding away from the first stage, the upper first stage plate
(6') meeting the second stage panel (7) at a junction therebetween, and the upper
and lower first stage plates (6', 6"), as viewed in longitudinal vertical section
of the oven, being essentially mirror images of each other about a longitudinal plane
(4) that extends symmetrically through the plurality of slots (8) and parallel to
the band (2).
3. An oven as claimed in claim 2, characterised in that the junction between the upper
first stage plate (6') and the second stage plate (7) is an angled junction.
4. An oven as claimed in claim 1, 2 or 3, characterised in that the launch means (5)
is configured to maintain the polarisation of the radiation in the treatment space
(21) substantially perpendicular to the oven band (2), whereby the mode of radiation
in the treatment space (21) is at least predominantly the TM1 mode.
5. An oven as claimed in claim 4, characterised in that the microwave applicator comprises
a plate (11) extending substantially parallel to the band and positioned remote from
the emitter assembly (3, 8) to define a further treatment space (11') between the
plate (11) and the band (2), the arrangement being such that the mode of radiation
in the further treatment space (11') is at least predominantly the TEM mode.
6. An oven as claimed in claim 1, characterised in that said plurality of microwave emitter
means comprises a plurality of antennas (10) depending downwardly from said feeder
waveguide (3), and a plurality of probes (10') located in said waveguide, each said
probe (10') being directly connected to a respective one of the antennas (10).
7. An oven as claimed in any one of claims 1 to 5, characterised in that the plurality
of microwave emitter means (10) are arranged as a phased array, such that there is
a uniform phase difference between adjacent pairs of emitter means (10) of said plurality
of emitter means, and that the feeder waveguide (3) is located externally of the oven
casing (R,S), the plurality of microwave emitter means (10) being connected with the
feeder waveguide (3) by a plurality of coaxial waveguide links (15), the links (15)
extending through the oven casing.
1. Mikrowellen-Tunnelofen, in welchem durch den Ofen geführte Produkte einer Mikrowellenstrahlung
ausgesetzt werden, welcher ein Tunnelofengehäuse (R, S) aufweist, das voneinander
beabstandete seitliche Tunnelofenwandungen (S) und eine die Seitenwände miteinander
verbindende obere Tunnelwandung (R) besitzt, sowie ein elektrisch leitfähiges Förderband
(2) als Auflage für die Produkte, welches zwischen den Seitenwandungen (S) und unter
der oberen Wandung (R) so angeordnet ist, daß es sich in Längsrichtung des Tunnels
erstreckt, ferner Bandantriebseinrichtungen, die zum Antreiben des Förderbandes betätigbar
sind, eine Einrichtung zum Erzeugen der Mikrowellen, eine Einrichtung zum Abstrahlen
der Mikrowellen (3, 5, 11), der zwischen den Seitenwandungen und über dem Band angeordnet
ist, eine Einrichtung zum Zuführen der Mikrowellen, welche die Einrichtung zum Erzeugen
der Mikrowellen mit der Einrichtung zum Abstrahlen der Mikrowellen verbindet, wobei
die Einrichtung zum Abstrahlen der Mikrowellen eine langgestreckte Mikrowellenstrahlereinrichtung
aufweist, die sich quer zum Förderband im Ofen erstreckt, und wobei die Mikrowellenstrahlereinrichtung
eine Vielzahl von beabstandeten Mikrowellenstrahlern umfaßt, gekennzeichnet durch die Anordnung von Mikrowelleneinkopplern (5), die sich in Längsrichtung des
Ofens und über dem Band (2) von der Umgebung der Mikrowellenstrahlereinrichtung (3)
aus erstrecken, wobei die Mikrowellenstrahlereinrichtung (3) so betätigbar ist, daß
sie Strahlung in den Ofen im wesentlichen in Längsrichtung desselben mit einer Polarisationsebene
abstrahlt, die im wesentlichen senkrecht zum Förderband (2) verläuft, wobei zumindest
ein Teil der Einkopplungseinrichtung (5) und des Bandes (2) dazwischen einen Raum
(21) zur Mikrowelleneinwirkung definieren, durch welchen die Produkte bei Betrieb
geführt werden, damit die Mikrowellen auf sie einwirken, wobei die Einkopplungseinrichtung
(5) so ausgelegt ist, daß sie die Polarisierung der Strahlung im Einwirkungsraum (21)
im wesentlichen senkrecht zum Förderband aufrechterhalten, sowie durch eine Sicherheitsumschließung
(22) zur Abschirmung der Mikrowellenabschirmung, die sich im wesentlichen über die
gesamte Länge der Mikrowellenstrahlereinrichtung in Längsrichtung des Bandes (2) erstreckt
und eine elektrisch leitfähige Bodenwandung (25) aufweist, die unterhalb des Bandes
(2) verläuft, sowie durch beabstandete, elektrisch leitfähige Seitenwandungen (26)
der Sicherheitsumschließung zu beiden Seiten des Bandes, welche die leitfähige Bodenwandung
(25) mit der Mikrowellenabstrahleinrichtung (3, 5, 11) verbindet.
2. Ofen nach Anspruch 1, dadurch gekennzeichnet, daß die Mikrowellenstrahlereinrichtung einen Wellenleiter (3) als Zuleiter aufweist,
der sich quer zum Förderband (2) erstreckt, und eine Vielzahl beabstandeter Schlitze
(8) in dem Wellenzuleiter, wobei die Schlitze (8) sich in Längsrichtung des Ofens
so gegenüberstehen, daß sie Strahlung in den Ofen im wesentlichen in Längsrichtung
desselben mit einer zum Förderband (2) im wesentlichen senkrechten Polarisierungsebene
abstrahlen, wobei zumindest ein Teil (7) der Einkopplungseinrichtung und des Bandes
(2) dazwischen einen Raum (7') zur Mikrowelleneinwirkung definieren, durch welchen
die Produkte (1) im Betrieb geführt werden, damit die Mikrowellenstrahlung auf sie
einwirkt, wobei die Einkopplungseinrichtung so ausgelegt ist, daß sie die Polarisierung
der Strahlung im Einwirkungsraum (7') im wesentlichen senkrecht zum Förderband aufrechterhält,
und daß die Mikrowellen-Einkopplungseinrichtung (5), bei Blickrichtung im vertikalen
Längsschnitt durch den Ofen, eine erste Stufe (6', 6") aufweist, die in der Nähe des
Wellenzuleiters (3) liegt, und eine zweite Stufe (7) im Abstand vom Wellenzuleiter,
wobei die erste Stufe eine obere (6') und eine untere (6") Stufenplatte aufweist,
die jeweils über und unter den Schlitzen (8) angeordnet sind und sich im wesentlichen
in Längsrichtung des Ofens vom Wellenzuleiter aus erstrecken, wobei die zweite Stufe
eine Platte (7) aufweist, die sich von der ersten Stufe weg näher an das Band (2)
heran erstreckt wobei die obere Platte (6') der ersten Stufe auf die Platte (7) der
zweiten Stufe an einem dazwischen liegenden Kreuzungspunkt trifft, und wobei die obere
und untere Platte (6', 6") der ersten Stufe bei Blickrichtung im vertikalen Längsschnitt
durch den Ofen im wesentlichen spiegelbildlich zu einer Längsebene (4) ausgebildet
sind, die symmetrisch durch die Vielzahl der Schlitze (8) und parallel zum Band (2)
verläuft.
3. Ofen nach Anspruch 2, dadurch gekennzeichnet, daß der Kreuzungspunkt zwischen der oberen Platte (6') der ersten Stufe und die
Platte (7) der zweiten Stufe einen Winkelanschluß darstellen.
4. Ofen nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß die Einkopplungseinrichtung (5) so ausgelegt ist, daß sie die Polarisierung
der Strahlung im Einwirkungsraum (21) im wesentlichen senkrecht zum Förderband (2)
hält, wodurch der Strahlungsmodus im Einwirkungsraum (21) zumindest vorwiegend der
TM1-Modus ist.
5. Ofen nach Anspruch 4, dadurch gekennzeichnet, daß die Mikrowellenabstrahleinrichtung eine Platte (11) aufweist, die sich im wesentlichen
parallel zum Förderband erstreckt und im Abstand von der Mikrowellenstrahlereinrichtung
(3, 8) so positioniert ist, daß zwischen der Platte (11) und dem Förderband (22) ein
weiterer Einwirkraum (11') definiert wird, wobei die Anordnung so getroffen ist, daß
der Strahlungsmodus im weiteren Einwirkraum (11') zumindest überwiegend der TEM-Modus
ist.
6. Ofen nach Anspruch 1, dadurch gekennzeichnet, daß die Vielzahl der Mikrowellenstrahler eine Vielzahl von Antennen (10) umfaßt,
die von dem Wellenzuleiter (3) aus nach unten hängen, sowie eine Vielzahl von Sonden
(10'), die in dem Wellenleiter angeordnet sind, wobei jede Sonde (10') direkt mit
einer jeweiligen Antenne (10) verbunden ist.
7. Ofen nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Vielzahl von Mikrowellenstrahlern (10) als phasengesteuerte Anordnung in
der Weise angebracht ist, daß zwischen benachbarten Paaren der Strahlereinrichtungen
(10) der Vielzahl von Mikrowellenstrahlern eine einheitliche Phasenverschiebung vorliegt,
und daß der Wellenzuleiter (3) außerhalb des Ofengehäuses (R, 2) angeordnet ist, wobei
die Vielzahl von Mikrowellenstrahlern (10) mit dem Wellenzuleiter (3) durch eine Vielzahl
koaxialer Wellenleiterverbindungen (15) verbunden ist, die durch das Ofengehäuse geführt
sind.
1. Un four tunnel micro-ondes pour soumettre des produits transportés à travers le four
à un rayonnement micro-ondes, comprenant une enveloppe du four tunnel (R,S), l'enveloppe
de four comprenant des parois latérales (S) de four tunnel, espacées l'une de l'autre,
et une voûte ou un toit de four (R) reliant les parois latérales, une bande de transport
conductrice de l'électricité (2) supportant le produit, positionnée entre les parois
latérales (S) en dessous de la voûte (R) et s'étendant selon la longueur du tunnel,
des moyens d'entraînement de bande qui, fonctionnent pour entraîner la bande, des
moyens générateurs de micro-ondes, applicateur des micro-ondes (3, 5, 11) positionné
entre les parois latérales et au-dessus de la bande, des moyens de fourniture de micro-ondes,
reliant les moyens de génération à l'applicateur de micro-ondes, l'applicateur de
micro-ondes comprenant un assemblage allongé d'émission de micro-ondes (3) s'étendant
transversalement par rapport à la bande du four, l'assemblage d'émission comprenant
une pluralité de moyens d'émission de micro-ondes, espacés l'un de l'autre, caractérisé
par la disposition de moyens de lancement (5) de micro-ondes qui s'étendent longitudinalement
par rapport au four et au-dessus de la bande (2) à partir d'une position adjacente
à l'assemblage d'émission (3), l'assemblage d'émission (3) émettant, lors de son fonctionnement,
du rayonnement à l'intérieur du four selon une direction généralement longitudinale
du four présentant un plan de polarisation sensiblement perpendiculairement à la bande
de transport (2) au moins une partie des moyens de lancement (5) et de la bande (2)
définissant entre eux un espace de traitement par micro-ondes (21) à travers lequel
les produits sont transportés en service pour les être soumis à du rayonnement micro-ondes,
les moyens de lancement (5) présentant une configuration propre à maintenir la polarisation
du rayonnement dans l'espace de traitement (21) sensiblement perpendiculaire à la
bande de transport, et caractérisé par un assemblage de confinement de micro-ondes
(22) s'étendant sensiblements micro-ondes, dans la direction longitudinale de la bande
(2), et comprenant une sole ou plancher conducteur de l'électricité (25) s'étendant
en dessous de la bande (2) et des parois latérales de confinement (26), espacées l'une
de l'autre et conductrices de l'électricité, de part et d'autre de la bande, et reliant
la zone conductrice (25) à l'applicateur de micro-ondes (3, 5, 11).
2. Un four selon la revendication 1, caractérisée en ce que l'assemblage d'émission comprend
un guide d'onde d'alimentation (3) qui s'étend transversalement par rapport à la bande
(2) du four et une pluralité de fentes (8), espacées l'une de l'autre et prévues dans
le guide d'onde d'alimentation, les fentes (8) étant dirigées de façon longitudinale
par rapport au four pour émettre du rayonnement à l'intérieur du four généralement
selon une direction longitudinale du four avec un plan de polarisation sensiblement
perpendiculaire à la bande (2) du four, au moins une partie (7) des moyens de lancement
et la bande (2) définissant entre eux un espace de traitement aux micro-ondes (7')
à travers lequel les produits (1) sont transportés en service pour être soumis à du
rayonnement micro-ondes, les moyens de lancement présentant une configuration propre
à maintenir la polarisation du rayonnement à l'intérieur de l'espace de traitement
(7') sensiblement perpendiculaire à la bande du four, et en ce que les moyens de lancement
de micro-ondes (5) comprennent, tel qu'on le voit dans une coupe verticale longitudinale
du four, un premier étage (6', 6") positionné adjacente au guide d'onde d'alimentation
(3), et un deuxième étage (7) à distance du guide d'onde d'alimentation, le premier
étage comprenant des plaques de premier étage supérieure et inférieure (6") disposées
respectivement au-dessus et en dessous des fentes (8), et s'étendant généralement
selon le sens longitudinal du four à partir du guide d'onde d'alimentation, le deuxième
étage comprenant un panneau (7) s'étendant plus proche à la bande (2) lorsqu'il s'éloigne
du premier étage, la plaque supérieure de premier étage (6') rejoignant le panneau
de deuxième étage (7) à une jonction mutuelle, et les plaques de premier étage supérieure
et inférieure (6', 6"). considérées selon une coupe verticale longitudinale du four,
étant sensiblement des images-speculaires l'une de l'autre autour d'un plan longitudinal
(4) qui s'étend symétriquement à travers la pluralité de fentes (8) et parallèlement
à la bande (2).
3. Un four selon la revendication 2, caractérisé en ce que la jonction entre la plaque
supérieure de premier étage (6') et le panneau de deuxième étage (7) est une jonction
angulaire.
4. Un four selon la revendication 1, 2 ou 3, caractérisé en ce que les moyens de lancement
(5) présentent une configuration propre à maintenir la polarisation du rayonnement
dans l'espace de traitement (21) sensiblement perpendiculaire à la bande (2) du four.
de sorte que le mode de rayonnement à l'intérieur de l'espace de traitement (21) soit
au moins de façon prédominante le mode TM1.
5. Un four selon la revendication 4, caractérisé en ce que l'applicateur de micro-ondes
comprend une plaque (11) s'étendant de façon sensiblement parallèle à la bande et
positionnée à distance de l'assemblage d'émission (3, 8) afin de définir un espace
de traitement supplémentaire (11') entre la plaque (11) et la bande (2). l'agencement
étant tel que le mode de rayonnement dans cet espace de traitement supplémentaire
(11') soit au moins de façon prépondérante le mode (TEM) (à onde électromagnétique
transverse).
6. Un four selon la revendication 1, caractérisé en ce que ladite pluralité de moyens
d'émission de micro-ondes comprend une pluralité d'antennes (10) qui s'étendent vers
le bas à partir dudit guide d'onde d'alimentation (3) et une pluralité de sondes (10')
situées à l'intérieur dudit guide d'onde, chacune desdites sondes (10') étant reliée
directement à l'une respective des antennes (10).
7. Un four selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la
pluralité des moyens d'émission des micro-ondes (10) sont agencés pour constituer
un réseau à phase commandée, de sorte qu'il existe une différence de phase uniforme
entre des paires adjacentes des moyens d'émission (10) de ladite pluralité de moyens
d'émission (3), et en ce que le guide d'onde d'alimentation (3) est situé à l'extérieur
de l'enveloppe du four (R, S), la pluralité des moyens d'émission de micro-ondes (10)
étant reliés au guide d'onde d'alimentation (3) par une pluralité de liaisons coaxiales
pour guide d'ondes (15), les liaisons (15) s'étendant à travers l'enveloppe du four.