Background of the Invention
[0001] This invention relates to a bearing and journal combination comprising: an axle which
revolves around an axis and has a journal which merges into a larger portion of the
axle at a fillet, said fillet creating a stress concentration in the journal where
it emerges therefrom; a backing ring fitted around the journal at the fillet and providing
a first abutment surface presented away from the fillet; an end member attached to
the journal and providing a second abutment surface that is presented toward the first
abutment surface; and a bearing located around the journal between the backing ring
and the end member, the bearing including an outer race having raceways presented
inwardly toward the axis, at least one inner race located within the outer race and
around the journal, there being an interference fit between the inner race and the
journal and the journal having an uniform diameter under the inner race, there being
produced a stress concentration in the journal at the ends of the interference fit,
the inner race having raceways presented outwardly toward the raceways of the outer
race, such that an annular space exists between the races, and also having back faces
that are against the abutment surfaces on the backing ring and end member, and the
inner race having a thrust rib between its raceway at the end of the bearing presented
toward the backing ring and the back face that is against the abutment surface of
the backing ring and rolling elements arranged in at least two rows between the raceways
of the inner and outer races; and seals for closing the ends of the annular space
between the races of the bearing, wherein the first abutment surface of the backing
ring is located at the small end of the fillet so that the back face of the inner
race that is against the first abutment surface of the backing ring is located where
the fillet begins.
[0002] Most rail cars used by railroads rely on antifriction bearings to reduce friction
and thereby lessen the tractive effort required to move such cars. Typically, the
wheels of such cars are fitted to axles with which they rotate. Each axle extends
beyond its wheels in the form of journals that are of a lesser diameter than the remainder
of the axle. The bearings fit snugly over the journals and into housings which in
turn are received in side frames for a truck. Being the thinnest portion of the axle
and at the locations where the weight of the rail car is transferred to the axle,
the journals tend to flex as the rail car moves over the rails, at least when the
rail car is heavily loaded.
[0003] The flexure is perhaps most pronounced at the inboard end of each bearing. Here the
typical journal is fitted with an extended seal wear ring (as disclosed in DE-A-15
30 101) that extends between the inner race of the bearing and a backing ring which
fits over a fillet located where the journal merges into a larger adjoining portion
of the axle often referred to as the dust guard portion. The wear ring provides a
cylindrical surface around which a seal fits to retain lubrication within the bearing
and to prevent the entry of contaminants. A similar axle journal and bearing combination
having a wear ring separate from the backing ring is disclosed in US-A-4,819,949.
Both the inner face and the wear ring, at least where the wear ring abuts the inner
race, fit snugly over the journal. By reason of the flexure in the journal, fretting
occurs between the journal, on one hand, and the inner race and inboard wear ring
on the other.
[0004] The fretting erodes the journal and thereby produces a looser fit between the inner
race and wear ring and the journal. This looser fit compounds the fretting. In severe
cases the fretting can lead to overheating and bearing distress. Moreover, the axle
is weakened, and the effectiveness of the seal is diminished, because the wear ring
around which it is fitted does not remain concentric with the journal.
[0005] To be sure, others have addressed the fretting problem along the journals of rail
car axles. These efforts have included increasing the surface hardness of the axle
journal, increasing the surface area of the wear ring in contact with the journal
and even separating the wear ring entirely from the surface of the journal by using
the backing ring to center it with regard to the journal instead of the journal itself.
All have increased the cost of the bearing or its installation.
[0006] In DE-A-41 04 611 the inner race of a bearing is fitted on the journal of an axle
with a back face of the inner race in direct abutment with a radial face of the axle.
The edge between the inner surface of the inner race and the back face thereof is
undercut, in particular rounded off and the corner between the journal and the radial
face of the axle has a corresponding cut-out portion.
[0007] A similar axle journal-bearing combination is also disclosed in US-A-4,422,698, again
an inner race of the bearing directly engages a radial face of the axle.
[0008] A bearing and journal combination as defined in the precharacterizing portion of
independent claim 1, is disclosed in the brochure "FAG Radsatzlager fur Schienenfahrzeuge",
publication number WL 07153 DA, published July 1990. The bearing and journal combination,
order number 517897 on page 13 of this brochure, has the inner bearing race abutting
the bearing ring at the small end of the journal fillet, thereby providing a shortened
and stiffer journal. The interference fit between the inner race and the journal extends
almost up to the small end of the fillet except for a small tapering on rounding-off
at the end of the inner race.
[0009] In the brochure "How to recouncile cost and ecology management: SKF sealed 4-row
taper a roller bearings", Dd 7552-91E there are disclosed taper roller bearings provided
with inner races adapted to be mounted with a loose fit and having helical lubricating
grooves, communicating with annular cutouts at the ends f the inner races.
[0010] The object of the invention is to provide a bearing and journal combination of the
recited type which experiences less fretting in operation and enhances the fatigue
life of the journal.
[0011] To achieve this object the bearing and journal combination defined in the precharacterizing
portion of independent claim 1 is characterized in that said inner race in the region
of its back face that is against the first abutment surface of the backing ring has
a cylindrical undercut elongated in axial direction of the axle axis so that the interference
fit does not extend out to the back face and the stress concentration produced by
the inboard end of the interference fit is offset from the stress concentration created
by said fillet, said undercut being confined to the region of the thrust rib but not
extending_beneath any raceway of the inner race.
[0012] Accordingly, the present invention resides in the combination of a bearing and axle
journal which thwarts fretting along the journal. By eliminating the extended or separate
wear ring the journal is shortened making it stiffer. With the shortened stiffer journal
the inner race is located where the journal fillet begins, namely in a very stiff
region of the journal where flexure is minimum, but where fretting is traditionally
the greatest. By undercutting the backing ring the interference fit does not extend
out to the back face and produce a stress concentration in the journal where the fillet
emerges thereby reducing fretting and enhancing the fatigue life of the journal. The
seals, which close the ends of the bearing, are preferably fitted along the races
of the bearing. Advantageous embodiments of the axle journal and bearing combination
are defined in the dependent claims 2 to 9.
Description of the Drawings
[0013] In the accompanying drawings which form part of the specification and wherein like
numerals and letters refer to like parts wherever they occur:
Fig. 1 is a sectional view of a conventional bearing fitted to an axle journal and
showing the location where fretting develops; and
Fig. 2 is a sectional view of an axle and a bearing and related components constructed
in accordance with the present invention.
Detailed Description
[0014] Referring now to the drawings (Fig. 2) an axle A rotates within an antifriction bearing
B about an axis X. The bearing B is in turn contained within a housing C. Typically,
the arrangement is part of a rail car, the axle A being fitted with wheels and the
housing C being received in a truck or some other appliance forming part of the suspension
system for the rail car. The axle A, owing to the construction of the bearing B, undergoes
considerably less flexure than traditional rail car axles, and as a consequence fretting
is less likely to develop along the axle A.
[0015] The axle A has a main section 2 which extends between and beyond the wheels. At each
end it has a reduced intervening section 4, sometimes called a dust guard portion,
and a journal 6 located beyond the intervening section 4. The main section 2 merges
into the intervening section 4 at a fillet 8, and the intervening section 4 merges
into the journal 6 at another fillet 10, both fillets 8 and 10 having essentially
the same radius of curvature. The journal 6 at its opposite end has an end face 12
which is squared off with respect to the axis X. Here the journal 6 has threaded holes
14 which lie around and parallel to the axis X. The main section 2, intervening section
4 and journal 6 are all essentially cylindrical and concentric, the axis X being common
to all. Indeed, the journal 6 has an extended cylindrical surface 16 which lies between
its fillet 10 and a slightly tapered surface 18 which runs out to the end face 12
of the axle A. The main section 2 has a diameter d, the intervening section a diameter
e, and the extended surface 16 of the journal a diameter f. The intervening section
4 has a length m, whereas along the journal 6 a distance n exists between the end
of the intervening section 4 and the midpoint of the bearing B. The fillet 10 at the
end of the journal 6 has a length p. The following dimensional relationships exist
in the axle shaft A:




Basically, the diameter e of the reduced intervening section 4 is at least as great
as its counterpart in traditional axles, but its length m is greater. On the other
hand, the distance n between the midpoint of the bearing B and the inboard end of
the journal 6, is shorter than its counterpart in traditional bearings. The variations
in the dimensional relationship between the axle A and traditional axles serve to
stiffen the end of the axle A, particularly its journal 6, and thereby reduce flexing
in operation. This in turn reduces fretting.
[0016] At the inboard end of the journal 6 a backing ring 20 abuts the small fillet 10.
The backing ring 20 overlies the end of the reduced section 4 and further extends
axially along the fillet 10 to cover the entire fillet 10, but little if any of the
adjoining cylindrical surface 16. The backing ring 20 terminates at an end face 22
which is squared off with respect to the axis X and lies essentially at the location
where the fillet 10 emerges from the cylindrical surface 16. In other words, the backing
ring 20 projects along the fillet 10 for substantially the length p of the fillet
10, its end face 22 being essentially the distance p from the opposite end of the
fillet 10.
[0017] At the outboard end of the journal 6, an end cap 24 fits over the slightly tapered
surface 18 and across the end of the axle A. It terminates at an end face 26 which
lies along the extended cylindrical surface 16 and is presented toward the end face
22 on the backing ring 20. Like the end face 22, the end face 26 is squared off with
respect to axis X. The end cap 24 is held on journal by cap screws 28 which pass through
the end cap 24 and engage the threads of the threaded holes 14. The end cap 24 and
screws 28 retain the bearing B on the journal 6.
[0018] The bearing B encircles the journal 6 between the end cap 24 and the backing ring
20. It includes an outer race in the form of a double cup 30, an inner race in the
form of two cones 32, and tapered rollers 34 arranged in two circular rows between
the cup 30 and the two cones 32. The rollers 34 occupy an annular space S between
the cup 30 and the two cones 32 - a space which represents the interior of the bearing
B. The space S is closed at its ends by seals 36 which are fitted to the cup 30 and
cones 32. Actually, the seals 36 establish dynamic fluid barrier between the cup 30
and cones 32 and thus allow the latter to rotate within the former while still closing
the end of the annular spaces.
[0019] Considering the bearing B more specifically, its cup 30 has end bores 40 which open
out of its ends and tapered raceways 42 which are presented inwardly toward the axis
X and taper downwardly from the end bores 40 toward the midpoint of the bearing B.
The raceways 42 encircle the two cones 32, there being a separate cone 32 within each
raceway 42.
[0020] Each cone 32 has a through bore 44, through which the journal 6 extends, the diameter
of the bore 44 being slightly smaller than the diameter f of the cylindrical surface
16 for the journal 6, so that an interference fit exists between the cone 32 and the
journal 6. Each cone 32 also has a raceway 46 which is presented outwardly away from
the axis X and toward one of the raceways 42 of the cup 30. Like the cup raceway 42
that it faces, each cone raceway 46 tapers downwardly toward the midpoint of the bearing
B. At the small end of its raceway 46, each cone 32 has a retaining rib 48 while at
the large end of its raceway 46 it has a thrust rib 50. The two ribs 48 and 50 project
outwardly beyond their respective ends of the raceway 46. While traditional tapered
roller bearings have thrust ribs, the thrust rib 50 of each cone 32 in the bearing
B is extended, providing a cylindrical mounting surface 52 of some length that lies
within the end bore 40 at the corresponding end of the cup 30. The surface 52 runs
out to a back face 54 which is squared off which respect to the axis X and forms the
end of the cone 32 - and indeed an end of the bearing B as well. Finally, the bore
44 of each cone 32 opens into an undercut 56 in the region of the back face 54 for
the cone. The length of the undercut 56 does not exceed the lenght of the thrust rib
50, so the undercut 56, while underlying the thrust rib 50, does not underlie the
raceway 46. The undercut 56 merges with the bore 44 along a beveled surface which
also forms part of the undercut 56.
[0021] The tapered rollers 34 fit between the opposed raceways 42 and 46 on the cup 30 and
cones 32, respectively, which their tapered side faces being against the raceways
42 and 46 and their large end faces against the thrust ribs 50. By reason of the tapered
geometry, radially directed loads transmitted through the bearing B translate into
slight axial force components which would expel the rollers 34 from the annular space
S between the cup 30 and cones 32 were it not for the thrust ribs 50 on the cones
32.
[0022] The inboard cone 32 at its back face 54 abuts the backing ring 20 along its end face
22. The back face 54 of the outboard cone 32, on the other hand, bears against the
end face 26 of the end cap 24 which is urged toward the outboard cone 32 by the cap
screws 28, so that the two cones 32 are clamped between the end cap 24 and the backing
ring 20. But the cap screws 28 do not control the setting for the bearing B. Instead,
the two cones 32 are separated by a spacer 58 which fits between their retaining ribs
48, it being ground to provide the bearing with a predetermined setting, either in
end play or preload, when the two cones 32 abut it at their retaining ribs 48.
[0023] The change in contour where the fillet 10 emerges from the extended cylindrical surface
16 of the journal 6 creates a stress concentration in the journal 6. Stress concentrations
also exist at the edges of press fits and the press fit between the journal 6 and
the inboard cone 32 is no exception. But the stress concentration produced by the
interference fit does not coincide with the stress concentration caused by the fillet
10 owing to the undercut 56 in the inboard cone 32. The offset in the two stress concentrations
enhances the fatigue life of the journal 6. The undercut 56 in the outboard cone 32,
while not serving to separate stress concentrations, does render the two cones 32
interchangeable and permits a reverse installation. The undercut 56 on each cone 32,
being confined to the region of the thrust rib 50 for the cone and not underlying
the raceway 46, does not diminish the capacity of the cone 32 to transmit radial loads.
[0024] The seals 36 fit into the end bores 40 of the cup 30 and around the cylindrical surfaces
52 on the thrust ribs 50 of the two cones 32 and thereby close the ends of the annular
space S occupied by the rollers 34. Each seal 36 includes a case 60 which is pressed
into one of the end bores 40 in the cup 30 and a shield 62 which is pressed over the
cylindrical surface 52 for the thrust rib 50 of the cone 32 at the corresponding end
of the bearing B. Both the case 60 and the shield 62 are relatively rigid, being formed
preferably as metal stampings. The interference fits between the case 60 and the surface
of the end bore 40 and between the shield 62 and the cylindrical surface 52 of the
thrust rib 50 produce static fluid barriers at those locations. In addition, each
seal 36 includes an elastomeric seal element 64 which is bonded to the case 60 and
extends out to surfaces of the shield 62 along which it establishes dynamic or live
fluid barriers. The seals 36 may resemble thsoe disclosed in W-A-4,819,949 entitled
Shielded Seal Assembly.
[0025] The load transmitted through the bearing B passes through rollers 34 of the two rows,
it being divided generally equally between those rows. As a consequence, the load
resolves into a resultant R which located midway between the two rows of rollers 34.
The distance between the resultant R and the fillet 8 at which the reduced intervening
section 4 of the axle A merges into the main section 2 remains essentially the same
as the corresponding distance on traditional axles. In other words, the combined dimension
m + n does not change. But the length m of the reduced intervening section 4 for the
axle A is greater than the corresponding dimension on traditional axles, while the
distance n between the resultant R and the large end of the fillet 10 is less than
the corresponding distance on traditional axles. The extension of the thicker intervening
section 4 and the reduction of the journal 6 renders the end of the axle A stiffer
than the ends of traditional axles. As a consequence, the journal 6 experiences less
flexure in the region of the back face 54 for the inboard cone 32. Indeed, the distance
p between the back face 54 of that cone 32 and the inboard end of journal 6 is quitte
short, it being essentially the length of the backing ring 20, since no seal wear
ring exists in the region to require extension of the journal 6. Yet the bearing B
remains as a preassembled and prelubricated unit that is installed over the journal
6 as such. Indeed, the bearing B, owing to the absence of the seal wear rings, has
less parts than traditional rail car axle bearings, and of course is shorter. The
seals 36 serve to unitize the bearing B for handling purposes in that they prevent
the cones 32 and spacer 56 from being withdrawn from the cup 30.
[0026] Seals of other configurations may be used to close the ends of the annular space
S between the cup 30 and cones 32. For example, a suitable seal may have a seal case
fitted to one of the end bores of the cup 30 and an elastomeric seal element bonded
to the case and establishing a fluid barrier along the cylindrical surface 52 on the
thrust rib 50 for the cone 32 at the corresponding end of the cup 30.
[0027] This invention is intended to cover all changes and modifications of the example
of the invention herein chosen for purposes of the disclosure which do not constitute
departures from the scope of the claims.
1. A bearing and journal combination comprising: an axle (A) which revolves around an
axis (x) and has a journal (6) which merges into a larger portion (4) of the axle
(A) at a fillet (10), said fillet (10) creating a stress concentration in the journal
(6) where it emerges therefrom; a backing ring (20) fitted around the journal (6)
at the fillet (10) and providing a first abutment surface (22) presented away from
the fillet (10); an end member (24) attached to the journal (6) and providing a second
abutment surface (26) that is presented toward the first abutment surface (22); and
a bearing (B) located around the journal (6) between the backing ring (20) and the
end member (24), the bearing (B) including an outer race (30) having raceways presented
inwardly toward the axis (x), at least one inner race (32) located within the outer
race (30) and around the journal (6), there being an interference fit between the
inner race (32) and the journal (6) and the journal (6) having an uniform diameter
under the inner race (32), there being produced a stress concentration in the journal
(6) at the ends of the interference fit, the inner race (32) having raceways presented
outwardly toward the raceways of the outer race (30), such that an annular space (S)
exists between the races, and also having back faces (54, 54) that are against the
abutment surfaces (22, 26) on the backing ring (20) and end member (24), and the inner
race (32) having a thrust rib (50) between its raceway at the end of the bearing presented
toward the backing ring (20) and the back face (54) that is against the abutment surface
(22) of the backing ring (20) and rolling elements (34, 34) arranged in at least two
rows between the raceways of the inner and outer races (30, 32); and seals (36, 36)
for closing the ends of the annular space (S) between the races of the bearing (B),
wherein the first abutment surface (22) of the backing ring (20) is located at the
small end of the fillet (10) so that the back face (54) of the inner race (32) that
is against the first abutment surface (22) of the backing ring (20) is located where
the fillet (10) begins, characterized in that said inner race (32) in the region of its back face (54) that is against the first
abutment surface (22) of the backing ring (20) has a cylindrical undercut (56) elongated
in axial direction of the axle axis (X) so that the interference fit does not extend
out to the back face (54) and the stress concentration produced by the inboard end
of the interference fit is offset from the stress concentration created by said fillet
(10), said undercut (56) being confined to the region of the thrust rib (50) but not
extending beneath any raceway (46) of the inner race (32) .
2. The combination according to claim 1, characterized in that the seals (36, 36) are mounted on at least one of the races (30, 32) and cooperate
with the other race.
3. The combination according to claim 1 or 2, characterized in that the inner race (32) includes two components (32, 32), each of which has a raceway
and a back face (54, 54); and that the back face (54) of the one component is against
the first abutment surface (22) of the backing ring (20) and the back face (54) of
the other component is against the second abutment surface (26) of the end member
(24).
4. The combination according to claim 3, characterized in that each component (32, 32) of the inner race (32) has a cylindrical surface (52) between
its back face (54) and its raceway, and the seals (36, 36) are located around the
cylindrical surfaces (52) of the components.
5. The combination according to any one of claims 1 to 4,
characterized in that
where
n is the distance between the large end of the fillet (10) at the end of the journal
(6) and a plane located midway between the rolling elements (34, 34) of the two rows,
and
f is the diameter of the journal (6).
6. The combination according to any one of claims 1 to 5, characterized in that the larger portion of the axle (A) includes an intervening section (4) from which
the journal (6) projects at the fillet (10) and a main section (2) from which the
intervening portion (4) projects.
7. The combination according to claim 6,
characterized in that
where
d is the diameter of the main section (2),
e is the diameter of the intervening section (4), and
f is the diameter of the journal (6).
8. The combination according to claim 3, characterized in that each component (32, 32) of the inner race (32) has an undercut (56) that leads out
to its back face (54), whereby the bearing (B) may be reversed on the journal (6).
1. Lager und Lagerzapfenkombination mit: einer Achse (A), die um eine Mittellinie (X)
dreht und einen Lagerzapfen (6) aufweist, der in einen grösseren Teil (4) der Achse
(A) an einer Ausrundung (10) übergeht, wobei die Ausrundung (10) eine Spannungsanhäufung
in dem Lagerzapfen (6) erzeugt wo die Ausrundung (10) sich aus Lagerzapfen (6) erhebt;
einem Stützring (20), der auf dem Lagerzapfen (6) an der Ausrundung (10) sitzt und
eine erste Anlagefläche (22) aufweist, die von der Ausrundung (10) wegweist; einem
Endstück (24), das an dem Lagerzapfen (6) befestigt ist und eine zweite Anlagefläche
(26) aufweist, die in Richtung zu der ersten Anlagefläche (22) weist; und einem Lager
(B), das den Lagerzapfen (6) zwischen dem Stützring (20) und dem Endstück (24) umgibt,
wobei das Lager (B) einen Aussenring (30) aufweist mit nach innen zur Achse (X) weisenden
Laufbahnen, mindestens einen Innenring (32), der in dem Aussenring (30) liegt und
den Lagerzapfen (6) umgibt, wobei ein Festsitz zwischen dem Innenring (32) und dem
Lagerzapfen (6) vorgesehen ist und der Lagerzapfen (6) einen gleichförmigen Durchmesser
unter dem Innenring (32) hat, und eine Spannungsanhäufung in dem Lagerzapfen an den
Enden des Festsitzes vorliegt, und der Innenring (32) Laufbahnen aufweist, die nach
aussen zu den Laufbahnen des Aussenringes (30) weisen, damit ein Ringraum (S) zwischen
den Ringen freibleibt, und der Innenring auch mit Endflächen (54, 54) versehen ist,
welche an den Anlageflächen (22, 26) des Stützringes (20) und des Endstückes (24)
anliegen, und der Innenring (32) eine Schubrippe (50) aufweist zwischen seiner Laufbahn
am Ende des Lagers auf der Seite des Stützringes (20) und der Endfläche (54), die
an der Anlagefläche (22) des Stützringes (20) anliegt, und Wälzkörper (34, 34), die
in mindestens zwei Reihen angeordnet sind zwischen den Laufbahnen des Innen- und Aussenringes
(30, 32); und Abdichtungen (36, 36) zum Verschliessen der Enden des Ringraumes (S)
zwischen den Ringen des Lagers (B), wobei die erste Anlagefläche (22) des Stützringes
(20) sich am kleinen Ende der Ausrundung (10) befindet, damit die Endfläche (54) des
Innenringes (32), die an der ersten Anlagefläche (22) des Stützringes (20) anliegt
sich an der Stelle befindet wo die Ausrundung (10) beginnt, dadurch gekennzeichnet, dass der Innenring (32) in dem Bereich seiner Endfläche (54), die an der ersten Anlagefläche
(22) des Stützringes (20) anliegt eine zylindrische Hinterschneidung (56) aufweist
damit der Festsitz nicht bis zur Endfläche (54) ragt und die durch das innere Ende
des Festsitzes hervorgerufene Spannungsanhäufung von der durch die Ausrundung (10)
erzeugten Spannungsanhäufung getrennt ist, wobei die Hinterschneidung auf den Bereich
der Schubrippe (50) beschränkt ist und sich nicht unter irgendwelche Laufbahn (46)
des Innenringes (32) erstreckt.
2. Kombination nach Anspruch 1, dadurch gekennzeichnet, dass die Abdichtungen (36, 36) auf mindestens einem der Ringe (30, 32) sitzen und mit
dem anderen Ring zusammenwirken.
3. Kombination nach Anspruch 1 oder 2, dadurch gekennzeichnet dass der Innenring (32) aus zwei Teilen (32, 32) besteht, wobei jeder Teil mit einer der
Laufbahnen und einer der Endflächen (54, 54) versehen ist; und dass die Endfläche
(54) des einen Ringteiles an der ersten Anlagefläche (22) des Stützringes (20) anliegt
und die Endfläche (54) des anderen Ringteiles an der zweiten Anlagefläche des Endstückes
(24) anliegt.
4. Kombination nach Anspruch 3, dadurch gekennzeichnet, dass jeder Teil (32, 32) des Innenringes (32) eine zylindrische Fläche (52) aufweist zwischen
seiner Endfläche (54) und seiner Laufbahn, und dass die Abdichtungen (36, 36) um die
zylindrischen Flächen (52) der Ringteile angeordnet sind.
5. Kombination nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet, dass
worin
n der Abstand ist zwischen dem grossen Ende der Ausrundung (10) am Ende des Lagerzapfens
(6) und einer Ebene, die sich in der Mitte zwischen den Wälzkörpern (34, 34) der beiden
Reihen befindet, und
f der Durchmesser des Lagerzapfens (6) ist.
6. Kombination nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der grössere Teil der Achse (A) einen Zwischenabschnitt (4) aufweist von dem der
Lagerzapfen (6) sich an der Ausrundung (10) erstreckt und einen Hauptabschnitt (2)
aufweist von dem der Zwischenabschnitt (4) sich erstreckt.
7. Kombination nach Anspruch 6,
dadurch gekennzeichnet, dass
worin
d der Durchmesser des Hauptabschnittes (2),
e der Durchmesser des Zwischenabschnittes (4), und
f der Durchmesser des Lagerzapfens (6) sind.
8. Kombination nach Anspruch 3, dadurch gekennzeichnet, dass jeder Teil (32, 32) des Innenringes (32) eine Hinterschneidung (56) aufweist, die
in seine Endfläche (54) mündet, damit das Lager (B) auf dem Lagerzapfen (6) gewendet
werden kann.
1. Combinaison d'un roulement et d'un tourillon comportant : un essieu (A) qui tourne
autour d'un axe (X) et qui a un tourillon (6) qui passe en une partie plus large (4)
de l'essieu (A) par un congé (10), ce congé (10) créant une concentration de contraintes
dans le tourillon (6) ou il émerge de celui-ci ; une bague d'appui (20) placée autour
du tourillon (6) à l'endroit du congé (10) et pourvue d'une première surface d'appui
(22) orientée à l'écart du congé (10) ; un élément d'extrémité (24) attaché au tourillon
(6) et pourvu d'une seconde surface d'appui (26) qui est orientée vers la première
surface d'appui (22) ; et un roulement (B) disposé autour du tourillon (6) entre la
bague d'appui (20) et l'élément d'extrémité (24), le roulement (B) ayant une bague
externe (30) ayant des voies de roulement orientées vers l'intérieur vers l'axe (X),
au moins une bague interne (32) disposée à l'intérieur de la bague externe (30) et
autour du tourillon (6), un ajustement serré étant prévu entre la bague interne (32)
et le tourillon (6), et le tourillon (6) ayant un diamètre uniforme en-dessous de
la bague interne (32), une concentration de contraintes se trouvant dans le tourillon
(6) aux extrémités de l'ajustement serré, la bague interne (32) ayant des voies de
roulement orientées vers l'extérieur vers les voies de roulement de la bague externe
(30), de sorte qu'un écartement annulaire (S) existe entre les bagues, et la bague
interne (32) ayant aussi des surfaces arrière (54, 54), qui sont en contact avec les
surfaces d'appui (22, 26) de la bague d'appui (20) et de l'élément d'extrémité (24),
et la bague interne (32) ayant une nervure de poussée (50) entre sa voie de roulement
à l'extrémité du roulement située du côté de la bague d'appui (20) et la surface arrière
(54) qui est en contact avec la surface d'appui (22) de la bague d'appui (20), et
des éléments roulants (34, 34) disposés en au moins deux rangées entre les voies de
roulement des bagues interne et externe (30, 32) ; et des moyens d'étanchéité (36,
36) pour fermer les extrémités de l'écartement annulaire (S) entre les bagues du roulement
(B), la première surface d'appui (22) de la bague d'appui (20) se trouvant à la petite
extrémité du congé (10) de sorte que la surface arrière (54) de la bague interne (32)
qui est en contact avec la première surface d'appui (22) de la bague d'appui (20)
se trouve à l'endroit où le congé (10) commence, caractérisée en ce que la bague interne (32) est pourvue d'un évidement cylindrique (56) dans la région
de sa surface arrière (54) qui est en contact avec la première surface d'appui (22)
de la bague d'appui (20) de sorte que l'ajustement serré ne s'étende pas jusqu'à la
face arrière (54) et la concentration de contraintes produite par l'extrémité interne
de l'ajustement serré soit décalée de la concentration de contraintes crée par le
congé (10), ledit évidement étant limité à la région de la nervure de poussée (50)
mais ne s'étendant pas sous aucune voie de roulement (46) de la bague interne (32).
2. Combinaison selon la revendication 1, caractérisée en ce que les moyens d'étanchéité (36, 36) sont montés sur au moins l'une des bagues (30, 32)
et coopèrent avec l'autre bague.
3. Combinaison selon la revendication 1 ou 2, caractérisée en ce que la bague interne (32) comporte deux éléments (32, 32) dont chacun est pourvu de l'une
des voies de roulement et de l'une des surfaces arrière (54, 54) ; et en ce que la surface arrière (54) de l'un de ces éléments est en contact avec la première surface
d'appui (22) de la bague d'appui (20) et la surface arrière (54) de l'autre élément
est en contact avec la seconde surface d'appui (26) de l'élément d'extrémité (24).
4. Combinaison selon la revendication 3, caractérisée en ce que chaque élément (32, 32) de la bague interne (32) a une surface cylindrique (52) entre
sa surface arrière (54) et sa voie de roulement, et les moyens d'étanchéité (36, 36)
sont disposés autour des faces cylindriques (52) de ces éléments.
5. Combinaison selon l'une quelconque des revendications 1 à 4,
caractérisée en ce que
où
n est la distance entre l'extrémité large du congé (10) à l'extrémité du tourillon
(6) et un plan disposé à mi-distance entre les éléments roulants (34, 34) des deux
rangées, et
f est le diamètre du tourillon (6).
6. Combinaison selon l'une quelconque des revendications 1 à 5, caractérisée en ce que la partie plus large de l'essieu (A) est pourvue d'une section intermédiaire (4)
de laquelle le tourillon (6) s'étend à l'endroit du congé (6) et d'une section principale
(2) de laquelle la section intermédiaire (4) s'étend.
7. Combinaison selon la revendication 6,
caractérisée en ce que
où
d est le diamètre de la section principale (2),
e est le diamètre de la section intermédiaire (4), et
f est le diamètre du tourillon (6).
8. Combinaison selon la revendication 3, caractérisée en ce que chaque élément (32, 32) de la bague interne (32) a un évidement (56) qui débouche
dans sa surface arrière (54), de sorte que le roulement (B) puisse être inversé sur
le tourillon (6).