| (19) |
 |
|
(11) |
EP 0 702 748 B1 |
| (12) |
EUROPEAN PATENT SPECIFICATION |
| (45) |
Mention of the grant of the patent: |
|
23.09.1998 Bulletin 1998/39 |
| (22) |
Date of filing: 12.11.1993 |
|
| (51) |
International Patent Classification (IPC)6: F01D 5/14 |
| (86) |
International application number: |
|
PCT/US9310/937 |
| (87) |
International publication number: |
|
WO 9412/765 (09.06.1994 Gazette 1994/13) |
|
| (54) |
ROTOR BLADE WITH COOLED INTEGRAL PLATFORM
ROTORSCHAUFEL MIT GEKÜHLTER INTEGRIERTER PLATFORM
AUBE DE ROTOR A PLATEFORME INTEGRALE REFROIDIE
|
| (84) |
Designated Contracting States: |
|
DE FR GB |
| (30) |
Priority: |
24.11.1992 US 980850
|
| (43) |
Date of publication of application: |
|
27.03.1996 Bulletin 1996/13 |
| (73) |
Proprietor: UNITED TECHNOLOGIES CORPORATION |
|
Hartford, CT 06101 (US) |
|
| (72) |
Inventor: |
|
- GREEN, Dennis, J.
Amston, CT 06231-00106 (US)
|
| (74) |
Representative: Tomlinson, Kerry John et al |
|
Frank B. Dehn & Co.,
European Patent Attorneys,
179 Queen Victoria Street London EC4V 4EL London EC4V 4EL (GB) |
| (56) |
References cited: :
EP-A- 278 434 FR-A- 2 438 157 GB-A- 2 119 027
|
CH-A- 343 580 GB-A- 678 085 GB-A- 2 253 443
|
|
| |
|
|
|
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
Technical Field
[0001] This invention relates to gas turbine engines, and more particularly to a rotor blade
having an integral platform and to a rotor assembly according to the preambles of
claims 1 and 3 respectively and as known from GB-A-2 119 027.
Background of the Invention
[0002] A typical gas turbine engine has an annular axially extending flow path for conducting
working fluid sequentially through a compressor section, a combustion section, and
a turbine section. The compressor section includes a plurality of rotating blades
which add energy to the working fluid. The working fluid exits the compressor section
and enters the combustion section. Fuel is mixed with the compressed working fluid
and the mixture is ignited to add more energy to the working fluid. The resulting
products of combustion are then expanded through the turbine section. The turbine
section includes another plurality of rotating blades which extract energy from the
expanding fluid. A portion of this extracted energy is transferred back to the compressor
section via a rotor shaft interconnecting the compressor section and turbine section.
The remainder of the energy extracted may be used for other functions.
[0003] Recent gas turbine engine development has resulted in rotor blades having more effective
and efficient interaction with fluid flowing in the flow path. This has resulted in
fewer rotor blades per disk and a lighter rotor assembly. As a consequence of having
fewer rotor blades per disk, the spacing between adjacent rotor blades has increased.
[0004] Each of the rotor blades includes an airfoil portion, a root portion, and a platform.
The airfoil portion extends through the flow path and interacts with working fluid
to transfer energy between the rotor blade and working fluid. The root portion engages
the attachment means of the disk. The platform typically extends laterally from the
rotor blade to a platform of an adjacent rotor blade. The platform is disposed radially
between the airfoil portion and the root portion. The platform includes a radially
outward facing flow surface. The plurality of platforms extends circumferentially
about the longitudinal axis of the gas turbine engine to define a radially inner flow
surface for working fluid. This inner flow surface confines working fluid to the airfoil
portion of the rotor blade.
[0005] Platforms are generally of two types. The first is a chevron type which includes
laterally edges curved to approximate the airfoil shape of the rotor blade. This type
of shape minimizes the lateral extension of the platform from the rotor blade. Minimizing
the lateral extension, or cantilevered portion of the platform, minimizes the rotationally
caused bending stress in the platform.
[0006] The second type of platform includes parallel lateral edges which extend linearly
in an axial orientation. Parallel edges provide for ease of manufacture of the rotor
blades into the disk but result in platforms which extend further outward from the
blade. The lateral extension of the platform becomes more significant as the spacing
between adjacent rotor blades increases. The combination of parallel, linear edges
and increased rotor blade spacing results in a platform having a significant cantilever.
[0007] As a result of the lateral extension, this type of platform has higher bending stress
than a comparable chevron platform. The bending stress is particularly significant
in the region of the attachment of the platform to the root portion and airfoil portion
of the rotor blade. To accommodate this stress, the parallel edged platform is typically
made thicker, in the radial dimension, with a lateral taper. Increasing the thickness
of the platform adds to the bulk of the blade and adversely affects operating efficiency
of the gas turbine engine.
[0008] Another concern associated with the parallel edged platforms is the overheating of
the platforms. The laterally outermost portion of the platforms receive little cooling
from the core cooling fluid passing through the rotor blade. Therefore this portion
of the platform is subject to degradation as a result of overheating. Degradation
of the platform reduces the effectiveness of the platform to confine the flow of working
fluid to the airfoil portion of the blade and thereby causes a reduction in operational
efficiency of the gas turbine engine.
[0009] A solution to the overheating of the platform is to provide cooling fluid to the
platform. Typically this involves having cooling holes pass radially through the platform
to a damper cavity located underneath the platform. The damper cavity contains cooling
fluid which has passed through various passages within the rotor assembly to provide
cooling to the rotor assembly. This cooling fluid then passes out through the cooling
holes and cools the platform in the vicinity of the cooling holes.
[0010] A problem associated with cooling holes of this type has been to properly locate
them. Due to pressure fluctuations over the surface of the platform, the pressure
differential between the damper cavity and the flow path fluctuates along the surface
of the platform. This may lead to a negative pressure differential near the cooling
hole and may cause ingestion of working fluid through the cooling hole and into the
damper cavity. Within the damper cavity the ingested working fluid heats up the cavity
and may cause degradation to nearby structure, including the platform, the damper,
and the disk attachment area. In addition, non-gaseous products in the working fluid
may block the cooling holes and reduce or prevent cooling fluid from exiting the damper
cavity, thereby blocking cooling fluid from flowing over the flow surface of the platform.
[0011] The above art notwithstanding, scientists and engineers under the direction of Applicants'
Assignee are working to develop effective cooling means for rotor blade platform.
Disclosure of the Invention
[0012] The present invention was predicated in part upon the recognition that flow through
a circumferentially spaced array of rotor blades generates flow vortices between airfoil
portions of adjacent rotor blades, hereinafter referred to as interblade vortices.
As the spacing between adjacent rotor blades increases, the strength of each of these
interblade vortices rotates about an axially oriented axis. The interblade vortices
generate flow directed radially inward along the pressure surface side of the airfoil
portions and radially outward along the suction side of the airfoil portions. This
non-axially directed flow creates a pressure fluctuation along the surface of the
platform such that higher pressure regions exist near the junction of the pressure
surface side of the airfoil portion and the platform than at the laterally outer edges
of the platform.
[0013] According to the present invention, a rotor blade includes a platform having a first
cooling hole extending between a core cooling passage and the platform and a second
cooling hole extending between an under-platform cavity and the platform. The first
cooling hole provides a film of cooling fluid over the region of the platform nearest
the airfoil portion of the blade. The second cooling hole provides a film of cooling
fluid over the laterally outermost region of the platform.
[0014] According further to the present invention, each of the cooling holes includes an
exit disposed on the surface of the platform and a flow directed axis, wherein the
cooling hole axis is aligned with a streamline of the interblade vortices in the vicinity
of the exit.
[0015] According to a specific embodiment of the present invention, a turbine rotor blade
assembly includes a disk and a plurality of circumferentially spaced, hollow rotor
blades, the rotor blades being in communication with a source of cooling fluid and
including an airfoil portion, a root portion, and a platform having a first cooling
hole in communication with the cooling fluid flowing through the rotor blade and a
second cooling hole in communication with cooling fluid within a damper cavity between
adjacent rotor blades. The cooling holes are disposed in the pressure surface side
of the platform and have longitudinal axes which are aligned with a flow streamline
of the interblade vortices over the exit of the cooling holes. The first cooling hole
provides high pressure cooling fluid which, upon exiting the cooling holes, is directed
over the surface of the platform near the junction of the platform and airfoil portion.
The second cooling hole provides cooling fluid at a lower pressure than the first
cooling hole but which is directed over the surface of the laterally outermost portion
of the platform.
[0016] A principle feature of the present invention is the two types of cooling holes in
the platform, one in communication with the core cooling fluid and the other in communication
with under-platform cooling fluid. Another feature is the location of the cooling
holes with the first cooling hole nearest the airfoil portion and the second cooling
hole laterally outward of the first. A further feature is the alignment of the cooling
holes with the flow streamlines of the interblade vortices. A still further feature
is the directionality of the cooling holes relative to the surface of the platform.
[0017] A primary advantage of the present invention is the effective cooling of the platform
as a result of the cooling scheme. The first cooling hole provides high pressure cooling
fluid in the region where the interblade vortices causes flow path pressure to be
highest. The second cooling hole provides lower pressure cooling fluid in a region
where flow path pressure is lower. Another advantage of the present invention is the
effective use of the cooling fluid exiting the cooling holes as a result of the alignment
and directionality of the cooling holes. The cooling fluid exiting the cooling holes
is directed at an acute angle relative to the surface of the platform to encourage
the cooling fluid to form a film over the surface. In addition, engagement of the
interblade vortices flow also encourages the exiting cooling fluid to form a film
of cooling fluid over the platform surface.
[0018] The foregoing and other objects, features and advantages of the present invention
become more apparent in light of the following detailed description of the exemplary
embodiments thereof, as illustrated in the accompanying drawings.
Brief Description of the Drawings
[0019] FIG. 1 is a cross sectional side view of a gas turbine engine.
[0020] FIG. 2 is a perspective view of adjacent rotor blades with other rotor assembly structure
removed for clarity.
[0021] FIG. 3 is a top view of the adjacent pair of rotor blades with the cooling holes
shown by dashed lines.
[0022] FIG. 4 is a view taken along line 4-4 of FIG. 3 with arrows indicating the flow of
cooling fluid and the interblade vortices.
Best Mode for Carrying Out the Invention
[0023] FIG. 1 illustrates a typical axial flow gas turbine engine 12. The gas turbine engine
includes a compressor section 14, a combustor 16, and a turbine section 18. A flow
path 22 extends axially through the gas turbine engine and defines a passage for working
fluid to pass sequentially through the compressor section, the combustor and the turbine
section.
[0024] The turbine section includes a plurality of rotor assemblies 24, each rotor assembly
including a rotatable disk 26 and a plurality of circumferentially spaced rotor blades
28 extending radially from the disk. As shown in FIG. 2, each rotor blade includes
an airfoil portion 32 which extends through the flow path, an integral platform 34
which extends laterally about the rotor blade and a root portion 36 which engages
the disk to retain the rotor blade to the disk. The airfoil portion includes a leading
edge 38, a pressure surface 42, a suction surface 44, and a trailing edge 46. The
airfoil portion is hollow and is within fluid communication with cooling passages
48 through the root portion. The cooling passages of the root portion are in fluid
communication with a source of high pressure cooling fluid, typically a supply of
compressor air which bypasses the combustion process. The cooling fluid within the
airfoil section is typically expelled through cooling holes which extend between the
hollow air portion and the flow path.
[0025] The platform includes an outer surface 52 which extends laterally to be in close
proximity to the platform of an adjacent rotor blade. The plurality of platforms and
their outer surfaces define a radially inner flow surface for working fluid within
the flow path. In this way the platforms confined the working medium to the airfoil
portion of the rotor blade to maximize the interaction between the airfoil portion
and the working fluid and the efficiency of the energy transfer between the working
fluid and the airfoil portion. The platform also includes an underside 54, a plurality
of first cooling holes 56, and a plurality of second cooling holes 58. The underside
of the platforms defines in part a damper cavity 62 (see FIG. 4) between adjacent
rotor blade root portions. The damper cavity typically retains vibration damping means
to minimize the vibration of the rotor blade during operation. The plurality of first
cooling holes extend along the pressure surface of the airfoil from the leading edge
to the trailing edge. This set of cooling holes approximates the shape of the pressure
surface of the airfoil as shown in FIGs. 3 and 4,. Each of the first cooling holes
extends between a core cooling passage and the platform outer surface and is disposed
radially between the platform-to airfoil-fillet 64 and a platform-to-root fillet 66.
The first cooling hole includes an inlet 68 which provides means of fluid communication
between the core passage and the cooling hole and an outlet 72 which provides means
of communication between the cooling hole and the flow path. Each of the first cooling
holes is angled relative to the radial axis 74 such that cooling fluid is directed
radially outward and laterally away from the pressure surface of the airfoil. The
outlet of each of the first cooling holes is shaped to provide diffusion of the cooling
fluid exiting the first cooling hole. Diffusing the exiting cooling fluid spreads
the cooling fluid over a greater area and lowers the flow velocity of the cooling
fluid. Lowering the velocity increases the likelihood that the cooling fluid will
not separate from the surface and will form a film over the surface.
[0026] The plurality of second cooling holes extend between the damper cavity and the platform
outer surface and include an inlet 76 providing fluid communication between the second
cooling hole and the damper cavity and an outlet 78 providing fluid communication
through the cooling hole and the flow path. Each of the second cooling holes is disposed
along the laterally outward portion of the pressure side platform. The second cooling
holes are also angled relative to the radial axis to direct cooling fluid radially
outward and laterally away from the pressure surface of the airfoil portion. The exits
of each of the second cooling holes is also shaped to provide means of diffusing the
cooling fluid exiting the second cooling holes.
[0027] As shown in FIGs. 3 and 4, an interblade vortice 82 extends between the adjacent
blades and rotates about an axially oriented axis. The vortice is represented as a
plurality of flow stream lines which indicate the direction of flow within the vortices.
This vortice carries fluid radially inward along the pressure surface of each blade,
then laterally between the pressure surface and the suction surface of an adjacent
blade, and then radially outward along the suction surface. The effect of this vortice
is to increase the total pressure along the surface of the platform nearest the airfoil
pressure surface. The pressure along the outer surface decreases laterally outward
from the pressure surface. Each of the first cooling holes and second cooling holes
is aligned such that the direction of fluid flow through the cooling holes approximates
the lateral direction of flow of the inner blade vortices near the outlet of each
cooling hole.
[0028] During operation, working fluid passes axially through the rotor blade assembly.
Engagement of the working fluid and the plurality of rotor blades generates pressure
variations along the outer surface of the platform. As discussed previously, the vortices
generate a pressure gradient which decays in a direction laterally outward from the
pressure surface of the airfoil. In addition, pressure losses occur as the working
fluid passes axially through the rotor blade assembly such that the region of the
platform of the outer surface near the leading edge as a high pressure region and
the pressure along the outer surface decays axially downstream from the leading edge.
The resulting pressure feel along the outer surface has a relatively high pressure
region forward of the leading edge and along the pressure surface junction with the
outer surface of the platform. A relatively low pressure region exists at the laterally
outward edge and at approximately at the mid span of the airfoil portion.
[0029] As shown in FIG. 4, core cooling fluid passes radially outward from the root portion
towards the airfoil portion. A portion of this core cooling fluid passes through the
first cooling hole inlets, along the first cooling holes and out the first cooling
hole exits. The core cooling fluid is drawn from the compressor section and is relatively
low temperature and relatively high pressure fluid as compared to the working fluid
passing through the rotor assembly. This ensures that cooling fluid exiting the first
cooling holes will flow radially outward and into the flow path. In addition this
provides the coolest fluid in the region of the platform subject to the highest temperatures.
[0030] The second cooling holes use the cooling fluid within the damper cavity as a source
of cooling fluid. Fluid within the damper cavity consists of cooling fluid from the
compressor section which has leaked around various seals and which has followed a
tortuous path before flowing into the damper cavity. As such, the cooling fluid within
the damper cavity is at a lower pressure and higher temperature than the core cooling
fluid. For this reason this cooling fluid may be at too low a pressure to be used
as cooling fluid in the higher pressure regions of the platform. Use of this cooling
fluid may lead to ingestion of working fluid into the damper cavity and thereby degrade
the rotor assembly. The damper cavity cooling fluid, however, may be ejected out into
the lower pressure regions of the platform, as shown in FIGs. 2, 3 and 4.
[0031] The fluid exiting the first cooling holes and the second cooling holes does so at
an angle relative to the radial axis such that is encouraged to flow laterally over
the outer surface. In addition, the fluid exiting the first cooling holes and second
cooling holes engages the flow within the vortices which further encourages the cooling
fluid to flow over the outer surface in a lateral direction between the pressure surface
and suction surface. The combination of first cooling holes and second cooling holes
as shown in FIGs. 2 and 3 provides a film or blanket of cooling fluid over the pressure
surface side of the platform, with the coolest highest pressure fluid being concentrated
in the high pressure high temperature region of the platform and with the remaining
cooling fluid concentrated in the lower pressure region of the platform. In this way
the effectiveness of the platform cooling is optimized and the amount of cooling fluid
necessary to cool a platform is thereby minimized.
1. A rotor blade (28) for an axial flow gas turbine engine (12) disposed about a longitudinal
axis, the gas turbine engine including an axially directed flow path (22) defining
a passage for working fluid, a rotor assembly (24) including a rotatable disk (26)
and the rotor blade (28), and a source of cooling fluid, the rotor blade (28) including
an airfoil section (32) extending through the flow path (22), the airfoil portion
(32) including a pressure surface (42) and a suction surface (44), the airfoil portion
(32) having a hollow core, a root portion (36) disposed radially inward of the airfoil
portion (32) and engaged with the disk (26) to secure the blade (28) to the disk (26),
the root portion (36) including a core path defining a flow path for cooling fluid,
the core path being in fluid communication with the source of cooling fluid and with
the hollow core of the airfoil portion (32), and a platform (34) extending laterally
from the blade (28) and disposed radially between the airfoil portion (32) and the
root portion (36), the platform (34) including an outer surface (52) defining a flow
surface for the flow path (22), a first fillet (64) adjoining the outer surface (52)
and the airfoil portion (32), an inner surface (54) defining in part an under platform
cavity (62), and a second fillet (66) adjoining the inner surface (54) and the root
portion (36), wherein the rotor blade (28) is characterized by including:
a first cooling hole (56) that extends between the core path and the outer surface
(52), the first cooling hole (56) being disposed radially inward of the first fillet
(64) and radially outward of the second fillet (66), the first cooling hole (56) having
an inlet (68) disposed in the core path and an exit (72) disposed on the outer surface
(52) and laterally outward of the first fillet (64), and a second cooling hole (58)
that extends between the under platform cavity (62) and the outer surface (52), the
second cooling hole (58) including an inlet (76) disposed on the inner surface (54)
and an exit (78) disposed on the outer surface (52), the second cooling hole exit
(78) disposed laterally outward of the first cooling hole exit (72).
2. The rotor blade (28) according to claim 1, wherein the rotor assembly (24) includes
a plurality of rotor blades (28) spaced circumferentially about the disk (26), the
spacing being such that an interblade vortex (82) is generated between adjacent blades
(28), the interblade vortex (82) having an axially oriented axis and a plurality of
flow streamlines extending between adjacent blades, and wherein the first cooling
hole (56) includes a first cooling hole axis oriented in the direction of flow through
the first cooling hole (56), the first cooling hole axis being aligned with one of
the flow streamlines, and wherein the second cooling hole (58) includes a second cooling
hole axis oriented in the direction of flow through the second cooling hole (58),
the second cooling hole axis being aligned with one of the flow streamlines.
3. A rotor assembly (24) for a gas turbine engine (12) disposed about a longitudinal
axis, the gas turbine engine (12) including an axially directed flowpath (22) defining
a passage for working fluid and a source of cooling fluid, the rotor assembly (24)
including a rotatable disk (26), and a plurality of rotor blades (28), wherein each
of the plurality of rotor blades (28) includes an airfoil section (32) extending through
the flow path (22), the airfoil portion (32) including a pressure surface (42) and
a suction surface (44), the airfoil portion (32) having a hollow core, a root portion
(36) disposed radially inward of the airfoil portion (32) and engaged with the disk
(26) to secure the blade (28) to the disk (26), the root portion (36) including a
core path defining a flow path for cooling fluid, the core path being in fluid communication
with the source of cooling fluid and with the hollow core of the airfoil portion (32),
and a platform (34) extending laterally from the blade (28) and disposed radially
between the airfoil portion (32) and the root portion (36), the platform (34) including
an outer surface (52) defining a flow surface for the flow path (22), a first fillet
(64) adjoining the outer surface (52) and the airfoil portion (32), an inner surface
(54) defining in part an under platform cavity (62), and a second fillet (66) adjoining
the inner surface (54) and the root portion (36), wherein the rotor assembly (24)
is characterized by including:
a first cooling hole (56) that extends between the core path and the outer surface
(52), the first cooling hole (56) being disposed radially inward of the first fillet
(64) and radially outward of the second fillet (66), the first cooling hole (56) having
an inlet (68) disposed in the core path and an exit (72) disposed on the outer surface
(52) and laterally outward of the first fillet (64), and a second cooling hole (58)
that extends between the under platform cavity (62) and the outer surface (52), the
second cooling hole (58) including an inlet (76) disposed on the inner surface (54)
and an exit (78) disposed on the outer surface (52), the second cooling hole exit
(78) disposed laterally outward of the first cooling hole exit (72).
4. The rotor assembly (24) according to Claim 3, wherein the plurality of rotor blades
(28) are spaced circumferentially about the disk (26), the spacing being such that
an interblade vortex (82) is generated between adjacent blades (28), the interblade
vortex (82) having an axially oriented axis and a plurality of flow streamlines extending
between adjacent blades (28), and wherein the first cooling hole (56) includes a first
cooling hole axis oriented in the direction of flow through the first cooling hole
(56) the first cooling hole axis being aligned with one of the flow streamlines, and
wherein the second cooling hole (58) includes a second cooling hole axis oriented
in the direction of flow through the second cooling hole (58), the second cooling
hole axis being aligned with one of the flow streamlines.
1. Rotorlaufschaufel (28) für eine Axialströmungsgasturbinenmaschine (12), die um eine
Längsachse herum angeordnet ist, wobei die Gasturbinenmaschine einen axial gerichteten
Strömungsweg (22), der eine Passage für Arbeitsfluid definiert, eine Rotoranordnung
(24), die eine Rotorscheibe (26) und die Rotorlaufschaufel (28) aufweist, und eine
Quelle für Kühlfluid aufweist, wobei die Rotorlaufschaufel (28) einen Strömungsprofilbereich
(32), der sich durch den Strömungsweg (22) erstreckt, eine Druckfläche (42) und eine
Sogfläche (44) aufweist und einen hohlen Kern hat, einen Wurzelbereich (36), der radial
innerhalb des Strömungsprofilbereichs (32) angeordnet ist und mit der Scheibe (26)
zum Befestigen der Laufschaufel (28) an der Scheibe (26) zusammenwirkt, wobei der
Wurzelbereich (36) einen Kernweg aufweist, der einen Strömungsweg für Kühlfluid definiert
und sich mit der Quelle von Kühlfluid und mit dein hohlen Kern des Strömungsprofilbereichs
(32) in Strömungsverbindung befindet, und eine Plattform (34) aufweist, die sich seitlich
von der Laufschaufel (28) erstreckt und radial zwischen dem Strömungsprofilbereich
(32) und dem Wurzelbereich (36) angeordnet ist, wobei die Plattform (34) eine äußere
Oberfläche (52), die eine Strömungsoberfläche für den Strömungsweg (22) definiert,
eine erste Ausrundung (64), welche die äußere Oberfläche (52) an den Strömungsprofilbereich
(32) anschließt, eine innere Oberfläche (54), die zum Teil einen Unter-Plattform-Hohlraum
(62) definiert, und eine zweite Ausrundung (66) aufweist, welche die innere Oberfläche
(54) an den Wurzelbereich (36) anschließt, wobei die Rotorlaufschaufel (28) gekennzeichnet
ist durch
eine erste Kühlöffnung (56), die sich zwischen dem Kernweg und der äußeren Oberfläche
(52) erstreckt, wobei die erste Kühlöffnung (56) radial innerhalb der ersten Ausrundung
(64) und radial außerhalb der zweiten Ausrundung (66) angeordnet ist und einen Einlaß
(68), der in dem Kernweg angeordnet ist, und einen Auslaß (72), der in der äußeren
Oberfläche (52) und seitlich außerhalb der ersten Ausrundung (64) angeordnet ist hat,
und
eine zweite Kühlöffnung (58), die sich zwischen dem Unter-Plattform-Hohlraum (62)
und der äußeren Oberfläche (52) erstreckt, wobei die zweite Kühlöffnung (58) einen
Einlaß (76), der an der inneren Oberfläche (54) angeordnet ist, und einen Auslaß (78),
der an der äußeren Oberfläche (52) angeordnet ist, aufweist, wobei der Auslaß (78)
der zweiten Kühlöffnung seitlich außerhalb des Auslasses (72) der ersten Kühlöffnung
angeordnet ist.
2. Rotorlaufschaufel (28) nach Anspruch 1, wobei die Rotoranordnung (24) eine Mehrzahl
von Rotorlaufschaufeln (28) aufweist, die umfangsmäßig um die Scheibe (26) beabstandet
sind, wobei der Abstand derart ist, daß zwischen benachbarten Laufschaufeln (28) ein
Zwischenschaufel-Wirbel (82) erzeugt wird, wobei der Zwischenschaufel-Wirbel (82)
eine axial orientierte Achse und eine Mehrzahl von Fließ-Strömungslinien aufweist,
die sich zwischen benachbarten Laufschaufeln erstrecken, und wobei die erste Kühlöffnung
(56) eine erste Kühlöffnungsachse aufweist, die in Richtung der Strömung durch die
erste Kühlöffnung (56) orientiert ist, wobei die erste Kühlöffnungsachse mit einer
der Fließ-Strömungslinien ausgerichtet ist, und wobei die zweite Kühlöffnung (58)
eine zweite in Richtung der Strömung durch die zweite Kühlöffnung (58) orientierte
zweite Kühlöffnungsachse aufweist, wobei die zweite Kühlöffnungsachse mit einer der
Fließ-Strömungslinien ausgerichtet ist.
3. Rotoranordnung (24) für eine Gasturbinenmaschine (12), die um eine Längsachse herum
angeordnet ist, wobei die Gasturbinenmaschine (12) einen axial gerichteten Strömungsweg
(22), der eine Passage für Arbeitsfluid definiert, und eine Quelle für Kühlfluid aufweist,
wobei die Rotoranordnung (24) eine Rotorscheibe (26) und eine Mehrzahl von Rotorlaufschaufeln
(28) aufweist, wobei jede aus der Mehrzahl von Rotorlaufschaufeln (28) einen Strömungsprofilabschnitt
(32), der sich durch den Strömungsweg (22) erstreckt, der eine Druckfläche (42) und
eine Sogfläche (44) aufweist und einen hohlen Kern hat, einen Wurzelbereich (36),
der radial innerhalb des Strömungsprofilbereichs (32) angeordnet ist und mit der Scheibe
(26) zusammenwirkt, um die Laufschaufel (28) an der Scheibe (26) zu befestigen, wobei
der Wurzelbereich (36) einen Kernweg aufweist, der einen Strömungsweg für Kühlfluid
definiert und sich mit der Quelle von Kühlfluid und mit dem hohlen Kern des Strömungsprofilbereichs
(32) in Fluidverbindung befindet, und eine Plattform (34) aufweist, die sich von der
Laufschaufel (28) seitlich erstreckt und radial zwischen dem Strömungsprofilbereich
(32) und dem Wurzelbereich (36) angeordnet ist, wobei die Plattform (34) eine äußere
Oberfläche (52), die eine erste Strömungsoberfläche für den Strömungsweg (22) definiert,
eine erste Ausrundung (64), welche die äußere Oberfläche (52) an den Strömungsprofilbereich
(32) anschließt, eine innere Oberfläche (54), die zum Teil einen Unter-Plattform-Hohlraum
(62) definiert, und eine zweite Ausrundung (66) aufweist, welche die innere Oberfläche
(54) an den Wurzelbereich (36) anschließt, wobei die Rotoranordnung (24) gekennzeichnet
ist durch:
eine erste Kühlöffnung (56), die sich zwischen dem Kernweg und der äußeren Oberfläche
(52) erstreckt, radial innerhalb der ersten Ausrundung (64) und radial außerhalb der
zweiten Ausrundung (66) angeordnet ist und einen Einlaß (68), der in dem Kernweg angeordnet
ist, und einen Auslaß (72), der an der äußeren Oberfläche (52) und seitlich außerhalb
der ersten Ausrundung (64) angeordnet ist, und
eine zweite Kühlöffnung (58), die sich zwischen dem Unter-Plattform-Hohlraum (62)
und der äußeren Oberfläche (52) erstreckt, einen Einlaß (76), der an der inneren Oberfläche
(54) angeordnet ist, und einen Auslaß (78) aufweist, der an der äußeren Oberfläche
(52) angeordnet ist, wobei der zweite Kühlöffnungsauslaß (78) seitlich außerhalb des
ersten Kühlöffnungsauslasses (72) angeordnet ist.
4. Rotoranordnung (24) nach Anspruch 3, wobei die Mehrzahl von Rotorlaufschaufeln (28)
umfangsmäßig um die Scheibe (26) beabstandet ist, wobei der Abstand derart ist, daß
zwischen benachbarten Laufschaufeln (28) ein Zwischenschaufel-Wirbel (82) erzeugt
wird, wobei der Zwischenschaufel-Wirbel (82) eine axial orientierte Achse und eine
Mehrzahl von Fließ-Strömungslinien aufweist, die sich zwischen benachbarten Laufschaufeln
(28) erstrecken, und wobei die erste Kühlöffnung (56) eine erste Kühlöffnungsachse
aufweist, die in Strömungsrichtung durch die erste Kühlöffnung (56) orientiert ist,
wobei die erste Kühlöffnungsachse mit einer der Fließ-Strömungslinien ausgerichtet
ist, und wobei die zweite Kühlöffnung (58) eine zweite Kühlöffnungsachse aufweist,
die in Strömungsrichtung durch die zweite Kühlöffnung (58) orientiert ist, wobei die
zweite Kühlöffnungsachse mit einer der Fließ-Strömungslinien ausgerichtet ist.
1. Pale tournante (28) pour un moteur à turbine à gaz à écoulement axial (12) disposé
autour d'un axe longitudinal, le moteur à turbine à gaz comprenant un chemin d'écoulement
dirigé axialement (22) qui définit un passage pour un fluide de travail, un ensemble
rotor (24) comprenant un disque mobile en rotation (26) et la pale tournante (28),
et une source de fluide de refroidissement, la pale tournante (28) comprenant une
partie formant surface portante (32) s'étendant à travers le chemin d'écoulement (22),
la partie formant surface portante (32) comprenant un intrados (42) et une surface
d'aspiration (44), la partie formant surface portante (32) comportant un noyau central
creux, une partie d'empattement (36) disposée radialement vers l'intérieur de la partie
formant surface portante (32) et coopérant avec le disque (26) de façon à fixer la
pale (28) au disque (26), la partie d'empattement (36) comprenant un chemin de noyau
central qui définit un chemin d'écoulement pour le fluide de refroidissement, le chemin
de noyau central étant en communication fluidique avec la source de fluide de refroidissement
et avec le noyau central creux de la partie formant surface portante (32), et une
plate-forme (34) s'étendant latéralement depuis la pale (28) et disposée radialement
entre la partie formant surface portante (32) et la partie d'empattement (36), la
plate-forme (34) comprenant une surface extérieure (52) qui définit une surface d'écoulement
pour le chemin d'écoulement (22), un premier congé de raccordement (64) contigu à
la surface extérieure (52) et à la partie formant surface portante (32), une surface
intérieure (54) définissant en partie une cavité (62) sous-jacente à la plate-forme,
et un second congé de raccordement (66) contigu à la surface intérieure (54) et à
la partie d'empattement (36), la pale tournante (28) étant caractérisée par :
un premier trou de refroidissement (56) qui s'étend entre le chemin de noyau central
et la surface extérieure (52), le premier trou de refroidissement (56) étant disposé
radialement vers l'intérieur du premier congé de raccordement (64) et radialement
vers l'extérieur du second congé de raccordement (66), le premier trou de refroidissement
(56) comportant une entrée (68) disposée dans le chemin de noyau central et une sortie
(72) disposée sur la surface extérieure (52) et latéralement vers l'extérieur du premier
congé de raccordement (64), et un second trou de refroidissement (58) qui s'étend
entre la cavité (62) sous-jacente à la plate-forme et la surface extérieure (52),
le second trou de refroidissement (58) comprenant une entrée (76) disposée sur la
surface intérieure (54) et une sortie (78) disposée sur la surface extérieure (52),
la sortie de second trou de refroidissement (78) étant disposée latéralement vers
l'extérieur de la sortie de premier trou de refroidissement (72).
2. Pale tournante (28) selon la revendication 1, dans laquelle l'ensemble rotor (24)
comprend une pluralité de pales tournantes (28) espacées circonférentiellement autour
du disque (26), l'espacement étant tel qu'un tourbillon inter-pales (82) est produit
entre des pales (28) adjacentes, le tourbillon inter-pales (82) ) ayant un axe orienté
axialement et une pluralité de lignes d'écoulement s'étendant entre des pales adjacentes,
et dans laquelle le premier trou de refroidissement (56) comprend un axe de premier
trou de refroidissement orienté dans la direction d'écoulement à travers le premier
trou de refroidissement (56), l'axe de premier trou de refroidissement étant aligné
avec une des lignes d'écoulement, et dans laquelle le second trou de refroidissement
(58) comprend un axe de second trou de refroidissement orienté dans la direction d'écoulement
à travers le second trou de refroidissement (58), l'axe de second trou de refroidissement
étant aligné avec une des lignes d'écoulement.
3. Ensemble rotor (24) pour un moteur à turbine à gaz (12) ) disposé autour d'un axe
longitudinal, le moteur à turbine à gaz (12) comprenant un chemin d'écoulement dirigé
axialement (22) qui définit un passage pour un fluide de travail et une source de
fluide de refroidissement, l'ensemble rotor (24) comprenant un disque mobile en rotation
(26), et une pluralité de pales tournantes (28), dans lequel chacune de la pluralité
de pales tournantes (28) comprend une partie formant surface portante (32) s'étendant
à travers le chemin d'écoulement (22), la partie formant surface portante (32) comprenant
un intrados (42) et une surface d'aspiration (44), la partie formant surface portante
(32) comportant un noyau central creux, une partie d'empattement (36) disposée radialement
vers l'intérieur de la partie formant surface portante (32) et coopérant avec le disque
(26) de façon à fixer la pale (28) au disque (26), la partie d'empattement (36) comprenant
un chemin de noyau central qui définit un chemin d'écoulement pour le fluide de refroidissement,
le chemin de noyau central étant en communication fluidique avec la source de fluide
de refroidissement et avec le noyau central creux de la partie formant surface portante
(32), et une plate-forme (34) s'étendant latéralement depuis la pale (28) et disposée
radialement entre la partie formant surface portante (32) et la partie d'empattement
(36), la plate-forme (34) comprenant une surface extérieure (52) qui définit une surface
d'écoulement pour le chemin d'écoulement (22), un premier congé de raccordement (64)
contigu à la surface extérieure (52) et à la partie formant surface portante (32),
une surface intérieure (54) définissant en partie une cavité (62) sous-jacente à la
plate-forme, et un second congé de raccordement (66) contigu à la surface intérieure
(54) et à la partie d'empattement (36), l'ensemble rotor (24) étant caractérisé par
:
un premier trou de refroidissement (56) qui s'étend entre le chemin de noyau central
et la surface extérieure (52), le premier trou de refroidissement (56) étant disposé
radialement vers l'intérieur du premier congé de raccordement (64) et radialement
vers l'extérieur du second congé de raccordement (66), le premier trou de refroidissement
(56) comportant une entrée (68) disposée dans le chemin de noyau central et une sortie
(72) disposée sur la surface extérieure (52) et latéralement vers l'extérieur du premier
congé de raccordement (64), et un second trou de refroidissement (58) qui s'étend
entre la cavité (62) sous-jacente à la plate-forme et la surface extérieure (52),
le second trou de refroidissement (58) comprenant une entrée (76) disposée sur la
surface intérieure (54) et une sortie (78) disposée sur la surface extérieure (52),
la sortie de second trou de refroidissement (78) étant disposée latéralement vers
l'extérieur de la sortie de premier trou de refroidissement (72).
4. Ensemble rotor (24) selon la revendication 3, dans lequel la pluralité de pales tournantes
(28) est espacée circonférentiellement autour du disque (26), l'espacement étant tel
qu'un tourbillon inter-pales (82) est produit entre des pales (28) adjacentes, le
tourbillon inter-pales (82) ayant un axe orienté axialement et une pluralité de lignes
d'écoulement s'étendant entre des pales (28) adjacentes, et dans lequel le premier
trou de refroidissement (56) comprend un axe de premier trou de refroidissement orienté
dans la direction d'écoulement à travers le premier trou de refroidissement (56),
l'axe de premier trou de refroidissement étant aligné avec une des lignes d'écoulement,
et dans lequel le second trou de refroidissement (58) comprend un axe de second trou
de refroidissement orienté dans la direction d'écoulement à travers le second trou
de refroidissement (58), l'axe de second trou de refroidissement étant aligné avec
une des lignes d'écoulement.