[0001] This invention relates to a welded orthodontic assembly, and particularly concerns
an orthodontic band that is welded to a bracket, buccal tube or other orthodontic
attachment.
[0002] Orthodontic treatment involves movement of the teeth to desired positions. During
treatment, small slotted bodies known as brackets are typically affixed to anterior,
cuspid and bicuspid teeth, and small devices known as buccal tubes are secured to
molar teeth. An arch wire held in slots of the brackets and channels in the buccal
tubes functions as a track to guide movement of the teeth to orthodontically correct
positions. The teeth are often moved by bends or twists placed in the arch wire or
by elastic members connected between the brackets or buccal tubes of certain teeth.
[0003] In past years, it was common practice to weld each buccal tube and bracket to a respective
orthodontic band. The orthodontic bands were selected to match the contour and circumferential
dimension of the tooth, so that a close, non-loosening fit between the band and the
tooth could be obtained. In more recent years, however, adhesives have been developed
that usually have sufficient strength to securely affix brackets directly to the tooth
surfaces.
[0004] However, buccal tubes are often subjected to relatively large forces from occluding
teeth as well as forces exerted by the arch wire. As such, it is still common practice
to weld buccal tubes to an metallic orthodontic band so that a stable base for the
buccal tube is provided. Welded bracket and band assemblies are also still used with
anterior, cuspid and bicuspid teeth in instances where a relatively strong connection
to the tooth is desired.
[0005] In addition to brackets and buccal tubes, other orthodontic devices or "attachments"
may also be welded to bands. Examples of such other attachments include cleats, buttons,
hooks, lingual sheaths and eyelets, and such attachments may be mounted on either
the buccolabial side (i.e., facing the cheeks or lips) or the lingual side (i.e.,
facing the tongue) of the band.
[0006] Many types of attachments are provided with welding flanges that extend in mesial
and distal directions. The flanges facilitate welding the attachment to the band by
providing an additional surface for electrical and physical contact with electrodes
of the welder.
[0007] Past welding processes for manufacturing orthodontic attachment and band assemblies
have included an initial tack welding step wherein the attachment is received in a
recess of a fixture. The fixture including the recess is electrically connected to
one electrode of the welder and the other electrode is brought into contact with an
inner surface of the band. After completion of tack welding to temporarily affix the
attachment to the band, the assembly is removed from the tack welder and taken to
a finish welder for final welding.
[0008] Finish welding is often carried out by placing one electrode of the finish welder
in contact with an outer surface of the attachment flanges, while contacting the inner
surface of the band adjacent the attachment to the other electrode of the finish welder.
The finish weld process has often been carried out by hand. Commonly, the operator
grips the tack welded assembly and places the flanges of the attachment and the adjacent
area of the band between the electrodes of a higher current, finish spot welder. Oftentimes,
four spot welds are provided, two in each of the two flanges.
[0009] In the step of finish welding orthodontic attachments to bands, both electrodes typically
have identical cylindrical shapes of relatively small diameter. As current flows between
the electrodes during the welding process, a weld is obtained at the interface of
the band and the attachment along a path that represents the path of least electrical
resistance, which is typically the shortest path through the assembly between the
ends of the two electrodes. The small diameter of the cylindrical electrodes enables
the current to be directed toward a particular area where the weld is desired.
[0010] There is a continuing need in the art to improve the aesthetics of orthodontic assemblies.
Unfortunately, conventional welded assemblies are often characterized by a relatively
visible deformations on the surface of the welding flanges, which may detract from
the smooth appearance of remaining external surfaces of the assembly. If the deformations
are sufficiently large, the deformations may function as a site that retains small
food particles or bacteria or function as a site that may initiate corrosion.
[0011] In the past, it has also been known to weld a band to a bracket without flanges.
In the manufacture of such assemblies, a tack weld was utilized to initially fix the
bracket to the band, and a finish weld was later applied such that the substantial
majority of any weld deformations appeared on the inside of the band. However, such
practice has not been extended to brackets having flanges, because such brackets are
wider in a mesiodistal direction and the flanges provide better anchorage locations
for the finish welds.
[0012] The present invention is directed toward a method of welding an orthodontic attachment
to a band. The method includes the steps of placing the attachment in a holder, and
electrically connecting the attachment to a first electrode of an electric resistance
spot welder. The band is placed in a fixture in a certain orientation such that an
outer surface of the band is directly adjacent an inner surface of the attachment.
A second electrode is placed in contact with an inner surface of the band, and a current
is directed in a first instance along a path extending between the electrodes and
through the band and the attachment to provide a first spot weld. The second electrode
and the band are relatively moved in an arc while retaining the band in the certain
orientation relative to the attachment. A current is directed in a second instance
along a path extending between the electrodes and through the band and the attachment
after the aforementioned step of relatively moving the second electrode and the band
in order to provide a second spot weld that is spaced from the first spot weld in
an arc along the inner surface of the band.
[0013] The present invention also is directed toward an orthodontic assembly that comprises
a metallic band for encircling a tooth, wherein the band has an inner surface and
an outer surface. The assembly also includes a metallic orthodontic attachment that
is connected to the band, wherein the attachment has at least one welding flange with
an outer surface. The assembly additionally includes at least one spot weld between
each flange and the outer surface of the band, and the spot weld(s) interconnect the
attachment and the band with a strength sufficient for orthodontic treatment. The
outer surface of each welding flange is characterized by a lack of any spot weld deformation
having a volume that is greater than the volume of any deformation of the same spot
weld on the inner surface of the band.
[0014] The invention in its various embodiments is advantageous, in that the welded assembly
is aesthetic when viewed toward its external surfaces. The deformations are difficult
to see and not pronounced as is common with conventional welded assemblies. The lack
of sharp deformation edges provides comfort to the patient. Moreover, the step of
tack welding the attachment to the band as was common in prior art practice may be
avoided, so that alignment of the attachment to the band and finish welding of the
assembly may occur in a one-step operation.
[0015] Further details of the invention are defined in the features of the claims.
[0016] The invention will be described in detail in connection with the drawings, in which:
Fig. 1 is a side elevational view looking toward an outer, or buccolabial, surface
of an exemplary orthodontic assembly constructed in accordance with the invention;
Fig. 2 is a plan view of the assembly illustrated in Fig. 1;
Fig. 3 is an end elevational view looking toward a mesial side of the assembly illustrated
in Figs. 1 and 2;
Fig. 4 is a reduced front elevational view of an automated apparatus for manufacture
of the assembly shown in Figs. 1-3;
Fig. 5 is a reduced side elevational view of the apparatus depicted in Fig. 4;
Fig. 6 is an enlarged plan view of the apparatus illustrated in Figs. 4 and 5;
Fig. 7 is an enlarged view of a portion of the apparatus depicted in Fig. 6;
Fig. 8 is an enlarged front elevational view of a lower electrode assembly of the
apparatus shown in Figs. 4-7; and
Fig. 9 is a plan view of the lower electrode assembly illustrated in Fig. 8, but shown
with two electrode sections of the assembly in an orientation somewhat closer to each
other.
[0017] Figs. 1 and 3 illustrate for exemplary purposes an orthodontic assembly 20 constructed
in accordance with the principles of the present invention. The assembly includes
a metallic band 22 for encircling a tooth. The band 22 has a diameter and contour
to closely match the diameter and contour of the selected tooth. The band 22 has an
inner surface 24 facing the encircled tooth and an outer surface 26 facing away from
the tooth.
[0018] The assembly 20 also includes a metallic orthodontic attachment 28 that, in the example
shown in the drawings, is a single passage buccal tube particularly adapted for use
with the first molar teeth. The buccal tube attachment 28 includes a base 30 and a
pair of welding flanges 32 that extend away from the base 30 in opposite, mesial and
distal directions. Each welding flange 32 has an outer or buccolabial surface facing
away from the tooth, and an inner or lingual surface that is in contact with the outer
surface 26 of the band 22.
[0019] The attachment 28 further includes a body 34 surrounding the passage, and also a
hook 36. The base 30, the welding flanges 32, the body 34 and the hook 36 are integral
and made for example of stainless steel by a metal injection molding process, by a
casting process or by a machining process. The passage has a shape adapted to receive
an end of an orthodontic arch wire.
[0020] The buccal tube attachment 28 shown in Figs. 1-3 is only one example of a variety
of attachments that may be utilized with the assembly of the present invention. Other
examples of orthodontic attachments include brackets, cleats, buttons, hooks, eyelets
and other devices as may be deemed desirable by the practitioner. Bands for other
teeth (such as anterior, cuspid or bicuspid teeth) may also be used in place of the
molar band shown in the drawings.
[0021] The assembly 20 also includes at least one spot weld interconnecting the attachment
28 to the band 22. In Fig. 1, the numeral 38 illustrates the location of four spot
welds that are provided to securely interconnect the welding flanges 32 to the band
22. Each spot weld is located in an area between the inner surfaces of the welding
flanges 32 and the outer surface 26 of the band 22, and the welds together join the
attachment and the band 22 with a strength sufficient for orthodontic treatment so
that the attachment 28 normally does not detach from the band 22 as treatment progresses.
[0022] The location of spot welds are often highly visible in conventional welded orthodontic
assemblies because of deformation of the metal due to localized high temperatures
that are present in the vicinity of the joint as it is welded. The deformations typically
result in areas where the electrodes contact the metallic parts, and may be enhanced
due to localized arcing that occurred during welding in regions where portions of
the electrodes are slightly spaced from adjacent portions of the metal parts. The
spot weld itself is typically not visible, as it is located between the parts.
[0023] In accordance with the present invention, the outer, exposed surfaces of the welding
flanges 32 have only small, if any, deformations, and such deformations are difficult
to see under ordinary viewing conditions. The volume of the weld deformation adjacent
each spot weld location 38 is greater on the inner surface 24 of the band 22 than
the volume of any deformations on the outer surfaces of the welding flanges 32 adjacent
the same spot weld location 38.
[0024] The volume of the deformations is measured using microprobes that are guided across
surfaces adjacent the spot weld locations 38. The microprobes follow the contour of
the surfaces, and provide an indication of the volume of the deformation relative
to an average height of surfaces surrounding the deformation. Preferably, the microprobes
are connected to a programmable X-Y axis robotic arm that is programmed to move the
microprobe across the entire area of the deformation as well as adjacent surfaces
so that a volume measurement of the deformation can be accurately obtained.
[0025] Preferably, no weld deformations are visible on the outer surfaces of the welding
flanges when the attachment is viewed at a distance of 24 inches (70 cm) from the
naked eye under normal room lighting. More preferably, no deformations are visible
on the outer surfaces of the welding flanges when the attachment is viewed at a distance
of 12 (30.5 cm) inches from the naked eye under normal room lighting.
[0026] An automated welding apparatus 40 for welding the assembly 20 is illustrated in Figs.
4-9. The apparatus 40 includes a frame 42, an upright hollow housing 44 and a weld
head 46 ("Thin-line" brand weld head, from Unitek Equipment). An electrode holder
48 is clamped to a vertically movable shaft of the weld head 46 and has a lower split,
depending arm that releasably receives an L-shaped upper electrode 50.
[0027] The electrode holder 48 is connected by a conductive strap (not shown) to one terminal
of a power supply 52 ("Dual Pulse 125" stored energy resistance welding power supply;
from Unitek Equipment). The power supply 52 is shown schematically in Fig. 6. The
weld head 46 includes an adjustable pressure sensor electrically connected to the
power supply 52 for initiating the flow of current to the upper electrode 50. When
the shaft of the weld head 46 descends to a degree sufficient to contact the parts
to be welded with sufficient force to exceed a selected, preset pressure, the pressure
sensor triggers the power supply to direct one or more pulses of current to the upper
electrode 50 to provide a spot weld.
[0028] A carriage 54 of the apparatus 40 has two pair of bearing blocks 56 (Figs. 4 and
5), each pair of which slides on a respective rail 58 that is fixed to the frame 42.
A double acting pneumatic piston and cylinder assembly 60 (Fig. 5) is connected to
the carriage 54 and the frame 42, and is operable to slide the carriage 54 in a horizontal,
front-to-back or "Y" axis direction relative to the frame 42 when desired to either
a front or back position.
[0029] Solenoid operated air valves (not shown) are interposed in tubing leading to the
cylinder of the piston and cylinder assembly 60, and the air valves are electrically
connected to a programmable logic controller 62 (series no. SLC-500; Allen Bradley).
The controller 62 is shown schematically in Fig. 6 and is electrically connected to
the power supply 52. Front and back adjustable micrometer stops 64 (Fig. 5) are connected
to the frame 42 for limiting the front and back extent of the path of travel of the
carriage 54 relative to the frame 42.
[0030] A subframe 66 is carried by upstanding front and rear arms of the carriage 54. As
illustrated in Fig. 4, the front arm of the carriage 54 includes a curved track 68
that has a shape of a partial circle. A pair of rollers 70 that are connected to the
subframe 66 travel along a curved path guided by the track 68. An eccentric adjustment
72 (see Fig. 5) interconnects the rollers 70 and the subframe 66 to enable adjustment
as may be needed to ensure that each roller 70 bears upon the track 68 with equal
pressure.
[0031] The rear upstanding arm of the carriage 54 carries a bearing block that receives
a shaft 74. The shaft 74 is connected by intermeshed gears (not shown) to a stepmotor
76 (model S83-62-MO microstepping motor/drive system; Compumotor Division, Parker
Hannifin Corp.). Activation of the stepmotor 76 by a microstepping drive 77 (Fig.
6) connected to the controller 62 enables the subframe 66 to swing relative to the
carriage 54 in a partial arc about a horizontal axis. When the carriage 54 is moved
forwardly or rearwardly by the piston and cylinder assembly 60, the downstream gear
of the intermeshed gears moves forwardly relative to the upstream gear but remains
intermeshed with the latter so that the stepmotor 76 is operable to swing the subframe
66 regardless of whether the carriage 54 is in its rearward or forward position.
[0032] The stepmotor 76 is shown in Figs. 5 and 6 and is connected to an encoder 78 (model
no. E151000C865; from Dynapar). The encoder 78 is electrically connected to the microstepping
drive 77. The encoder 78 provides confirmation of the rotative position of the shaft
of the stepmotor 76 and hence of the subframe 66. A photosensor 80 (Fig. 5) is also
connected to the microstepping drive 77 and senses the arrival of a projecting member
connected to the subframe 66, in order to enable the microstepping drive 77 to determine
a "home" position during startup of the apparatus 40.
[0033] As illustrated in Fig. 6, a pair of additional photosensors 82 are provided and are
electrically connected to the microstepping drive 77. The photosensors 82 enable the
microstepping drive 77 to limit the rocking path of travel of the subframe 66 by sensing
the arrival of the same projecting member sensed by the photosensor 80 to determine
the home position.
[0034] A lower mounting plate 84 is fixed to the subframe 66. An upper surface of the lower
mounting plate 84 carries a linear bearing assembly 86 that, in turn, is connected
to an upper mounting plate 88. A micrometer adjustment mechanism 90, as shown in Figs.
6-7, is supported by the subframe 66 and is used to adjust the upper mounting plate
88 for selective, horizontal, front-to-back movement of the upper mounting plate 88
relative to the lower mounting plate 84 when desired.
[0035] An angulation plate 92 (not shown in Fig. 7) rests atop the upper mounting plate
88, and is rigidly connected to a pair of threaded vertical rods 94 (Fig. 7) that
pass through respective arcuate slots 96 of the upper mounting plate 88. A nut 98
is threaded onto each rod 94, and is connected to a lever (not shown).
[0036] The nuts 98 are located beneath the upper mounting plate 88. After the levers are
turned to loosen the nuts 98, the angulation plate 92 may be pivoted about a vertical
axis relative to the upper mounting plate 88. As shown in Fig. 6, one end of the angulation
plate 92 has a notch that is located above a set of indicia marks 100, so that the
user can determine the rotative position of the angulation plate 92 relative to the
upper mounting plate 88 before tightening the nuts 98 to fix the position of the plate
92.
[0037] The angulation plate 92 is shown in the drawings for exemplary purposes as aligned
in parallel fashion, or "0" angulation, relative to the upper mounting plate 88. Advantageously,
the angulation plate 92 enables the operator to easily adjust the angle, or "angulation",
of the attachment relative to the central axis of the band as may be prescribed by
the orthodontist.
[0038] A band holding fixture comprises a pair of band clamping mechanisms 102, 104 that
are movably connected to the angulation plate 92 by metal slides. A band diameter
adjustment knob 106 is connected to a threaded rod that passes through a threaded
wall of the band clamping mechanism 102. The threaded rod also bears against a wall
of the band clamping mechanism 104. Rotation of the knob 106 about a horizontal axis
moves the band clamping mechanism 102 in a horizontal direction, either away or toward
the band clamping mechanism 104. Spring pressure is applied to the assembly 102 to
keep the end of the rod in contact with the mechanism 104.
[0039] A micrometer band position adjustment knob 108 is mounted on the angulation plate
92, and is coupled to the band clamping mechanism 104. Adjustment of the knob 108
simultaneously moves both of the band clamping mechanisms 102, 104 in a horizontal
direction either away or toward the knob 108 relative to the angulation plate 92.
[0040] Each of the band clamping mechanisms 102, 104 includes a stationary stop 110 having
a shoulder. The shoulders of the stops 110 receive opposite sides of a band, such
as the band 22.
[0041] Each band clamping mechanism 102, 104 includes a clamping arm 112 that is movable
in an arc about a pivot 114. For illustrative purposes, the clamping arm 112 of the
band clamping mechanism 102 is shown in Fig. 7 in an open position to receive a band,
while the clamping arm 112 of the band clamping mechanism 104 is shown in a closed
position to clamp a band between a horizontal cylindrical pin 115 of the arm 112 and
the shoulder of the stop 110. In practice, however, the clamping arms 112 of both
mechanisms 102, 104 open and close simultaneously.
[0042] A single acting pneumatic piston and cylinder assembly 116 is mounted on each band
clamping mechanism 102, 104 and has a piston rod that, when extended, moves the clamping
arm 112 from an open position to a closed position. Each piston and cylinder assembly
116 is connected to a source of pressurized air by tubing, and a solenoid operated
air valve interposed in the tubing is connected to a foot pedal switch for opening
the clamping arms 112 when desired.
[0043] A horizontally extending shaft 118 extends forwardly from each clamping arm 112 and
through a slot in the front of a housing for each band clamping mechanism 102, 104.
A coiled compression spring 120 surrounds each shaft 118, and urges the respective
clamping arm 112 toward an open position.
[0044] A lower electrode assembly 122 is illustrated in Figs. 5, 8 and 9, and includes two
movable, clamping electrode sections 124 that are each mounted on a linear bearing
assembly 126 connected to the subframe 66. A conductive strap (not shown) electrically
connects the assembly 122 to the power supply 52. A cylinder of a double acting pneumatic
piston and cylinder assembly 128 is fixed to one electrode section 124, and a piston
rod of the assembly 128 is coupled to the other electrode section 124.
[0045] The piston and cylinder assembly 128 moves the lower electrode sections 124 either
toward or away from each other as desired. As shown in Fig. 9, a rack and gear mechanism
129 interconnects the electrode sections 124 to assure that both sections 124 move
equal distances simultaneously in a horizontal, x-axis direction. The piston and cylinder
assembly 128 is connected by tubing to a source of pressurized air, and solenoid operated
air valves interposed in the tubing are connected to a second foot pedal switch.
[0046] A micrometer stop gauge 130 (Fig. 9) is mounted on the subframe 66 for limiting movement
of the electrode sections 124 away from each other by the piston and cylinder assembly
128. A micrometer stop gauge 132 is also mounted on the subframe 66 to limit the distance
between the electrode sections 124 when the latter are moved toward each other by
the piston and cylinder assembly 128.
[0047] Each electrode section 124 includes a horizontal leg 134 and a vertical leg 136 removably
received in a channel of the horizontal leg 134. Each vertical leg 136 includes a
recess (not shown) at its upper end to receive either the mesial portion or the distal
portion of the attachment to be welded to the band. The vertical legs 136 of the electrode
sections 124 function as a holder for releasably receiving the attachment. When the
electrode sections 124 are moved toward each other, the micrometer stop gauge 132
insures that undue pressure is not exerted on the attachment to deform the latter
or cause the latter to snap out of the recesses of the vertical electrode section
legs.
[0048] Optionally, both of the vertical legs 136 may be removed and replaced with a single
vertical member having spaced apart legs for reception in the channels of the horizontal
electrode section legs. Such single members are sometimes preferred for use with certain
attachments such as buttons, when a movable, clamping-type lower electrode assembly
is not desired.
[0049] Finally, an air nozzle 138 (Figs. 5 and 7; not shown in Fig. 6) is connected to the
frame 42, and is coupled by tubing to a source of pressurized air. A solenoid air
valve is interposed in the tubing leading to the air nozzle 138 and is also electrically
connected to the controller 62 for initiating a blast of air toward the welding site
directly adjacent the upper electrode 50. The blast of air is sufficient to blow away
slag or other debris away from the welding site.
[0050] In use, the operator depresses the foot switch (not shown) connected to the cylinder
assembly 128 to extend the latter in a direction such that the lower electrode sections
124 are moved away from each other to allow the attachment to be placed onto the electrode
legs 136. Next, an orthodontic attachment such as the buccal tube attachment 28 is
placed in the recesses of the lower electrode section legs 136 in an orientation wherein
the outer, or buccolabial surfaces of the attachment are facing downwardly and in
contact with upwardly facing surfaces of the electrode section legs 136. Preferably,
the recesses of the electrode section legs 136 are complemental in configuration to
the adjacent surfaces of the attachment, so that mating contact between the attachment
and the electrode section legs 136 is achieved.
[0051] When the foot switch is released, the cylinder 128 retracts and applies pressure
through the electrode legs 136 to clamp the attachment. Next, the operator depresses
the second foot switch which causes air to be released from cylinders 116 in order
to open the arms 112. An orthodontic band such as band 22 is placed in the space between
the shoulders of the stops 110 and the pins 115 connected to the arms 112. The operator
then releases the second foot switch which causes air to be directed to the piston
and cylinder assemblies 116 in order to extend their respective piston rods. As the
piston rods extend, the arms 112 simultaneously swing about pivots 114 to cause the
band to be clamped between the pins 115 and the stops 110.
[0052] The controller 62 and the microstepping drive 77 then begin a program sequence to
provide spot welds for the assembly 20 in automated fashion. As one example, the stepmotor
76 may first be actuated to swing the subframe 66 in an arc to a position wherein
a mesial flange of the attachment is directly between the upper electrode 50 and the
lower electrode assembly legs 136. The controller 62 then activates the welding power
supply 52 which directs current between the upper electrode 50 and the lower electrode
assembly 122 and resistance weld the inner or lingual surface of the mesial flange
of the attachment to the outer or buccolabial surface of the band.
[0053] The current may be supplied in each weld position in one or more pulses. Preferably,
a first pulse of current at relatively low power is provided to help break surface
oxides and prepare the surfaces for welding. A second pulse immediately follows at
greater power to provide a strong finish weld.
[0054] In practice, the current flows in a direction from the upper electrode 50 to the
lower electrode assembly 122, although reverse current flow is also possible. Importantly,
the lower electrode assembly 122 has a larger area of surface in contact with the
attachment than the area of contact between the upper electrode 50 and the inner surface
of the band. As a consequence, a larger deformation, if any, of the metallic surfaces
will occur on the inside of the band rather than on the outer surface of the attachment
where such deformation would be more visible.
[0055] Next, the controller 62 actuates the solenoid valves connected to the piston and
cylinder assembly 60 so that the piston rod of the latter retracts and moves the carriage
54 rearwardly relative to the frame 42 until the rear end of the piston rod is in
contact with the rear stop 64. At that time, the upper electrode 50 and the lower
electrode assembly 122 are directly adjacent another location on the assembly 20 that
is adjacent the mesial flange, but spaced in a laterally offset, gingival direction
relative to the location of the first spot weld. The controller 62 then activates
the weld head 46 and the power supply 52 causes a second weld to be provided between
the mesial flange and the band.
[0056] Next, the stepmotor 76 is actuated by the microstepping drive 77 to swing the subframe
66 in an arc until the distal welding flange of the attachment is directly between
the upper electrode 50 and the lower electrode assembly 122. At that time, the controller
62 again activates the weld head 46 and the power supply 52 causes a third spot weld
to be applied.
[0057] Next, the controller 62 activates the solenoid air valve connected to the piston
and cylinder assembly 60 in order to cause the piston rod of the latter to extend
and move the carriage 54 forwardly relative to the frame 42 until the carriage 54
is in contact with the front stop 64. The controller 62 again activates the weld head
and the power supply 52 causes a fourth spot weld to be applied at a location on the
distal welding flange oriented occlusally from the third spot weld.
[0058] Subsequently, the microstepping drive 77 activates the stepmotor 76 to swing the
subframe 66 back to a central, preferably horizontal position. The operator then depresses
both foot switches, causing the flow of pressurized air to the piston and cylinder
assemblies 116 to be interrupted whereupon the clamping arms 112 pivot to an open
position by means of the springs 120. Air is also directed to the piston and cylinder
assembly 128 to move the lower electrode sections 124 away from each other. The welded
attachment and band assembly is then removed from the apparatus 40.
[0059] Other welding sequences are also possible. Moreover, the apparatus 40 may be used
with flangeless brackets and buccal tubes, as well as with a variety of other orthodontic
attachments. In each instance, however, it is preferable that the recess of the lower
electrode assembly legs 136 for receiving the attachment is complemental in shape
to the configuration of the attachment.
[0060] As another alternative, the band and attachment may be received in stationary holders,
and the welding electrodes may be mounted on a horizontally movable frame that is
also swingable in an arc. The frame is movable in response to a preprogrammed series
of instructions to bring the electrodes to the four weld locations described above.
[0061] Those skilled in the art can appreciate that many other variations, additions and
modifications may be made to the presently preferred embodiments of our invention
that are described above in detail. Accordingly, the invention should not be deemed
limited to the detailed embodiments described above, but only by a fair scope of the
claims that follow along with their equivalents.