Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 703 299 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 27.03.1996 Patentblatt 1996/13

(21) Anmeldenummer: 95114322.1

(22) Anmeldetag: 12.09.1995

(51) Int. Cl.⁶: **C21D** 9/00

(84) Benannte Vertragsstaaten:
AT CH DE FR LI

(30) Priorität: 21.09.1994 DE 4433720

(71) Anmelder: Linde Aktiengesellschaft D-65189 Wiesbaden (DE)

(72) Erfinder: Hafner, Herbert, Ing. A-4600 Wels (AT)

(74) Vertreter: Kasseckert, Rainer Linde Aktiengesellschaft, Zentrale Patentabteilung D-82049 Höllriegelskreuth (DE)

(54) Verfahren und Vorrichtung zum Härten von Skistahlkanten

(57)Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Härten von Skistahlkanten, wobei die Skistahlkante aufgeheizt und anschließend abgekühlt wird. Um eine gezielte Härtung der Skistahlkante ohne wesentliche Beeinflussung des sonstigen Skimaterials auf wirtschaftliche Weise zu erreichen, wird vorgeschlagen, die Skistahlkante in auf dem Ski montiertem Zustand nacheinander mittels eines direkt auf die Skistahlkante gerichteten Energiestrahls aufzuheizen und mittels eines ebenfalls direkt auf die Skistahlkante gerichteten Kühlstrahls abzukühlen. Als Energiestrahl kommt insbesondere ein in einem Plasmabrenner erzeugter Plasmastrahl in Frage. Der Kühlstrahl enthält ein tiefkalt verflüssigtes Gas in flüssiger und/oder gasförmiger Form und/oder in Form von Schnee.

20

25

35

40

50

Beschreibung

Die Erfindung betrifft ein Verfahren zum Härten von Skistahlkanten, wobei die Skistahlkante aufgeheizt und anschließend abgekühlt wird, sowie eine Vorrichtung zur 5 Durchführung des Verfahrens.

Es ist bekannt, Skistahlkanten durch Wärmebehandlung zu härten. Hierzu werden die Skistahlkanten bis zu einer bestimmten Härtungstemperatur aufgeheizt und anschließend abgekühlt. Zum Aufheizen der Skistahlkante wird die Skistahlkante beispielsweise vor der Montage auf dem Ski in einen Ofen eingegeben und nach Erreichen der gewünschten Härtungstemperatur wieder aus dem Ofen herausgenommen und mit Wasser abgekühlt. Diese Methode ist jedoch umständlich und wirtschafflich unbefriedigend.

Eine andere Möglichkeit besteht darin, die Skistahlkante in montiertem Zustand beispielsweise mittels einer heißen Flamme aufzuheizen und anschließend den Ski über einen wassergekühlten Kupfergleitschuh zu bewegen, um die Skistahlkante wieder abzukühlen. Bei dieser Methode ist eine Aufheizung des gesamten Skis unvermeidlich, so daß die bei der Herstellung des Skis in den Ski eingebrachte Vorspannung zumindest teilweise wieder verloren geht. Außerdem kann das Skimaterial durch diese Behandlung in Mitleidenschaff gezogen werden. Darüberhinaus ist die gewünschte Härte der Skistahlkante nicht immer erreichbar.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur Härtung von Skistahlkanten sowie eine Vorrichtung zur Durchführung des Verfahrens zur Verfügung zu stellen, womit die Skistahlkanten auf wirtschaftliche Weise gezielt und ohne wesentliche Beeinflussung des sonstigen Skimaterials gehärtet werden können.

Diese Aufgabe wird erfindungsgemäß verfahrensseitig dadurch gelöst, daß die Skistahlkante in auf dem Ski montiertem Zustand nacheinander mittels eines direkt auf die Skistahlkante gerichteten Energiestrahls aufgeheizt und mittels eines ebenfalls direkt auf die Skistahlkante gerichteten Kühlstrahls abgekühlt wird, wobei der Kühlstrahl ein tiefkalt verflüssigtes Gas in flüssiger und/oder gasförmiger Form und/oder in Form von Schnee enthält.

Dabei ist unter einem Energiestrahl jede Art von richtungsgebundener Energiezufuhr zu verstehen, die in der Skistahlkante zu einer Erwärmung führt. Insbesondere fallen darunter gerichtete Mikrowellenfelder, Laserstrahlen und Plasmastrahlen.

Mit der erfindungsgemäßen Lösung wird eine gezielte Aufheizung und Abkühlung der Skistahlkante erreicht, wobei das an die Skistahlkante anschließende Skimaterial nicht beeinflußt wird. Eine unerwünschte Veränderung des Skimaterials kann somit ausgeschlossen werden. Außerdem wird eine zu starke Erwärmung und Abkühlung des Skis vermieden, so daß die einmal in den Ski eingebrachte Vorspannung erhalten bleibt. Durch die gerichtete Wärmezufuhr und Wärmeabfuhr geht auch weniger Energie ungenutzt verloren, wodurch

die Energieeffizienz und damit die Wirtschaftlichkeit des Verfahrens sehr viel besser ist als bei den bisher angewandten Methoden. Aufgrund des sehr effektiven Abtransports der entstehenden Wärmemenge durch den aus tiefkalt verflüssigtem Gas bestehenden Kühlstrahl wird auch eine raschere Abkühlgeschwindigkeit als bisher erreicht, sodaß eine höhere Härte der Skistahlkante erzielt wird.

In einer besonders bevorzugten Ausführungsform der Erfindung werden der Ski einerseits und der Energiestrahl sowie der Kühlstrahl andererseits entlang der Längsachse des Skis relativ zueinander bewegt, sodaß jeder Längsabschnitt der Skistahlkante zuerst vom Energiestrahl und danach vom Kühlstrahl erfaßt wird. Zweckmäßigerweise wird der Ski an dem Energiestrahl und dem Kühlstrahl vorbeibewegt. Auf diese Weise wird eine fließbandartige Behandlung der Skier ermöglicht, wodurch auch größere Mengen an Skiern auf wirtschaftliche Weise einer Härtung der Skistahlkante unterzogen werden können.

Vorzugsweise wird als Energiestrahl ein in einem Plasmabrenner erzeugter Plasmastrahl verwendet. Plasmastrahlen können durch Ionisation von Argon oder Stickstoff bzw. von Mischgasen hergestellt werden. Dabei kann die Ionisation durch eine elektrische Entladung oder durch Anregung mit einem hochfrequenten elektromagnetischen Feld erreicht werden. Durch eine geeignete Form der Elektroden oder eine besondere Ausbildung der Austrittsdüse des Plasmabrenners kann ein schmaler Plasmastrahl produziert werden. Mittels eines solchen Plasmastrahls kann gezielt Wärmeenergie in die Skistahlkante eingebracht werden, ohne daß das umgebende Skimaterial beeinträchtigt wird.

Dabei wird der Plasmastrahl zweckmäßigerweise so eingestellt, daß nur die Skistahlkante, nicht aber das angrenzende Skimaterial vom Plasmastrahl erfaßt wird. Hierzu werden der Durchmesser des Plasmastrahls bei der Austrittsdüse des Plasmabrenners und der Abstand der Austrittsdüse von der Skistahlkante so aufeinander abgestimmt, daß der Plasmastrahl höchstens die Breite der Skistahlkante aodeckt.

Zum Abkühlen der Skistahlkante wird bevorzugt ein aus einem Inertgas oder einem Inertgasgemisch bestehender Kühlstrahl verwendet. Als Inertgas kommen insbesondere flüssiger Stickstoff oder flüssiges Kohlendioxid und die daraus entstehenden Kaltgase in Frage. Aufgrund der damit verbundenen Schutzgaswirkung wird eine unerwünschte Oxidation der Skistahlkante zuverlässig verhindert.

Als besonders vorteilhaft ist die Verwendung eines Gemisches aus Kaltgas und Schneepartikeln anzusehen. Mit einem aus einem solchen Gemisch bestehenden Kühlstrahl ist eine besonders effektive Kühlung der Skistahlkante möglich.

Eine Verwendung des vorgeschlagenen Kühlstrahls aus Gas und Schnee ist mit einer ganzen Reihe von Vorteilen verbunden. Zum einen ist der besagte Kühlstrahl auf relativ einfache Weise durch geschickte Entspannung konventionell in Gasflaschen gespeicherten Koh25

40

lendioxids erzeugbar. Zum anderen wird durch das gerichtet zugeführte, kalte Gas-/Schneegemisch eine besonders intensive Kühlung des beaufschlagten Bereichs bewirkt, wobei gerade auch auf den Schneepartikeln im Kühlstrahl ein wesentlicher Teil des Kühleffekts beruht. Die Schneepartikel haften nämlich an der Skistahlkante an und verdampfen unter Wärmeaufnahme. Zudem handelt es sich bei dieser Kühlmethode um eine trockene Kühlung. Dies bedeutet, daß im Anschluß an die Kühlung keinerlei Kühlmittelrückstände auf der Skistahlkante verbleiben, da das Kohlendioxid bei normalen Umgebungstemperaturen den gasförmigen Zustand annimmt.

Besonders einfach kann der Kühlstrahl aus unter entsprechendem Druck stehendem, gasförmigen oder flüssigem Kohlendioxid durch Entspannung über eine Standarddüse mit freiliegender rundlicher Öffnung erzeugt werden.

Eine besonders vorteilhafte Variante der Kühlstrahlerzeugung besteht jedoch darin, den Kühlstrahl aus vorzugsweise gasförmigem, unter einem Überdruck stehenden Kohlendioxid in der Art zu gewinnen, daß das Kohlendioxid über eine schlitzartige Öffnung zunächst in ein um diese schlitzartige Öffnung ausgebildetes, weitgehend gegen die Umgebung abgeschlossenes und eine Austrittsöffnung aufweisendes Expansionsvolumen expandiert wird und über diese Austrittsöffnung der aus einem Gemisch aus Kaltgas und Schneepartikeln bestehende Kühlstrahl abgeführt wird.

Die Schlitzdüse mit ihrer schmalen Querschnittsöffnung erzeugt einen Expansionsgasstrahl mit wesentlich vergrößerter Oberfläche. Diese vergrößerte Oberfläche resultiert in einer verstärkten Wechselwirkung des Expansionsgasstrahls mit seiner Umgebung, die von einem Expansionsvolumen gebildet wird, in dem sich fast ausschließlich bereits expandiertes, kaltes Kohlendioxidgas befindet. Wärmere Umgebungsluft besitzt also keinen unmittelbaren Zutritt zum expandierten Kohlendioxid. Daraus ergibt sich, daß zunächst nur wenig Wärme aus der Umgebung dem Kohlendioxid zufließen kann, sodaß im Expansionsvolumen aufgrund des dort herrschenden Wärmedefizits eine verstärkte Bildung von Kohlendioxidschneepartikeln stattfindet. Im Vergleich zu einer unabgeschirmten Expansion wird also ein deutlich erhöhter Anteil an Schneepartikeln erzeugt, welche den erwünschten starken Kühleffekt bewirken. Die im Expansionsvolumen entstandene Gas-/Schneemischung wird über den weiteren Verlauf des Expansionsvolumens zu einem Kühlstrahl ausgebildet und durch die Austrittsöffnung auf die Skistahlkante gelenkt.

Zweckmäßigerweise werden sowohl der Energiestrahl als auch der Kühlstrahl auf die vom Ski abgewandte Kante der Skistahlkante gerichtet und der Durchmesser des Energiestrahls und des Kühlstrahls so eingestellt, daß der Ski selbst nicht vom Energiestrahl und vom Kühlstrahl erfaßt wird. Dadurch wird sichergestellt, daß sich die erzeugte Temperaturänderung im wesentlichen auf die äußere Kante der Skistahlkante beschränkt, während der Ski selbst nicht in Mitleiden-

schaft gezogen wird. Es kommt nämlich darauf an, daß gerade die äußere Skistahlkante die notwendige Härte aufweist, um zu gewährleisten, daß der Ski über mehrere Jahre die gewünschte Griffigkeit auch auf vereister Skipiste behält.

Die Erfindung betrifft ferner eine Vorrichtung zur Durchführung des Verfahrens mit einer Auflage für den Ski in Form von abgewinkelten Ebenen, die die am Ski montierten Skistahlkanten an den freiliegenden Außenflächen umgeben.

Diese Vorrichtung ist erfindungsgemäß dadurch gekennzeichnet, daß in der Auflage Durchführungen für den Energiestrahl und den Kühlstrahl vorgesehen sind, die in Richtung der Winkelhalbierenden des durch die abgewinkelten Ebenen gebildeten Winkels zeigen.

Zweckmäßigerweise wird als Energiestrahl ein Plasmastrahl eingesetzt. Zu diesem Zweck ist im Bereich der Durchführung für den Energiestrahl ein Plasmabrenner angeordnet, dessen Austrittsöffnung für den Plasmastrahl in Richtung der Durchführung zeigt und auf die vom Ski abgewandte Kante der Skistahlkante gerichtet ist.

Als Kühlstrahl wird bevorzugt ein Gemisch aus einem Kohlendioxid-Kaltgas und Kohlendioxidschneepartikeln verwendet. Hierzu ist im Bereich der Durchführung für den Kühlstrahl eine Expansionsdüse für die Erzeugung eines Kaltgas und Schneepartikel aufweisenden Kühlstrahles angeordnet. Die Expansionsdüse besteht aus einem an eine Kohlendioxidquelle anschließbaren Innenrohr mit abschließender Schlitzdüse sowie einem das Innenrohr am Schlitzdüsenende umhüllenden, darüber hinaus ragenden und ein Expansionsvolumen bildenden Außenrohr, das an seinem der Schlitzdüse abgewandten Ende eine Austrittsöffnung für den Kühlstrahl besitzt. Diese Austrittsöffnung für den Kühlstrahl zeigt in Richtung der Durchführung für den Kühlstrahl und ist auf die vom Ski abgewandte Kante der Skistahlkante gerichtet.

Im folgenden soll die Erfindung anhand eines in den Figuren schematisch dargestellten Ausführungsbeispiel näher erläutert werden.

In **Figur 1** sind spiegelsymmetrisch angeordnete Kupfer-Gleitschuhe in der Draufsicht gezeigt.

Die **Figuren 2 und 3** zeigen Schnitte durch die in Figur 1 dargestellten Kupfer-Gleitschuhe in den Ebenen A-A und B-B.

Figur 4 zeigt eine Expansionsdüse zur Erzeugung des Kühlstrahls im Schnitt.

In **Figur 5** ist ein Schnitt durch die in Figur 4 gezeigte Expansionsdüse im der Ebene S-S dargestellt.

Gleiche Vorrichtungsteile sind in den Figuren mit denselben Bezugsziffern bezeichnet.

Der Kupfer-Gleitschuh 1 in den **Figuren 1,2 und 3** besteht aus rechtwinklig abgewinkelten Kupfer-Blechen. Der zu bearbeitende Ski wird in Pfeilrichtung 2 parallel zur Längsachse des Kupfer-Gleitschuhs 1 so zwischen die beiden spiegelsymmetrisch angeordneten Kupfer-Gleitschuhe 1 eingeführt, daß die Skistahlkanten auf den liegenden Schenkeln der Kupfer-Gleitschuhe 1 aufliegen

10

25

30

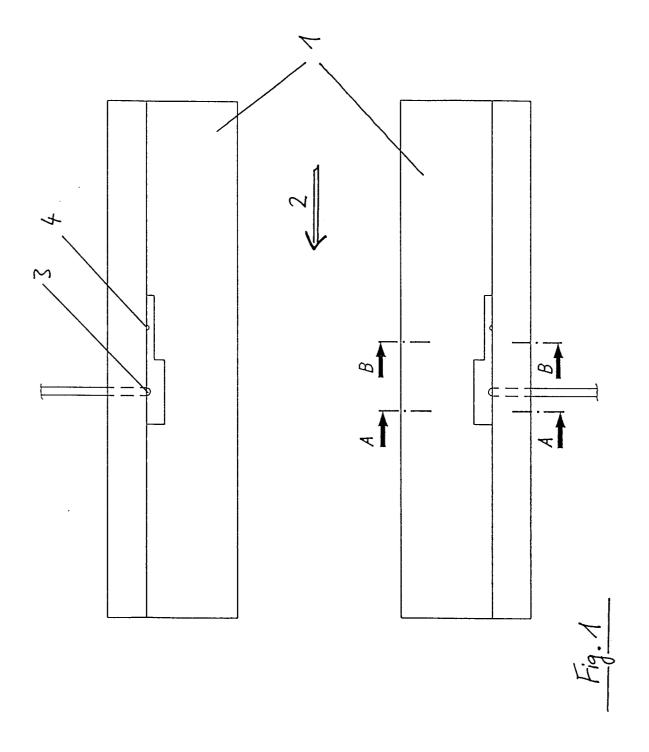
35

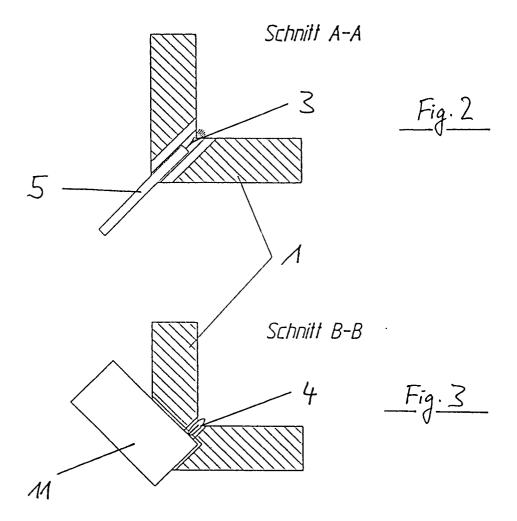
45

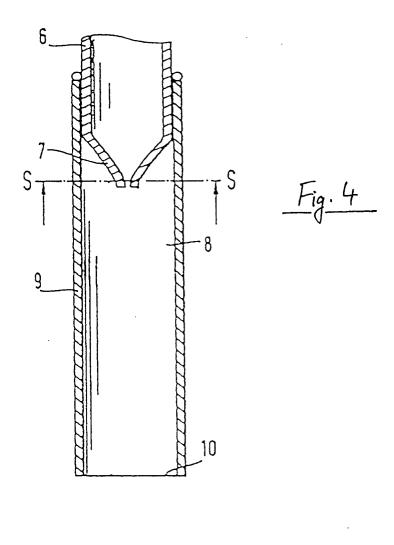
und seitlich von den stehenden Schenkeln der Kupfer-Gleitschuhe 1 geführt werden.

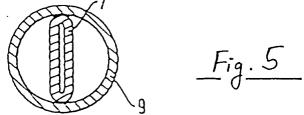
In dem Kupfer-Gleitschuh 1 sind Durchführungen 3 und 4 für den Kühlstrahl und den Plasmastrahl angeordnet. Jeder Längsabschnitt der Skistahlkanten passiert 5 mit einer Zeitverzögerung zuerst den Plasmastrahl und dann den Kühlstrahl.

Der Kühlstrahl wird mittels einer Kohlendioxid-Expansionsdüse erzeugt. Hierfür ist im Bereich der Durchführung 3 für den Kühlstrahl eine Expansionsdüse 5 für die Erzeugung eines Kaltgas und Schneepartikel aufweisenden Kühlstrahls angeordnet, die gemäß den **Figuren 4 und 5** aus einem an eine Kohlendioxidquelle anschließbaren Innenrohr 6 mit abschließender Schlitzdüse 7 sowie einem das Innenrohr 6 am Schlitzdüsenende umhüllenden, darüber hinaus ragenden und ein Expansionsvolumen bildenden Außenrohr 9, das an seinem der Schlitzdüse 7 abgewandten Ende eine Austrittsöffnung 10 für den Kühlstrahl besitzt, besteht. Die Austrittsöffnung 10 für den Kühlstrahl zeigt in Richtung der Durchführung 3 für den Kühlstrahl und ist auf die vom Ski abgewandte Kante der Skistahlkante gerichtet.


Der Plasmastrahl wird mittels eines Plasmabrenners erzeugt. Zu diesem Zweck ist im Bereich der Durchführung 4 für den Energiestrahl ein Plasmabrenner 11 angeordnet, dessen Austrittsöffnung für den Plasmastrahl in Richtung der Durchführung 4 zeigt und auf die vom Ski abgewandte Kante der Skistahlkante gerichtet ist.


Patentansprüche


- 1. Verfahren zum Härten von Skistahlkanten, wobei die Skistahlkante aufgeheizt und anschließend abgekühlt wird, dadurch gekennzeichnet, daß die Skistahlkante in auf dem Ski montiertem Zustand nacheinander mittels eines direkt auf die Skistahlkante gerichteten Energiestrahls aufgeheizt und mittels eines ebenfalls direkt auf die Skistahlkante gerichteten Kühlstrahls abgekühlt wird, wobei der Kühlstrahl ein tiefkalt verflüssigtes Gas in flüssiger und/oder gasförmiger Form und/oder in Form von Schnee enthält.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Ski einerseits und der Energiestrahl sowie der Kühlstrahl andererseits entlang der Längsachse des Skis relativ zueinander bewegt werden, so daß jeder Längsabschnitt der Skistahlkante zuerst vom Energiestrahl und dann vom Kühlstrahl erfaßt wird.
- 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß als Energiestrahl ein in einem Plasmabrenner erzeugter Plasmastrahl verwendet wird.
- Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Kühlstrahl ein


Gemisch aus Kaltgas und Schneepartikeln eingesetzt wird.

- 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß der Kühlstrahl aus vorzugsweise gasförmiunter einem Überdruck stehenden Kohlendioxid gewonnen wird und zwar derart, daß das Kohlendioxid über eine schlitzartige Öffnung zunächst in ein um diese schlitzartige Öffnung ausgebildetes, weitgehend gegen die Umgebung abgeschlossenes und eine Austrittsöffnung aufweisendes Expansionsvolumen expandiert wird und über diese Austrittsöffnung der aus einem Gemisch aus Kaltgas und Schneepartikeln bestehende Kühlstrahl abgeführt wird.
- 6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß sowohl der Energiestrahl als auch der Kühlstrahl auf die vom Ski abgewandte Kante der Skistahlkante gerichtet werden und die Durchmesser des Energiestrahls und des Kühlstrahls so eingestellt werden, daß der Ski selbst nicht vom Energiestrahl und Kühlstrahl erfaßt wird.
- 7. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 6 mit einer Auflage für den Ski in Form von abgewinkelten Ebenen, die die am Ski montierten Skistahlkanten an den freiliegenden Außenflächen umgeben, dadurch gekennzeichnet, daß in der Auflage Durchführungen für den Energiestrahl und den Kühlstrahl vorgesehen sind, die in Richtung der Winkelhalbierenden des durch die abgewinkelten Ebenen gebildeten Winkels zeigen.
- 8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß im Bereich der Durchführung für den Energiestrahl ein Plasmabrenner angeordnet ist, dessen Austrittsöffnung für den Plasmastrahl in Richtung der Durchführung zeigt und auf die vom Ski abgewandte Kante der Skistahlkante gerichtet ist.
- Vorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß im Bereich der Durchführung für den Kühlstrahl eine Expansionsdüse für die Erzeugung eines Kaltgas und Schneepartikel aufweisenden Kühlstrahles angeordnet ist, die aus einem an eine Kohlendioxidquelle anschließbaren Innenrohr mit abschließender Schlitzdüse sowie einem das Innenrohr am Schlitzdüsenende umhüllenden, darüber hinaus ragenden und ein Expansionsvolumen bildenden Außenrohr, das an seinem der Schlitzdüse abgewandten Ende eine Austrittsöffnung für den Kühlstrahl besitzt, besteht, und daß diese Austrittsöffnung für den Kühlstrahl in Richtung der Durchführung für den Kühlstrahl zeigt und auf die vom Ski abgewandte Kante der Skistahlkante gerichtet ist.

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeidung EP 95 11 4322

EINSCHLÄGIGE DOKUMENTE				
Kategorie	Kennzeichnung des Dokuments n der maßgeblichen		Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.Cl.6)
X	DE-A-40 00 744 (TRUMPF * Anspruch 1 *	GMBH & CO)	1	C21D9/00
A	DE-A-26 27 791 (FA. PA PEDDINGHAUS) * Ansprüche 1,6 *	NUL FERD.	1,4	
A	DE-A-22 54 780 (PPG IN * Ansprüche 1-5 *	NDUSTRIES)	1,4	
A	DE-A-39 14 573 (LINDE) * Ansprüche 1,3 *		1,4	
A	DE-C-697 995 (FA. PAUL * Abbildung 1 *	FERD. PEDDINGHAUS)	2	
A	WO-A-91 01386 (A. SCHU * Anspruch 1 *	JLER ET AL.)	3	
A	DE-A-19 41 660 (GEBR. * Anspruch 3 *	BÖHLER & CO.)	1	RECHERCHIERTE SACHGEBIETE (Int.Cl.6)
				C21D
Der v	orliegende Recherchenbericht wurde fü			
Recherchenort		Abschlußdatum der Recherche	Pritier	
BERLIN		27.0ktober 1999	Su1	tor, W

EPO FORM 1503 03.82 (PO4C03)

- X: von besonderer Bedeutung allein betrachtet
 Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie
 A: technologischer Hintergrund
 O: nichtschriftliche Offenbarung
 P: Zwischenliteratur

- nach dem Anmeldedatum veröffentlicht worden ist D: in der Anmeldung angeführtes Dokument L: aus andern Gründen angeführtes Dokument
- & : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument