EP 0 703 531 A1

Europdéisches Patentamt

(19) European Patent Office

)

Office européen des brevets

(12)

(43) Date of publication:
27.03.1996 Bulletin 1996/13

(11) EP 0 703 531 A1

EUROPEAN PATENT APPLICATION

(51) Int. C.5: GOGF 9/44

(21) Application number: 95306298.1
(22) Date of filing: 08.09.1995
(84) Designated Contracting States: « Justice, William D., Jr.
ATBECHDE DKES FRGB IEIT LI NL SE Houston, Texas 77077 (US)
(30) Priority: 08.09.1994 US 303173 (74) Representative: Brunner, Michael John et al
GILL JENNINGS & EVERY
(71) Applicant: Compaq Computer Corporation Broadgate House
Houston, Texas 77070-2698 (US) 7 Eldon Street
London EC2M 7LH (GB)
(72) Inventors:

 Stupek, Richard A., Jr.
Houston, Texas 77064 (US)
Jones, Curtis R.

Cypress, Texas 77429 (US)
- Shaffer, David S.

Cypress, Texas 77429 (US)
Davis, Steve

Houston, Texas 77070 (US)

Remarks:

A request for correction of fig.5D has been filed
pursuant to Rule 88 EPC.("1- SYSTEM ROM VER
1,3" should be "...VER 1,0"). A decision on the
request will be taken during the proceedings before
the Examining Division (Guidelines for Examination
in the EPQ, A-V, 3.).

(54)

(57) A method for use in upgrading a resource of a
computer from an existing version of the resource to a
later version of the resource. The method includes the
steps of (a) digitally storing upgrade information which
identifies the later version and describes features of the
later version relative to one or more earlier versions of
the resource, (b) digitally storing in the computer infor-
mation identifying the existing version, by computer,
automatically determining which of the earlier versions

Software updating method

REBOURCE UPahaes | &
[raoxases Y
7 | |

UPGRADE
OBJECTS |1 -8

UPGRADE
DATABASE

is the existing version, and (c) based on the results of the
comparing step, automatically determining, or displaying
to a user at least some of the upgrade information to aid
the user in determining, whether to perform an upgrade.
The upgrade information may be stored on a portable
medium along with copies off the resources and the
upgrade information may include instructions, in accord-
ance with a predefined common syntax, for installing
each of the resources.

| | 1 _i | [19
] UPSRADE | upanane [UPGRADE L STAGING
| 10 ADVISOR p INSTALLER T AREA
| | = |
| 17 | |
I S N, i 5 21
| . | or—— ”\" il
| 13| senvem DATA | || nuatuens semen | |
. ORMATION
| - DATABASE 15 RETRIEVER | | mlsag) MRgeﬁTEH |
SERVER MANAGER 2
e i — — | SERVER l
NETW
| 1 {] Ao ||
FIG.1 | (TARGET) | |
) |

Printed by Rank Xerox (UK) Business Services

29.13/3.4

10

15

20

25

30

35

40

45

50

55

EP 0 703 531 A1

Description

This invention relates to automatic computer upgrading.

The user of a computer system (e.g., a stand-alone PC or a network) is usually concerned with maintaining maximum
utility and efficiency of system resources while at the same time minimizing the cost, in time, money and frustration, of
maintaining the system. System resources, e.g., system firmware, software applications, operating systems (OS), OS
drivers and system partition utilities, are frequently upgraded by the manufacturer. Therefore, to effectively balance
system utility with the costs of the system, the user frequently would have to perform a detailed analysis of the available
upgrades and the effect those upgrades would have on the user's system.

During such an analysis, the user would have to compare the version number of each system resource to that of
its upgrade to determine whether or not an upgrade is available. When an upgrade is available, the user would have to
understand the differences between the system version of the resource and the corresponding upgrade, as well as how
these differences would affect (i.e., improve or diminish) the capabilities of the computer system.

Even when the user is able to determine with accuracy the benefits of an upgrade to the system, the user is almost
never able to determine how an upgrade will impact a resource that is not upgraded. It is not uncommon for an upgrade
to reduce the ability of a resource to properly function with another resource. In addition, upgrades often exist solely to
repair hidden bugs which may not have surfaced on the user's system, a situation in which the user almost always
ignores the upgrade until the bug is encountered, usually resulting in lost information.

Many resource manufacturers address some of these problems by making certain aspects of the upgrade determi-
nation easier for the user. The NetWare Management System by Novell inspects network loadable modules (NLMs) on
a network server to determine the current version of the NLM, its most recent revision level, and the revision date. Thus,
NMS not only tells the user which resources are currently on the system, but also provides information that allows the
user to easily determine whether or not upgrades are available. Likewise, the Frye Utilities NetWare Management pro-
gram provides the titles and version numbers of NLMs on the server. Manufacturers also usually provide descriptions
of the changes made from one version of a resource to the next. Nevertheless, despite the availability off this type of
information, the user, in general, either never upgrades or upgrades whether it is needed or not.

In general, in one aspect, the invention features a method for use in upgrading a resource of a computer from an
existing version of the resource to a later version of the resource. The method includes the steps of (a) digitally storing
upgrade information which identifies the later version and describes features of the later version relative to one or more
earlier versions of the resource, (b) digitally storing in the computer information identifying the existing version, by com-
puter, automatically determining which of the earlier versions is the existing version, and (c) based on the results of the
comparing step, automatically determining, or displaying to a user at least some of the upgrade information to aid the
user in determining, whether to perform an upgrade.

Implementations of the invention include the following features. The upgrade information may be stored on a portable
medium, the later version of the resource may also be stored on the portable medium, and the upgrade information may
identify the location of the resource on the portable medium. The portable medium may be a CD-ROM, and may contain
stored later versions of multiple resources, and upgrade information with respect to each of the resources.

The upgrade information may be stored in the form of a database, and may include instructions for installation of
the resource. The installation instructions may be expressed in accordance with a predefined common syntax. The
resource may include a complete standalone software package, or less than all of a complete standalone software
package.

The upgrade may be automatically performed on a network server, or on a network client. In the latter case the
upgrade may be performed via the network, or by automatically storing the later versions and installation instructions
on a portable storage medium for manual installation on the client.

The upgrade information may include information concerning reasons for the later version, and an indication of the
type of change from a prior version to the later version (e.g., feature enhancement, performance enhancement, or bug
fix). The upgrade information also may include an indication of the importance of the change from the prior version to
the later version, and information identifying other resources that must be upgraded before the resource may be
upgraded.

In general, in another aspect, the invention features supplying later versions of resources for upgrading existing
versions, by storing copies of the resources and upgrade information which identities the later versions, describes fea-
tures of the later versions relative to one or more earlier versions off the resource, and provides instructions, in accord-
ance with a predefined common syntax, for installing each of the resources. The copies of the resources and the upgrade
information may be stored on a portable storage medium or within an on-line service.

Among the advantages of the invention are the following. The invention automatically determines the availability of
upgrades to resources on a computer system. The invention may also determine the importance of each of the upgrades.
In addition, information regarding dependencies between upgrades is provided. As a result, the user can, with little effort,
make an educated determination of which resources should and should not be upgraded at a particular time. Resources

5

10

15

20

25

30

35

40

45

50

55

EP 0 703 531 A1

to be upgraded may be selected automatically, and the upgrades may be made automatically in a network environment
or manually using automatically generated upgrade diskettes.

Other advantages and features will become apparent from the following description and from the claims.

Figure 1 is a functional block diagram of a network server and a server manager, including an automatic upgrade
device.

Figure 2 is a functional block diagram of a server and a server manager daring an automatic upgrade.

Figure 3 is a flow diagram for automatically updating resources on a network server.

Figure 4 is a diagram of components of a management information base.

Figures 5A-5C are templates for records in an upgrade database.

Figure 5D is a functional block diagram of components of an upgrade database.

Figure 6 is a functional block diagram off an upgrade advisor.

Figures 7A-7B and 8 are flow diagrams for upgrade advising.

Figures 9 and 10 are screen shots of a graphical user interface for an upgrade advisor.

Figure 11 is a functional block diagram of components of a client of the network server.

Referring to Figure 1, a network server 1 provides network resources 3 to a network of client computers (not shown).
Network resources include firmware, software applications, operating systems (OS), OS drivers and hardware drivers.
A management information base (MIB) 5 within the server 1 maintains basic descriptive information about each of the
resources 3 available on the server 1. Included in the MIB 5 are the name and version number of each piece of software,
its location in the server, and the date and time of its release. The information in the MIB 5 ensures that the server 1
always has a current record of the resources 3 it provides to the network.

Upgrades 7 to the network resources 3 are provided to a server manager 2 by a distribution medium (not shown),
such as a CD-ROM. The upgrades 7 may also be provided by an on-line service (not shown), such as a bulletin board
service administered by a manufacturer of network resources. The basic units of the upgrades 7 are upgrade objects
8, each of which corresponds to an individually upgradable network resource 3. The upgrade objects are grouped into
upgrade packages 6 which correspond to resource 3 groupings on the server. A package 6 may contain any number of
upgrade objects 8 (i.e., may upgrade any number of individual network resources 3), including only a single object 8.

In addition to the resource upgrades 7, the CD-ROM contains an upgrade database 9, which stores information
about each of the upgrade packages 6 (e.g., name and location of the package on the CD-ROM, description of the
upgrades, and instructions for installation of the package to the server), and the individual upgrade objects 8 within each
package 6. If the upgrades 7 are provided by an on-line service, the upgrade database 9 will also be provided by the
service.

The server manager 2 oversees the network resources 3 stored on the server 1. An upgrade device 10 in the server
manager 2 is responsible for automatically analyzing and executing the resource upgrades 7 available to the server 1.
When the upgrades 7 become available to the network (e.g., by inserting the CD-ROM into the server manager drive,
or by logging into the on-line service), an upgrade advisor 11 in the upgrade device 10 automatically analyzes each
network resource 3 currently on the server 1 to determine the availability and necessity of the corresponding upgrade
7. When the analysis is complete, the upgrade advisor 11 presents a report and/or graphical display to the user. This
output is in the form of upgrade recommendations, each supported by an explanation of the reasons for upgrade. The
results may also be used to create upgrade diskettes.

To determine which upgrades 7 should be installed to the server, the upgrade advisor 11 retrieves information about
the MIB 5 from a server database 13 located in the server manager. The server database 13 tells the upgrade advisor
11 the location of each piece of information contained in the MIB. The upgrade advisor 11 supplies the location infor-
mation to a data retriever 15, which uses it to retrieve from the MIB 5 data (MIB data) about the network resources 3.
The upgrade advisor 11 then retrieves upgrade information from the upgrade database 9 and performs two types of
comparisons: a) whether or not a particular upgrade package corresponds to a resource on the server, and b) whether
or not the version number of the upgrade package matches the version number of the corresponding network resource
(i.e, whether or not the upgrade package represents a true upgrade for the existing network resource). If the upgrade
applies to a resource on the server and if the upgraded and current versions of the network resource do not match, the
upgrade advisor 11 uses additional information from the upgrade database 9 to analyze the level of severity of the
upgrade, i.e., to determine the importance of the upgrade to the efficient operation of the server. The upgrade advisor
is described in more detail below.

Referring also to Figures 2 through 4, the upgrade database may also contain information about a resource (e.g.,
a driver) which is not recognized by the server manager. In this situation, the upgrade advisor places information about
the resource (e.g., name, version number) into a driver table 32 in the MIB 5. An agent 21 of the server manager located
in the server uses this information to search for the resource (i.e., to see if the resource has been installed on the
network). If so, the server manager creates entries for the resource in the server database.

When the upgrade advisor 11 and/or the user have selected 100 the network resources 3 that need to be upgraded,
an upgrade installer 17 oversees the automatic installation of the packages to the server. At the outset, the appropriate
upgrade packages 7 are retrieved 102 from the distribution medium (or the on-line service) and supplied 106 to a server

10

15

20

25

30

35

40

45

50

55

EP 0 703 531 A1

upgrader 22 located in the upgrade installer 17. Installation instructions 20 are retrieved 104 from the database 9 and
are supplied 106 to the server upgrader 22. The instructions are coded in a unique package scripting language (PSL),
which can be read and executed at the time of installation. Rules of syntax for a preferred PSL are listed in Appendix A.

Inthe server upgrader 22, several upgrade packages 7 and the corresponding installation instructions 20 are grouped
108 into a "job" 18. Within each job 18, the installation instructions for every package are included in a control file 18a.
The controlfile also includes a pre-appointed time at which the installation of the packages in the job should be carried out.

When the job 18 is ready to be installed to the target server, the server upgrader 22 connects 109 with the server
through a login service 24 and then sends 110 the job 18, including the control file 18a, to a staging area 19. The staging
area 19 may be in the target server, in the server manager, or anywhere else in the network capable of handling the
deposit and retrieval of upgrade files. Within the staging area 19, each package is placed into a corresponding package
directory 71, and the control file is stored separately. The server manager then notifies 112 the agent 21 that a job has
been sent to the staging area 19. When the pre-appointed time arrives 114, the agent 21 executes 116 the instructions
in the control file, thereby installing the packages from the package directories 71 to the target network resources 3.
The agent then deletes 117 the control file from the staging area 19.

Before the packages are installed to the targets, the agent 21 may store 115 the older revision levels of the resources
on a local hard disk 23. As a result, the user always has access to previous versions of the resources. Maintaining old
versions of upgraded resources allows the user to downgrade the resource, if needed, in the future.

After the installation is complete, job status data 73 is generated 118 and temporarily stored 120 in a results directory
75 in the staging area 19. The agent 21 retrieves the job status data 73 from the results directory 75 and places 122 it
into a job status table 34 in the MIB 5. A results manager 26 in the upgrade installer monitors the MIB 5 for the job status
data 73 and retrieves 124 the data as soon as it appears. The results manager 26 then sends 125 the data to a history
manager 28, which tracks the history of upgrades on the server. The history manager 28 is responsible for providing
126 the history information to the user (or to storage). The server upgrader 22 then cleans 128 the staging area of any
extraneous information. Because a single copy of a package may be used to upgrade a resource on multiple servers
(using multiple control files), the packages are left 130 in the staging area 19 by the server upgrader.

Referring to Figures 5A through 5C, the upgrade database actually consists of three databases: a "Package” data-
base 25, a "Description” database 27, and a "How_To" database 29. The Package database 25 contains the information
which associates upgrade objects with each package, as well as the information needed to retrieve a package from the
distribution medium (CD-ROM) and properly install the package to the server. For each upgrade package, the database
maintains a unique package number 25a and a count 25b of the number of database records (i.e., upgrade objects)
associated with the package. In addition, the version number 25¢ and the upgrade date 25d of the package are main-
tained. The Package database also maintains the name 25¢ of the package and the location 25f of the package on the
CD-ROM (i.e., CD drive and directory name). To enable automatic installation of the package, the database contains
the package script 25g (the installation instructions for the package). The database also contains information regarding
the dependencies between the package and other upgrade objects or packages: child dependencies 25h are the upgrade
objects associated with a package; sibling dependencies 25j are the packages upon which a package depends; and
parent dependencies 25i are the packages or upgrade objects which together constitute a larger package. Finally, the
database indicates whether or not the package can be selected by the user for upgrade and whether or not the package
can be displayed to the user through a user interface.

While each upgrade distribution medium will commonly contain all upgrade packages upon which a particular
upgrade depends, it is also likely that upgrades to a package will depend upon upgraded packages not stored on the
distribution medium. For example, the printing capabilities of an upgraded word processor created by one vendor may
depend upon an upgrade to a printer driver produced by another vendor. While it is unlikely that the word processor
upgrade and the driver upgrade will be distributed on the same CD, the user should still be informed of the dependency.
Therefore, the dependency information in the Package database 25 describes not only the dependencies between pack-
ages on the CD, but also all dependencies between an upgrade package and any upgrade not available on the CD. Even
though the unavailable upgrades cannot be automatically installed with the available upgrades, the user is nonetheless
aware of their necessity.

The Description database 27 stores information that describes each upgrade found in a package. Included in this
information are the package number 27a and record count 27b, as well as the version number 27¢ and date 27d of the
upgrade. A description 27¢ of the change between the updated version and the previous version of the upgrade object
is also provided. Because a server may contain any previous version of a resource, the database must maintain a
description of the changes between each version. The description 27¢ includes reasons why the upgrade is necessary,
drawing information from development release notes, test reports and field service reports. The type 27f of upgrade
made to the object (e.g., feature enhancements, performance enhancements or bug fixes) and the importance 27g of
the upgrade (e.g., high, medium or low) are also indicated in the Description database.

The How_To database 29 supplies information which allows the upgrade advisor to compare the upgrade information
to the MIB data (MIB items) from the server. As in the Package and Description databases, the package number 29a is
maintained. Within the How_To database, each record represents an individual piece of MIB information corresponding

10

15

20

25

30

35

40

45

50

55

EP 0 703 531 A1

to the particular package. Each record is identified by a record number 29b. A unique internal number 29¢ is assigned
to allow the upgrade device to identify the MIB item and comparison service specified in the record. The database also
maintains the name 29d of the MIB item maintained in the record, as well as the name 29e of the comparison service
which will use the MIB item to perform the comparison.

The items to be compared may be string data 29f (e.g., the name of the package) or numeric data 29g, and the
comparison service is selected accordingly. The comparison service is also selected according to the type 29h of com-
parison, i.e., a) whether the package applies to the server, or b) whether the upgraded version differs from the current
version. The comparison group number 29i allows the upgrade advisor to group comparison results with related results.

Referring also to Figure 5D, the first package 26a in the Package database 25 is linked to description records 28a,
28b, 28¢ in the Description database 27. In this case, the description records corresponding to the package 26a provide
detail on earlier versions of the package, thus enabling the upgrade advisor to analyze the changes between each
version. The package 26a is also linked to the comparison records 30a, 30b, 30¢ in the How_To database 29, each of
which describes the MIB data required to compare the current version of the package to the upgrade. The second
package 26b and subsequent packages in the Package database are likewise linked to the corresponding records in
the Description and How_To databases.

Referring to Figures 6 through 10, when the user initiates 200 the upgrade advisor, a list box object 33 is created
202, and a Windows list box 51 is displayed to the user. The list box object 33 creates 204 a server view object 35 for
each server in the network. When a server is selected 206 by the user, the corresponding server view object 35 places
208 the server name 53 into the list box 51. The server view object 35 then creates 210 package view objects 49 to
handle package information during the comparison process.

A package query object 43 retrieves 211 package data from the Package database and uses the data to create a
package object 45 for each package. The package object is responsible for collecting information about the correspond-
ing package, including a description of the package, pointers to the MIB check objects 37 that apply to the package, and
pointers to parent, child, and sibling packages. A MIB query object 38 retrieves MIB location information for each MIB
item from the server database 13 and then uses the information to retrieve 212 MIB data and comparison service infor-
mation from the server. Comparison service information identifies the appropriate service to handle the comparison of
each piece of MIB data. The MIB query object then creates 213 MIB check objects 37 responsible for handling the
comparisons between MIB data and upgrade data. A description query object 39 uses information from the Description
database to create 214 a description object 41 for each upgrade object contained in a package.

When all of the objects are created, a MIB manager object 31 determines 215 which MIB items should be retrieved
from the selected server. A request for the MIB data is sent 216 to the data retriever (15 in Figure 1), which gathers 218
the requested information from the MIB in the selected server and forwards 220 the data to the list box object 33. As
the MIB items are received by the upgrade advisor, the list box object 33 identifies 222 the server which sent the data
and forwards 224 the data to the appropriate server view object 35, where the MIB items are queued 226. When all
items have been received from the server, the server view object 35 sends 228 the MIB data to the MIB manager object
31. The MIB manager object then identifies 230 the appropriate MIB check object 37 to process each piece of MIB data
and distributes 232 the data accordingly.

As the MIB data makes its way from the server to the MIB check object, the corresponding upgrade description
information is retrieved 234 from the Description database by the description query object 39. Each upgrade description
is then forwarded 236 to the corresponding description object 41. From the description objects 41, each package object
45 collects 238 the upgrade descriptions pertaining to the package. The package object 45 then sends 240 each piece
of upgrade data to the appropriate MIB check object 37 for comparison to corresponding MIB data.

Once the MIB check objects 37 have received the appropriate MIB data and upgrade data, the data is sent 244 to
the appropriate comparison service 47, according to the comparison information retrieved from the MIB. After the data
is compared 246, the comparison service 47 returns 248 a comparison result to the MIB check object, where the result
is stored 250.

In order to display or report upgrade advice to the user, the server view object 35 requests 300 package status
information from the package view object 49. The package view object 49 in turn requests 302 the status information
from the package object 45. Using pointers, the package object 45 determines 304 which MIB check objects 37 contain
the comparison results for the corresponding package. The package object then retrieves 306 the results and combines
308 them to determine package status (i.e., whether or not the package applies to the server, and whether the package
needs to be upgraded on the server). Once the status of the package is determined, the package status information is
passed 310 to the package view object 49. If the status information indicates that the package applies 312 to the server,
the package view object adds 314 the package 55 to the server 53 in the list box 51. The status information is then
passed 316 to the server view object 35, where it is displayed 318 to the user in the list box 51.

The importance of an upgrade 57 (high, medium, low) is displayed to the user through color coded vidual objects
58 (e.g., red, yellow, green). The reasons 59 for the upgrade (i.e, upgrade description) are also displayed in the list box
51. When requested by the user (e.g., with a "Details" button 60), additional details about the upgrade are displayed

10

15

20

25

30

35

40

45

50

55

EP 0 703 531 A1

320 in a detail window 65. In addition to displaying the output of the upgrade advisor, a report may be generated 322
by the upgrade advisor. The upgrade advisor may also store 324 the status results.

Referring to Figure 11, the upgrade advisor and installer may also be used to analyze the availability of upgrades
and generate upgrade jobs for individual clients 80 connected to the server. In this situation, the client, like the server,
contains a MIB 81 which maintains information about the resources 83 currently installed on the client. When the user
invokes the upgrade advisor, the MIB data is retrieved from the MIB 81 and the comparisons are carried out as described
above.

The client resources 83 may then be upgraded in two ways: automatically through the upgrade installer, or manually
with upgrade diskettes 85 automatically created by the upgrade device. If automatic update is chosen, the upgrade
installer builds the selected upgrade packages and installation instructions into a job (as discussed above), which is
transferred into a staging area. An agent 87 in the client 80 is then notified that a job has been placed in the staging
area, and the agent installs the packages in the job according to the installation instructions. Alternatively, the client may
be programmed to search the staging area at specific times (e.g., start-up) for jobs it needs to install.

If manual update is chosen, the packages selected for upgrade are stored to a diskette 85, along with the corre-
sponding installation instructions. When all of the packages have been placed onto the diskette, the user places the
diskette into a disk drive (not shown) on the client, and the agent automatically installs the packages according to the
installation instructions.

As an example of the operation of the upgrade advisor and upgrade installer, assume that the distribution medium
contains an upgrade package called Novell Programs. Within the Novell Programs package is an upgrade object corre-
sponding to each of the NetWare drivers installed to the target server. When the distribution medium is inserted into the
drive, the upgrade advisor reads information about the Novell Programs package from the Package database. The
upgrade advisor then retrieves from the Description database description information for the upgrade objects in the
package. The records corresponding to each upgrade object are then read from the How_To database and compared
to the description information.

As shown in the chart below, the first record for the Novell Programs package contains information about the oper-
ating system running on the server. The first entry in the record is the name ("cpgHoName™) of the MIB data for the
records. This entry causes the upgrade advisor to retrieve the name of the operating system that the server is running.
The second entry informs the upgrade advisor that a "stringcompare” comparison service will be used to compare the
upgrade and MIB data. The third and fourth entries pass the corresponding description information to the comparison
service. For record number 1, the MIB data is compared to the string "NetWare". Since string data is to be compared,
the "numeric data” entry is ignored. The last entry for the record informs the upgrade advisor that the type of comparison
to be performed is a determination of whether or not the NetWare OS applies to the server, i.e., if the OS runs on the
server.

The second record contains the information necessary to determine whether or not the netware "NPFC" software
is available on the server. If so, the information in the third record enables a comparison of the version number of the
upgrade with the version number on the server.

Record # | mib data comparison service | string data | numeric data | type
1 cpgHoName stringcompare Netware N/A applies
2 cpaSWVerName stringcompare NPFC N/A applies
3 cpgSWVerVersion versioncheck version

When the upgrade advisor receives all of the comparison results from the comparison services, the results are used,
first, to determine whether or not the Novell Programs package is an upgrade which can be installed to the server and,
second, to advise the user of the importance of the upgrade. Assuming that an upgrade to the Novell Programs package
is both available and desired, the user selects the package as one to be upgraded. The upgrade installer is then invoked.

The upgrade installer retrieves the Novell Program's package from the distribution medium and the corresponding
installation instructions from the How_To database. The package and instructions are then incorporated into a job, which
includes a command to run the job at midnight. The job, including the Novell Programs package and the control file, is
copied into the staging area and the agent on the target server is notified of its presence. When the agent looks at the
job, it sees the command to run the job at midnight and waits until that time arrives. At midnight, the agent calls an install
application to automatically install the Novell Programs package. When the installation is complete, the agent stores
results information, including the name of the job and the time at which it was executed, into the job status table of the
MIB. The upgrade installer then retrieves this information and provides it to the user.

10

15

20

25

30

35

40

45

50

55

EP 0 703 531 A1

Other embodiments of the invention are within the scope of the following claims.

ARPPENDIX 2

Package Script Language
A Package Script Language (PSL) is defined that should make it easier for
package owners to develop installation scripts for their products.

Commands

The installer will look for a .PSL file and begin executing it. PSL
commands are:

MKDIR [/err] <directory >

COPY (/u] [/err] <source> <destination>

DELETE {/err] <source> <destination>

RUN_[os] [/err] <executable> [...parameter list...}

Where,

/u - add the opposite of this command (or copy < destination>
<source>) to the UNDO.PSL file (see below)

/err - on error, stop script processing and report a package failed
status (run undo.psl and report failed in job status table.)

< source> - source file to copy - can be any number of
specifications:

d:[\directory\] < filename >
\\server\share\[directory\] < filename >
SYSPART:Ndirectory\] < filename> -

< destination> - destination for file - see specs for <x>

os - defined as NT (WinNT), 02 (0S/2), SC (SCO UNIX), UW
(UnixWare), and NW (NetWare).

10

15

20

25

30

35

40

45

50

55

EP 0 703 531 A1

For COPY, any file attributes will be preserved but ignored (i.e.,
copying over a ReadOnly doesn’t cause an error).

Section Headings

Claims

1. A method for use in upgrading a resource of a computer from an existing version of the resource to a later version

Each PSL is broken into sections designated by a section heading. There
are four special section heading names that the script processor will look to
execute. The headings are executed in this order: Main, EISA ID, OS,
and User Defined.

[Main] - section is run on all machines

[EISA:eisalD] - section is executed if board with ID specified is installed.
EISA ID is specified: CPQXXXX where X can be an alphanumeric
character or "?" to match any alphanumeric in that position.

[WinNT | NetWare | UNIX | 0S/2] - section should be run on machine
if specified OS is running.

[<user defined >] - a user defined section. It must be immediately
followed by: '

DISCOVER_[os] = <executable> - executable should return | for
execute remainder of section, or 0 for skip section. OS is defined as NT
(WinNT), 02 (0S8/2), SC (SCO UNIX), UW (UnixWare), and NW
(NetWare).

[UNDO_BEG] - this section defines the <undo> .PSL file. The presence
of this section causes the interpreter to create an <undo> .PSL file based
on the naming. The {undo] section contains:

filename= <undo>.psl - or the name of the undo file to be
created,

<any other text> - this text is added to the undo file untouched,

[UNDO_BEG] - the end of the undo section.

of the resource, comprising

digitally storing upgrade information which identifies the later version and describes features of the later

version relative to one or more earlier versions of the resource,

digitally storing in the computer information identifying the existing version,
by computer, automatically determining which of the earlier versions is the existing version, and

10

15

20

25

30

35

40

45

50

55

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

EP 0 703 531 A1

based on the results of the comparing step, automatically determining, or displaying to a user at least some
of the upgrade information to aid the user in determining, whether to perform an upgrade.

The method of claim 1 wherein the upgrade information is stored on a portable medium, the later version of the
resource is also stored on the portable medium, and the upgrade information identifies the location of the resource
on the portable medium.

The method of claim 2 wherein the portable medium comprises a CD-ROM.

The method of claim 2 wherein the portable medium contains stored later versions of multiple resources, and
upgrade information with respect to each of the resources.

The method of claim 1 wherein the upgrade information is stored within an on-line service.
The method of claim 1 wherein the upgrade information is stored in the form of a database.
The method of claim 1 wherein the upgrade information further comprises instructions for installation of the resource.

The method of claim 7 wherein the installation instructions are expressed in accordance with a predefined common
syntax.

The method of claim 1 wherein the resource comprises a complete standalone software package.
The method of claim 1 wherein the resource comprises less than all of a complete standalone software package.
The method of claim 1 further comprising automatically performing the upgrade on a network server.
The method of claim 11 wherein automatically performing the upgrade on the network server comprises
storing on a storage medium the existing version of the resource, and
replacing on the server the existing version of the resource with the upgrade.
The method of claim 1 further comprising automatically performing the upgrade on a network client.
The method of claim 13 wherein the upgrade is performed via the network.
The method of claim 13 wherein automatically performing the upgrade on the network client comprises
storing on a storage medium the existing version of the resource, and

replacing on the client the existing version of the resource with the upgrade.

The method of claim 13 wherein the upgrade is performed by automatically storing the later versions and installation
instructions on a portable storage medium for manual installation on the client.

The method of claim 1 wherein the upgrade information includes information concerning reasons for the later version.

The method of claim 1 wherein the upgrade information includes an indication of the type of change from a prior
version to the later version.

The method of claim 18 wherein the type may include feature enhancement, performance enhancement, or bug fix.

The method of claim 1 wherein the upgrade information includes an indication of the importance of the change from
the prior version to the later version.

The method of claim 1 wherein the upgrade information includes information identifying other resources that must
be upgraded before the resource may be upgraded.

A method of supplying later versions of resources for upgrading existing versions comprising storing, on a portable
medium, copies of the resources and upgrade information which identifies the later versions, describes features of
the later versions relative to one or more earlier versions of the resource, and provides instructions, in accordance
with a predefined common syntax, for installing each of the resources.

10

15

20

25

30

35

40

45

50

55

23.

24,

25.

26.

27.

28.

EP 0 703 531 A1

The method of claim 22 wherein the upgrade information includes information concerning reasons for the later
version.

The method of claim 22 wherein the upgrade information includes an indication of the type of change from a prior
version to the later version.

The method of claim 22 wherein the upgrade information includes information identifying other resources that must
be upgraded before the resource may be upgraded.

The method of claim 22 wherein the copies of the resources and the upgrade information are stored on a portable
medium.

The method of claim 22 wherein the copies of the resources and the upgrade information are stored within an on-
line service.

A method for use in upgrading a resource of a computer from an existing version of the resource to a later version
of the resource, comprising

digitally storing, on a portable medium, the later version of the resource and upgrade information which

identifies the later version,

describes features of the later version relative to one or more earlier versions of the resource,

identifies the location of the resource on the portable medium,

provides instructions for installation of the resource,

describes reasons for the later version,

indicates the type of change from a prior version to a later version, and

indicates the importance of the change from a prior version to the later version,

digitally storing in the computer information identifying the existing version,

by computer, automatically determining which of the earlier versions is the existing version,

based on the results of the comparing step, automatically determining, or displaying to a user at least some
of the upgrade information to aid the user in determining, whether to perform an upgrade, and

automatically performing the upgrade.

10

EP 0 703 531 A1

(L394vL) — _u_
308n0sIy | € — _U
MHOMLIN I
YIAHIS |
“ 7 YIDVNVW 4IAY3S
IN3BY (9IN) Gl
3gvd HIAIIHLIY Jovaviva |~
HIOH =" nowvnwoani [~ =l Twa | s | gy
LNINIDYNYA
L _ \P N ,4 _
12 G | |
| o 3 _
vawy | _ YITIVISNI HOSIAQY
ONIDYLS ! ™1 Javeodn ["1 3avyodn mo_aa |
J 1w leor]| ! } !
6l 7 L - |
0) |
8l
41 s193r80
@\ ISvVavIva 8 3av49dn
3avHadn A s39viovd I\N
9 | s30v49dn 308N0SH

11

EP 0 703 531 A1

[smaing AREA 19 75~ i
~a [JEIE]
CONTROL
FALE | 1 STATUS | TARGET
73 DATA | g
71 « _t— -
[
L
PACKAGE
DIRECTORY AGENT MIB
| 21 5
| \
/
HARD DISK
OLD REVISIONS
OF PACKAGES
SERVER MANAGER
2
[‘ |
| 24 UPGRADE
| LOGIN -~ SERVER 22 RESULTS INSTALLER
' SERVICE [| UPGRADER MANAGER 7
L — = \26
DATABASE) 8
9 | a{ PACKAGES | HISTORY |
7 MANAGER
INSTALLATION = |
INSTRUCTIONS H._
20 L _

12

EP 0 703 531 A1

SELECT PACKAGES TO BE UPDATED

| \-100
RETRIEVE PACKAGES FROM DISTRIBUTION MEDIUM
| \-102

RETRIEVE PACKAGE INSTALLATION INSTRUCTIONS
FROM PAOKAGE DATABASE

‘ 104
PACKAGES AND INSTALLATION INSTRUCTIONS
109 PASSED TO SERVER UPDATER _105
LOGIN TO SERVER —=— CREATE UPDATE JOB, INCLUDING CONTROL FILE
VIA LOGIN SERVICES ! \-108
|NO TRANSFER JOB TO STAGING AREA
) | 110
PRE-APPOINTED
) TIME? INFORM AGENT THAT JOB TRANSFERRED
14”7 | 112
| YES) '
row | B S g
| (OPTIONAL) | * 116
i |
| CONTROL FILE DELETED
STORE OLD PACKAGE __ _|
REVISIONS QJ MEMORY | ~17
JOB STATUS DATA GENERATED
115 ‘ 118
JOB STATUS DATA STORED IN STAGING AREA
| \-120
JOB STATUS DATA PLACED INTO MIB
/125 ‘ 122
JOB STATUS DATA —~—— JOB STATUS DATA RETRIEVED FROM MIB
PASSED TO HISTORY BY RESULTS MANAGER \~124
MANAGER !
JOB STATUS PRESENTED TO USER
| \-126
FIG 3 SERVER UPDATED CLEANS UP STAGING AREA
. | \-128

PACKAGES LEFT IN STAGING AREA
130

13

EP 0 703 531 A1

¥ "Did

HOYY3 HOHY3
3131dNOD 3131dN0D
ONINNNY 31VIa3NNI ONION3S
ONION3d Ad00i¢l §6/10/10 ONION3d NN
SNIVIS NOILNO3X3 | 3WIL NOILNO3X3 | SNIVIS ON3S aor

\ 316vL SNiviS 4or

ve
3LIHM/avaH AINO QY3H AINO QV3H 3LUM/aY3H
ININIM\:D AvL0i¢ ¥6/¥0/20 ¥4 AN
NOLIYOOT 3lvad NOISH3A H3IAlHa

G aIN

45

\

314YL H3AHA

14

EP 0 703 531 A1

VAR E

HISN IHL A8 JIVMIIA JOVXOVd SHL S HIEHNN TTavMaIA
ONIQYHDN HO4
JOVYOVd SIHL 103135 KISN FHL NVO HIGWON | 3aveBdN 04 T18VIOT1IS
INIT 39VOVd HIHIO H3ENNN SHONIONIZH0 NI |~
YN J9YYOVd HIHIO TERT SIONIONI30_INFEWd [~ 3¢
INIT 39VX0vd H3HIO 43BN SIONIANIAIA QTHO |~ 19C
JOVYOVd SHL TIVISNI OL G3HIND3Y 1dIBOS | (SSZIOINNNYHATY 11605 39V30vd |~ 15 C
JOVYOVd SIHL SNIVLNOO IVHL GO NO HIVd | (SSZIOMINANVHATY T
JOVNOVd 40 INVN | (0S)OMINNNYHY JHVN 39vyovd [~ 156
J18YLN03X3 40 3IvG TG Jwva |~ 950
1z B'0) ONIHLS NOISE3A | _ (0S)OIHINANYHATY NoIsEaA |~ PS¢
JOVYOVd SIHL 04 SQHOO3H 0 INNOD HIENNN §3INN0O QH00TY |~ 25 ¢
JSVAVIVO HO4 HIBNAN INOINN TERTI HIENON 3OV /umm

~ 80'STHVNOVd
GZ

15

EP 0 703 531 A1

s "Dl

MOT ‘N3N ‘HOH HIANON JONVLHOAT |~
(X4 5ng "B'6) JONVHO 40 JdAL HIANON 3dAL /Ew
NOISHIA SNOIAUd ONY NOISHIA e

SHL NIIMLIE FONVHO 40 NOILIBOSIA | (SSZIOMINANYHATY NOLLIHOS30 [~
318VLN03XT 40 31V 134 v 3wva |~ 9L¢
(171 B0 ONIHIS NOISH3A | (0GJOMINANYHTY Noistan |~ PLC
JOVNOVd SIHL 04 SQHOO3H 40 LNNOD HIENNN IN0O |~ 240
Gp 3DVXOVd NI H38WNN OL SONOJSIEHOD HIBANN HIANNN 3OVOVd /MMM

- 80'did0sd

Lé

16

EP 0 703 531 A1

2§ ‘DI

NOILYWHOANI ONIdNOHD H3GNNN dNOYD NOSIHYIWOO /_ON
NOISH3A 1IN3HHNO
JHL WOH4 3avd9dn NY SI SIHL 41 33S OL
MO3HO- ¢ 'H3AHIS SIHL NO I18YTIVISNI SI 3OVAOVd
SIHL 41 33S 0L MO3HO- | ‘NOSIHVdNOD 40 IdAL H3IENNN 3dAL NOSIHYdWOO /_.._ 62
J0IAHIS NOSIHYdNOO 0L (3SSvd Vivd TYNOILJO HIEANN | JHYAWNOD OL VIVA OIH3INNN ./a
39IA43S NOSIHYIWOO OL 03SSvd vivd TYNOILJO | (SSZ)OIHINNNYHATY JHYdNOO OL VIVQ ONIHIS ~ 6¢
NOSIHVINOD 3HL 00 TIM LvHL 3DIAH3S 40 INYN | (SST)OIHINNNYHJITY JOIAH3S NOSIHYIWNOD /MON
J0IAH3S NOSIHYdNOD 6¢
JHL A Q34IND3Y SW3LI 8IN 40 (S)STINVYN OIHINNNYHJ 1Y (S)IINVNEIN /D 62
JOIAH3S NOSIHYdWOD
AONY W31l 8IN HO4 H3GWNN 3JNOINN H3IBNNN HIANNN TYNHAINI
JOVIOVd SIHL HO4 H3IEGNNN dHOO3H H3I8NNN INNOO W3ll dIN /OON
P 39vMOvd NI H3GWNN OL SANOJSIHHOO H3IBANN HIGNNN JDYNOVd /QON
86
_—~80'0LMOH

6¢

17

EP 0 703 531 A1

as ‘Nl

& Jsvaviva
3dvH9dN
rzg 43A BIENOD V813
- 21 H3A NOH WLSAS
P Il H3A WOH W3LSAS
mw/ MMM A 01 3\ NOH WILSAS
80'dIH0S3d
0 §
¢ m_z 9N0D ¥si3 |
\ & @IN - BINOD VS w
\ ¢ 8N - 9IN00 ¥S3_|]
x L 6N - DINOO V513 P
00€ —¢ dIN - NOY W3LSAS .|._ \aow
[|o0E—C 8N - WOt IS SN SN 7
BB —| 8N - NOY MISAS €1 HIA NOH N3LSAS-H

\

G¢é

4Q'SIoVMNOVd 89¢

N\

18

EP 0 703 531 A1

B UPGRADE ADVISOR |
LsT Box | 33
(USER _
INTERFACE)
%) / 495
SERVER PACKAGE
VIEW |- = VIEW
OBJECT OBJECT
43
! \
MIB
PACKAGE
MANAGER
OBJECT QUERY
317\ 41
45)
PACKAGE o DESCRIPTION
OBJECT OBJECT
38 3 |
MiB
QUERY [~] SHECK QUERY
T C
39
COMPARISON COMPARISON COMPARISON
SERVICE SERVICE SERVICE
N 7 i\
A7a ATb 47¢
| _
SERVER
DATABASE

B FIG.6

19

EP 0 703 531 A1

USER INITIATES UPGRADE ADVISOR

| ~~200
LIST BOX VISUAL ELEMENT CREATED
| 202

LIST BOX OBJECT CREATES SERVER
VIEW OBJECT FOR EACH SERVER -204

/

SERVER SELECTED BY USER,__
* 206

SELECTED SERVER VIEW OBJECT PLACES SERVER
NAME INTO LIST BOX \208

211 \ |

PACKAGE QUERY OBJECT ==— SERVER VIEW OBJECT CREATES PACKAGE

RETRIEVES PACKAGE DATA VIEW OBJECTS N-210
AND CREATES PACKAGE ‘
OBJECTS-_— '
MIB QUERY OBJECT RETRIEVES COMPARISON AND MiB DATA
b 212

DESCRIPTION QUERY
S8 EGT CREATES —— MIB QUERY OBJECT CREATES MIB CHECK OBJECTS

DESCRIPTION OBJECTS } ~213

214/ MIB MANAGER OBJECT DETERMINES MIB ITEMS
TO RETRIEVE FROM SERVER FOR PACKAGES \~-215

/

MIB DATA REQUEST SENT TO DATA RETRIEVER
| 216
DATA RETRIEVER RETRIEVES DATA FROM MIB
I 218
MIB DATA SUPPLIED TO LIST BOX OBJECT
| ~-220

LIST BOX OBJECT DETERMINES WHICH
SERVER DATA IS FROM \~9299

%

LIST BOX OBJECT FORWARDS DATA TO
APPROPRIATE SERVER VIEW OBJECT\ZZ 4

FIG. 7A]

20

EP 0 703 531 A1

SERVER VIEW OBJECT QUEUES DATA UNTIL
ALL DATA FOR PACKAGE RECEIVED “~99g

FROM FIG. 7A |
MIB DATA SENT FROM SERVER VIEW OBJECT
TO MIB MANAGER OBJECT \-908

J

MIB MANAGER OBJECT DETERMINES WHICH MIB CHECK
OBJECT TO SEND EACH MIB ITEM \~230

MIB DATA SENT TO APPROPRIATE MIB CHECK OBJECT,
}- 232

DESCRIPTION QUERY OBJECT RETRIEVES PACKAGE
DESCRIPTION INFO FROM PACKAGE DATABASE -234

!

INDIVIDUAL UPGRADE DESCRIPTIONS SENT TO
DESCRIPTION OBJECTS 9136

%

DESCRIPTIONS RELATING TO PACKAGE COLLECTED
IN PACKAGE OBJECT ~~238

'

PACKAGE DATA SENT TO APPROPRIATE MIB OBJECT\
240

MIB AND UPGRADE DATA SENT TO APPROPRIATE
COMPARISON SERVICE \-244

#

MIB DATA AND UPGRADE DATA COMPARED

| ~~246
COMPARISON RESULT SENT TO MIB CHECK OBJECT
| 248

MIB CHECK OBJECT STORES COMPARISON RESULTS

\-250
FIG. 7B

21

EP 0 703 531 A1

SERVER VIEW OBJECT REQUESTS PACKAGE
STATUS FROM PACKAGE VIEW OBJECT ~300

PACKAGE VIEW OBJECT REQUEST PACKAGE
STATUS FROM PACKAGE OBJECT \-302

0

PACKAGE OBJECT DETERMINES WHICH MIB CHECK
OBJECTS CONTAIN RESULTS FOR CORRESPONDING PACKAGE
| -304

COMPARISON RESULTS RETRIEVED FROM
APPROPRIATE MIB CHECK OBJECTS \-306

'

PACKAGE OBJECT COMBINES RESULTS TO
DETERMINE PACKAGE STATUS -308

'

PACKAGE STATUS PASSED TO PACKAGE VIEW OBJECT
" { ~310
— DOES PACKAGE APPLY TO SERVER?

‘YES ~312

PACKAGE VIEW OBJECT ADDS PACKAGE TO
SERVER VIEW OBJECT \-314

.‘ 316

PASS PACKAGE STATUS TO SERVER VIEW OBJECT
|
GENERATE | DISPLAY RESULTS TO USER AS STORE STATUS
REPORT RED, YELLOW, GREEN OUTPUT RESULTS

-318
329/ | \324
DISPLAY ADDITIONAL DETAIL IS REQUESTED

\-320

FIG. 8

22

..

6 ‘Dl

..

sejouepuedeq %__ Nm

sejouspuedeq

~s|isi0d

1oweyi3 Joj woddng NY1 [
J0A[1Q X8I0 1808 (]
J0AlQ J0]104100D T-1808-18V4 ¥G-ZE¢ (O

syse)]

suoswey JouiN

EP 0 703 531 A1

*
] "GN3AV 01 JeAles eyi puv Moo |||

esouswioped pesusyuy e

GG wedy weasg eveg wowu beduon

JeAlQ Awily eAlg| 0 snvig
0} YOUS Oy} O8NEO PMNOD Y} UORIPUOD "
- ® SA[O88I O} GINPE0OL] OOJAIE \‘ bedwog wey .._:,z._;e!..zﬂ
] WnLaU) Z1'E GIBMION O POLIPON weishegng eDwI0ig WOY bedwiod (] HJOMION _

23

............. 1°”m°
3 \\ suossey Jofen| 105 wweby wewebeuy WO bedwod <J
_ :suossey epu.Bdfj vogemOyuoy wevskg bedwog] (SO0 @
STEES 65 ~caaian - orz worien somon OO POty Y S omona o [EMID
1043220 0£'Z UOJSIGA pejieisuy] mm NOY weiskg bedwod nHO
3INO HILSNTO N3N0 b3L8NTO a [|s1uE |@
dmeg 4~ | ¥861/91/L sco 988qRIR(Q : {0JIU0D UOJSIOA [=]iuve @
®18(10AIO8 MOIA (it i =2 13XV
r T XdD BNILNNOOJY
............ N e - 10 Jenseg
Z7 | ® | &8
i defi MOPU dnwef 8j00] Me(A suusy suoded eyJ
=[-1 || WNd 8i:¥ JeBeusy 1ybjsu) bedwo) |=

EP 0 703 531 A1

G9

0L"Dld

dieH __ [N __ 8NOJASIg 080[9
4
W "AN3GY O] J6AI08 Oy} pue MO}JIeA0 0})OB}S
—| ey} esned p|nod By} UONPUOD B BA|086J SUOHBO|IPOW
—] eyl ‘sew)} Ausw 00} Bupiseu woij 3| jueresd 0} pejjpow
n 88M 6Inped0id 69jAleg idnuieju] ZI'e eJemieN eyl

sjjeieQ

< i+

| 'ON3EY O} I6Ales ey} pue
MOJJIGAO O})OB}8 Y} 98N8 PJN0O JBY} UOJIPUOD B BA|0Se)
0} einpesoid edjA1eg 1dniieju) ZI'e ©IBMION oYl Pej}ipON

gjoe £661/9/LL-0¥'T -UOJ8IeA U] pexij

JeAlQ ABllY BA[Q ==

24

EP 0 703 531 A1

11Dl

G8

A an
18
€8
N\
304NOSIH
ER
LINIOV
Nm\
08 NI *
rom
3L13X8I0
_ 3avian

HIDYNYIN HIAHIS

viva oL

9/

= N| HIAJIH13Y

\ELL
ONIOVIS

e nne———

HITTVLSNI
3avH9dn OL

25

9

EPO FORM 1503 03.32 (P04CO01)

EP 0 703 531 A1

European Patent
Office

EUROPEAN SEARCH REPORT

DOCUMENTS CONSIDERED TO BE RELEVANT

Application Number

EP 95 30 6298

Category Citation of document with indication, where appropriate, Relevant CLASSIFICATION OF THE
of relevant passages to claim APPLICATION (Int.CL.6)
X IBM TECHNICAL DISCLOSURE BULLETIN, 1,2,4,7,| GO6F9/44
vol.35, no.5, October 1992, NEW YORK, US 9,10,
pages 319 - 321 16-26,28
'""Packaging" and "Required" Type Updates'
Y * the whole document * 6,11-15
Y W0-A-91 02313 (IBM) 21 February 1991 6,11-15
* page 2, paragraph 3 - page 9, line 24;
figure 1 *
A DATA COMMUNICATIONS, 1,6,
vol.22, no.4, March 1993, NEW YORK, US 11-16,
pages 109-110 + 112 + 114 + 116 22,28
SALVATORE SALMONE: 'Electronic Software
Distribution: Diamond in the Rough'
* page 110, Teft column, Tine 11 - right
column, line 5; figures 1,2 *
TECHNICAL FIELDS
SEARCHED (Int.CL.6)
GO6F
The present search report has been drawn up for all claims
Place of search Date of completion of the search Examiner
THE HAGUE 15 January 1996 Fonderson, A
CATEGORY OF CITED DOCUMENTS T : theory or principle underlying the invention
E : earlier patent document, but published on, or
X : particularly relevant if taken alone after the filing date
Y : particularly relevant if combined with another D : document cited in the application
document of the same category L : document cited for other reasons
A : technological background
O : non-vritten disciosure & : member of the same patent family, corresponding
P : intermediate document document

26

	bibliography
	description
	claims
	drawings
	search report

