[0001] The invention concerns apparatus for conveying web material such as indeterminate
lengths of plastic sheet or paper. More particularly, the invention concerns such
apparatus which includes rollers having specially contoured surfaces for conveying
at high speeds wide webs of ultrathin or very small thickness, such as less than 0.001
inch (0.0254 mm).
[0002] Figure 1 illustrates schematically one example of a wide variety of manufacturing
apparatus for conveying and treating web materials. A source 10, such as a stock roll,
provides a web 12 of indeterminate length. In the familiar manner, the web is conveyed
through a process zone 14 to a take-up roller 16 by means of a plurality of right
circular cylindrical driver and idler rollers 18, only one being illustrated, which
typically have widths greater than the width of the web. Rolls 10 and 16 also may
be driven. Some rollers 18 may be driven by means such as a motor 20. The relative
positions of the rollers and other conventional web guidance features in the apparatus,.
not illustrated, serve as means to guide the web to wrap onto each roller over a wrap
angle α, which may be in the range of 10 to 300°. Various surface treatments may be
performed on the web in the process zone, such as coating, printing, surface texturing
and the like, which often require that there be no slippage between the web and the
driver or idler rollers. Slippage or loss of traction between a web and a roller is
undesirable since it may cause problems for the web such as weaving movement, electrostatic
charging, scratching, creasing and the like. Sufficient frictional force is required
between the web and each roller to prevent such slippage, this force commonly being
known as roller traction.
[0003] In EP 590253, another example of an apparatus for conveying a web material is disclosed.
According to this reference a guide roller has a polished outer surface with grooves
formed on the outer surface of the roller tube.
[0004] Roller traction can be achieved with smooth-surfaced rollers at low web speeds; however,
as web speed increases to as much as 100 feet per minute (30.5 meters per minute),
air typically becomes entrained between the web and the roller, as indicated by the
arrow in Figure 1. The entrained air causes the web at least partially to lose contact
with the roller; so that, slippage can occur. To permit entrained air to escape from
between the web and the roller, surface patterns of various types have been provided
on roller surfaces, thus permitting adequate traction to be maintained at low and
high web speeds.
[0005] Figure 2 illustrates schematically an axial cross section of one such surface pattern
and an engaged web, just at the beginning of wrap angle α. The exterior surface of
roller 18 is provided with a plurality of circumferentially extended grooves 24, which
may be individual annular grooves or one or more continuous spiral grooves. The grooves
are separated by circumferentially extended lands 26 whose outer surfaces are flat
or straight when viewed in such an axial section. That is, the lands have a flat profile
when viewed in the direction of movement of the web through the apparatus. There may
be, for example, 6 to 60 such grooves per inch (2.36 to 23.6 grooves per cm), the
axial widths of the grooves and lands being about the same and each groove having
a depth in the range of 0.002 to 0.010 inch (0.0508 to 0.254 mm).
[0006] When a polyethyleneterephthalate web having a thickness t in the range of 0.002 to
0.0075 inch (0.0508 to 0.191 mm) is conveyed using 2.8 inch (71.1 mm) diameter rollers
of the type illustrated in Figure 2, the web has sufficient stiffness, beam strength
or bending resistance to enable it to engage fully the flat profile surfaces of lands
26 at the beginning of wrap angle α, in the manner illustrated in Figure 2. Thus,
any air moving with the web at the beginning of the wrap angle is forced into grooves
24 and good traction is maintained due to the engagement of the web with the lands.
[0007] Figure 3 illustrates how, for such relatively thick webs, the coefficient of friction
between a 0.0025 inch (0.0635 mm) thick, 54 inch (1372 mm) wide web and a grooved,
2.8 inch (71.1 mm) roller changes only slightly over a range of web speeds up to 1,000
feet per minute (305 meters per minute). A somewhat larger drop in coefficient of
friction is observed for web tension of 15 pounds or 0.27 pounds per linear inch across
the web (6.8 kg or 0.0048 kg per mm), compared to a tension of 25 pounds or 0.45 pounds
per linear inch across the web (11.34 kg or 0.008 kg per mm).
[0008] However, if web 12 is ultrathin, with a thickness of less than 0.001 inch (0.0254
mm), rollers of the type shown in Figure 2 fail to provide adequate traction at web
speeds above a few hundred feet per minute. Traction no longer remains essentially
constant but rather becomes a function of web thickness and web speed. We have discovered
that this degradation in performance of such grooved rollers results from a decrease
in the bending resistance of the ultrathin web. For the thicker webs, the bending
resistance is sufficient to enable the webs to bridge the grooves and engage the lands
of known grooved rollers with minimal radial deformation of the web, as shown in Figure
2. For the ultrathin webs, however, the webs are so flimsy that at the beginning of
the wrap angle they bend into the grooves and lift above the lands in the manner illustrated
in Figure 4. A similar effect can be observed with webs thicker than 0.001 inch (0.0254
mm), depending on the material of the web and the geometry of the lands and grooves.
An ultrathin web 30 thus deforms transversely into a series of relatively high ridges
32 and low valleys 34; so that, web 30 makes contact with the roller essentially only
at the edges or corners 36, 38 of each land. As a result, a volume 40 of air can become
more or less trapped beneath high ridges 32 since contact of the web with edges 36,
38 prevents or severely impedes flow of air into the grooves. With essentially line
contact between the web at the edges 36, 38, traction is reduced drastically, leading
to the problems previously mentioned.
[0009] Figure 5 illustrates how, for a 0.00025 inch (0.0064 mm) thick, 55 inch (1397 mm)
wide, polyethyleneterephthalate web running on a 5.6 inch (142.2 mm) grooved roller,
the coefficient of friction between the web and the roller drops rapidly over a range
of web speeds up to 800 feet per minute (244 meters per minute). A somewhat larger
drop in coefficient of friction is observed for web tension of 10 pounds or 0.18 pounds
per linear inch across the web (4.5 kg or 0.0032 kg per mm), compared to a tension
of 15 pounds or 0.27 pounds per linear inch across the web (6.8 kg or 0.0048 kg per
mm) or to a tension of 25 pounds or 0.45 pounds per linear inch across the web (11.34
kg or 0.008 kg per mm).
[0010] Thus, a need has existed for a roller which can convey ultrathin and other webs,
which tend to deform into conventional grooved rollers, with good traction at elevated
web speeds.
[0011] The primary objective of our invention is to provide an improved roller for conveying
ultrathin webs at elevated web speeds, without substantial loss of traction or risk
of damage to the web.
[0012] The object of the present invention is achieved through an apparatus according to
claim 1. Dependent claims disclose further advantageous embodiment of the invention.
[0013] This apparatus is particularly suited for conveying ultrathin webs having a width.
It comprises a source of a web to be conveyed, such as a stock roll, feeds the web
over at least one cylindrical roller having an exterior surface with a length, the
length being longer than the width of the web to be conveyed and a portion of the
web being wrapped onto the roller over an angle α. Uniquely in accordance with our
invention, the roller comprises a plurality of circumferentially extending, axially
spaced grooves formed in the exterior surface along the length, each groove having
an axial width; and a plurality of lands formed in the exterior surface and extended
between the grooves, each land having an axial width and a central surface with a
convex circular shaped curvature. The lands may be continuous. For best conveyance
of ultrathin webs, the convex circular shaped surface of the lands and the axial widths
of the grooves and lands are chosen so that, at about a beginning of the wrap angle
α during rotation of the roller, the web undulates along the width of the roller over
the lands and into the grooves but is spaced from the convex circular shaped surface
of the lands, so that air entrained between the web and the lands can flow into the
grooves. Some contact at the apex of the convex circular shaped surface of the lands
is acceptable at this location.
[0014] Typically, a minimum clearance between the web and the exterior surface occurs at
the apex of the convex circular shaped surface and the clearance between the web and
the convex circular shaped surface increases with axial distance from the minimum
clearance. The wrap angle α may be in the range of 10 to 300°. Means may be provided
for moving the web at a speed in the range of 300 to 1,000 feet per minute (91.4 to
305 meters per minute). The roller may be an idler roller or a driven roller. The
circular shaped surface may have a radius of curvature in the range of 0.020 to 1.2
inch (0.508 to 30.5 mm); the axial width of the grooves may be in the range of 0.020
to 0.105 inch (0.508 to 2.67 mm); and the axial width of the lands may be in the range
of 0.020 to 0.105 inch (0.508 to 2.67 mm). The cylindrical roller may have a diameter
in the range of 1.5 to 10.0 inch (38.1 to 254 mm).
[0015] Rather than circumferentially extending grooves and lands as just described, the
roller of our invention may include at least one spiral groove formed in the exterior
surface along the length, the spiral groove having an axial width; and at least one
continuous spiral land formed in the exterior surface and extended between turns of
the spiral groove, the spiral land having an axial width and a central surface with
a convex circular shaped surface.
[0016] As in the previous example, the convex circular shaped surface of the spiral land
and the axial widths of the spiral groove and spiral land may be chosen so that, at
a beginning of the wrap angle α during rotation of the roller, the web undulates along
the width of the roller over the turns of the land and into the turns of the groove
but is spaced from the convex circular shaped surface of the spiral land, so that
air entrained between the web and the spiral land can flow into the spiral groove.
The spiral groove and spiral land may be formed by at least one wire wound onto the
roller.
[0017] The apparatus and conveying rollers according to our invention provide various advantages.
Ultrathin webs can be conveyed at elevated web speeds with good traction. Web weaving
and scratching are minimized due to maintenance of adequate traction. The coefficient
of friction between ultrathin webs and rollers of our invention varies only moderately
over a wide range of web speeds. The wound wire embodiments of our roller have a high
quality surface finish and are simple and economical to manufacture and maintain.
Existing apparatus is easily modified for conveying ultrathin webs simply by replacing
prior art rollers with those of our invention.
[0018] The foregoing and other objectives, features and advantages of the invention will
be apparent from the following more particular description of the preferred embodiments
of the invention, as illustrated in the accompanying drawings.
[0019] Figure 1 illustrates schematically a manufacturing apparatus for conveying and treating
web materials, of the general type suitable for use of rollers in accordance with
our invention.
[0020] Figure 2 illustrates a fragmentary, sectional view in the direction of web movement,
showing the engagement of a relatively thick web with a prior art grooved roller just
as the web enters the wrap angle α in the apparatus of Figure 1.
[0021] Figure 3 illustrates how the measured coefficient of friction varies with web speed
for a web and roller pair of the type shown in Figure 2.
[0022] Figure 4 illustrates a fragmentary, sectional view in the direction of web movement,
showing the engagement of an ultrathin web with a prior art grooved roller just as
the web enters the wrap angle on the roller.
[0023] Figure 5 illustrates how the coefficient of friction varies with web speed for a
web and roller pair of the type shown in Figure 4.
[0024] Figure 6 illustrates a fragmentary, sectional view in the direction of web movement,
showing the engagement of an ultrathin web with one embodiment of a contoured roller
in accordance with our invention just as the web enters the wrap angle on the roller.
[0025] Figure 7 illustrates a schematic, sectional view in the direction of web movement,
showing the engagement of an ultrathin web with a further embodiment of a contoured
roller in accordance with our invention just as the web enters the wrap angle on the
roller.
[0026] Figure 8 illustrates a calculated radial displacement of an ultrathin web as a function
of axial position along a convex land on a contoured roller in accordance with one
embodiment of our invention.
[0027] 'Figure 9 illustrates a calculated interfacial air pressure between an ultrathin
web and a convex land on a contoured roller in accordance with the embodiment of our
invention of Figure 8, as a function of axial position along the land.
[0028] The following is a detailed description of the preferred embodiments of the invention,
reference being made to the drawings in which the same reference numerals identify
the same elements of structure in each of the several Figures.
[0029] Figure 6 illustrates a fragmentary, sectional view in the direction of web movement,
showing the engagement of ultrathin web 30 with one embodiment of a contoured roller
in accordance with our invention, just as the web enters the wrap angle α on roller
18. In accordance with our invention, the flat profile grooves and lands of the prior
art rollers are replaced with an undulating, contoured surface somewhat geometrically
similar to the shape assumed by an ultrathin web when used with a prior art grooved
roller, as shown in Figure 4. Our contoured surface may be provided on right cylindrical
or concave rollers; however, we have found that concave rollers are preferable for
more flimsy webs. Our recognition of the advantages of such a contoured surface was,
in our experience, contrary to the expectations of persons skilled in the web conveying
arts. Prior to our invention, the typical expectation of the skilled persons was that
a contoured surface such as used in our invention would result in poor traction due
to anticipated line contact. We have found, surprisingly, that such contoured surfaces
are quite effective when used with ultrathin webs.
[0030] In accordance with our invention, the exterior surface of roller 18 is provided with
a plurality of circumferentially extended grooves 42, which may be individual annular
grooves or one or more continuous spiral grooves. The grooves are separated by circumferentially
extended lands 44. At least the central portion of the outer surfaces of lands 44
have convex circular shaped curvature when viewed in the illustrated, axial section.
That is, lands 44 have an outwardly rounded profile when viewed in the direction of
movement of the web through the apparatus. In the illustrated embodiment, which may
be formed by diamond turning, for example, grooves 42 may have a generally concave
surface with an axial width
w1 in the range of 0.020 to 0.105 inch (0.508 to 2.67 mm). Lands 44 have a generally
convex circular shaped central portion on surface 46 with an axial width
w2 in the range of 0.020 to 0.105 inch (0.508 to 2.67 mm).
[0031] As illustrated, the radius of curvature may be in the range of 0.020 to 1.2 inch
(0.508 to 30.5 mm). When grooves 42 and lands 44 are shaped and spaced in this manner,
at about the beginning of wrap angle α and upon rotation of roller 18, web 30 will
undulate along the width of the roller over the lands and into the grooves while remaining
spaced slightly from the surfaces of the lands and grooves. Because web 30 assumes
this undulating configuration at about the beginning of the wrap angle, air entrained
between the web and the lands can flow readily into the grooves to permit the web
to engage the roller further along in the wrap angle.
[0032] Figure 7 illustrates another embodiment of a roller made in accordance with our invention.
In this instance, roller body 18 is wrapped with a circular cross section wire 50
to provide spiral grooves 42 and lands 44. Wire 50 may have a radius of about 0.020
inch (0.508 mm), for example, and be wrapped tightly onto the roller so that successive
turns of the wire abut in the manner illustrated. Roller body 18 may be a circular
cylinder having a diameter in the range of 1.5 to 10.0 inch (38.1 to 254 mm). When
the roller is to be used to convey more flimsy webs, a concave axial profile may be
advantageous. A concave profile is suitable whose diameter tapers about 0.2% from
its ends to its center.
[0033] Figure 8 illustrates a calculated radial displacement of an ultrathin web at about
the beginning of the wrap angle as a function of axial position along a convex land
on a contoured roller in accordance with the embodiment of Figure 7. A web 30 having
a thickness of about 0.00025 inch (0.0064 mm) was assumed to be wrapped onto a roller
having a diameter of about 2.75 inch (69.85 mm). As shown in the figure, the clearance
between the web and the convex land was calculated to be a minimum at the point of
maximum radius of the land, corresponding to high point 48 in Figures 6 and 7. On
either side of the point of maximum radius, the clearance between the web and the
land was calculated to increase, thus indicating that air would be able to escape
into the neighboring grooves.
[0034] Figure 9 illustrates a calculated interfacial air pressure at about the beginning
of the wrap angle between web 30 and convex land 44 on a contoured roller in accordance
with the embodiment of Figure 7, as a function of axial position along the land. Consistent
with Figure 8, this plot indicates that the calculated pressure between the web and
the convex land decreases from a maximum at high point 48 to a minimum at the center
of the neighboring groove. The convex shape of the curve indicates that the relatively
high pressure air at the center of the land can escape readily into the lower pressure
area in the grooves.
10...source of web, such as stock roll
12...web of indeterminate length, having width and thickness
14...process zone, such as coating machine
16...take-up roll for web
18...right cylindrical roller, having length longer than width of web
20...motor, optional
α...wrap angle of web onto roller
24...conventional circumferentially extended groove or valley, circular or spiral
26...conventional circumferentially extended land, circular or spiral
t...thickness of web
30...ultrathin web at beginning of wrap angle
32...high ridge
34...low valley
36, 38...edges of land
40...volume of trapped air
42...circumferentially extended groove or valley of invention, circular or spiral
w1.... axial width of groove 42
44...circumferentially extended land of invention, circular or spiral
w2...axial width of land 44
46...convex surface of land 44
48...central location of maximum radius or high point of land 44.
1. A conveyance apparatus, comprising: a source (10) of web to be conveyed, the web (30)
to be conveyed having a width; at least one cylindrical rotatable roller (18) having
an exterior surface with a length, the length being longer than the width of the web
to be conveyed, a portion of the web to be conveyed being wrapped onto the at least
one roller over a wrap zone defined by a wrap angle (α); a plurality of circumferentially
extending axially spaced grooves (42) formed on the exterior surface along the length
each of the plurality of grooves (42) having an axial width; a plurality of lands
(44) formed on the exterior surface (46) and extended between the grooves (42), each
of the plurality of lands (44) having an axial width and a central surface, characterized in that the exterior surface (46) has an undulating contour each of the plurality of lands
(44) have a convex circular shape upon which the web is to be conveyed having a radius
of curvature in the range of.0,508 mm to 30,5 mm, the axial width of each of the plurality
of lands being in the range of 0,508 mm to 2,67 mm; the convex circular shapes of
the lands (44) and the axial widths of the grooves (42) and lands (44) are chosen
so that, at a beginning of the wrap zone during rotation of the at least one roller
(18), the web (30) to be conveyed undulates along the width of the roller (18) over
the lands (44) and into the grooves but is spaced from the convex circular shapes
of the lands, whereby air entrained between the web to be conveyed and the lands can
flow into the grooves.
2. Apparatus according to claim 1, wherein the wrap angle (α) is in the range of 10 to
300°.
3. Apparatus according to claim 1, further comprising means for driving said at least
one roller (18) to convey the web at a speed in the range of 91,5 m per minute to
305 m per minute.
4. Apparatus according to claim 1, wherein the lands (44) are continuous.
5. Apparatus according to claim 1, wherein the generally cylindrical roller (18) has
a diameter in the range of 38,1 mm to 254 mm.
6. The apparatus according to claim 1, wherein said plurality of circumferential extending,
axially spaced grooves (42) comprises at least one spiral groove having an axial width,
and said plurality of lands (44) comprises at least one spiral land, the spiral land
having an axial width and a central convex circular shaped surface.
7. The apparatus according to claim 6 wherein the spiral land (44) is continuous.
8. The apparatus according to claim 6, wherein the convex circular shaped curvature of
the spiral land (44) and the axial width of the spiral groove (42) and spiral land
(44) are chosen so that, at a beginning of the wrap zone during rotation of the at
least one roller (18), the web (30) to be conveyed undulates widthwise along the at
least one roller (18) over the turns of the land (44) and into the turns of the groove
(42) but is spaced from the convex circular shaped curvature of the spiral land, whereby
air entrained between the web (30) to be conveyed and the spiral land (44) can flow
into the spiral groove (42).
1. Fördervorrichtung mit einer Quelle (10) aus zu transportierendem, eine Breite aufweisenden
Bandmaterial (30), mindestens einer drehbaren Zylinderwalze (18) mit einer Außenfläche
und einer Länge, die größer als die Breite des zu transportierenden Bandes ist, wobei
ein Teil des zu transportierenden Bandes mindestens um eine Walze über eine durch
einen Auflagewinkel (à) definierte Auflagezone geführt ist, einer Vielzahl von über
den Umfang der Walze verlaufenden, voneinander beabstandeten Vertiefungenen (42),
welche auf der Außenfläche entlang der Länge jeder der Vielzahl der eine axiale Breite
aufweisenden Vertiefungen (42) gebildet sind, einer Vielzahl von auf der Außenfläche
(46) gebildeten und zwischen den Vertiefungen (42) verlaufenden Erhöhungen (44), die
eine axiale Breite und eine Zentralfläche aufweisen,
dadurch gekennzeichnet, dass
die Außenfläche (46) ein welliges Profil aufweist, wobei jede der Vielzahl von Erhöhungen
(44) eine konvexe, kreisförmige Form zeigt, über die das Band mit einem Krümmungsradius
von 0,508 bis 30,5 mm geführt ist, die axiale Breite jede der Vielzahl von Erhöhungen
im Bereich zwischen 0,508 und 2,67 mm liegt, und wobei die konvexe, kreisförmige Form
der Erhöhungen (44) und die axiale Breite der Vertiefungen (42) und Erhöhungen (44)
so gewählt sind, dass während der Drehung der mindestens einen Walze (18) das zu transportierende
Band (30) am Beginn der Auflagezone sich in Richtung der Breite der Walze (18) wellenförmig
über die Erhöhungen (44) und in die Vertiefungen bewegt, von den konvexen, kreisförmigen
Formen der Erhöhungen jedoch beabstandet ist, wodurch zwischen dem zu transportierenden
Band und den Erhöhungen mitgeführte Luft in die Vertiefungen abfließen kann.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Auflagewinkel (α) im Bereich zwischen 10 und 300° liegt.
3. Vorrichtung nach Anspruch 1, desweiteren gekennzeichnet durch ein Mittel zum Antreiben der mindestens einen Walze (18), um das Band bei einer Geschwindigkeit
im Bereich zwischen 91,5 m und 305 m pro Minute zu transportieren.
4. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Erhöhungen (44) durchgehend sind.
5. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die zylindrische Walze (18) einen Durchmesser im Bereich zwischen 38,1 und 254 mm
aufweist.
6. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Vielzahl der über den Umfang verlaufenden und axial beabstandeten Vertiefungen
(42) mindestens eine spiralförmige Vertiefung mit einer axialen Breite aufweist, und
dass die Vielzahl der Erhöhungen (44) mindestens eine spiralförmige Erhöhung mit einer
axialen Breite und einer zentralen, konvexen Oberfläche kreisförmiger Gestalt aufweist.
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass die spiralförmige Erhöhung (44) durchgehend ist.
8. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass die konvexe, kreisförmige Oberfläche der spiralförmigen Erhöhung (44) und die axiale
Breite der spiralförmigen Vertiefung (42) und der spiralförmigen Erhöhung (44) so
gewählt sind, dass während der Drehung der mindestens einen Walze (18) das zu transportierende
Band (30) am Beginn der Auflagezone sich in Richtung der Breite entlang der mindestens
einen Walze (18) wellenförmig über die Windungen der Erhöhung (44) und in die Windungen
der Vertiefung (42) bewegt, von der konvexen, kreisförmigen Oberfläche der spiralförmigen
Erhöhung jedoch beabstandet ist, wodurch zwischen dem zu transportierenden Band (30)
und der spiralförmigen Erhöhung (44) mitgeführte Luft in die spiralförmige Vertiefung
(42) abfließen kann.
1. Dispositif de transport, comprenant : une source (10) de bande à transporter, la bande
(30) à transporter présentant une largeur, au moins un rouleau rotatif cylindrique
(18) comprenant une surface extérieure présentant une longueur, la longueur étant
plus longue que la largeur de la bande à transporter, une partie de la bande à transporter
étant enroulée sur le au moins un rouleau sur une zone d'enroulement définie par un
angle d'enroulement (α), une pluralité de rainures espacées axialement s'étendant
sur la circonférence (42) formées sur la surface extérieure suivant la longueur, chacune
de la pluralité de rainures (42) présentant une largeur axiale,
une pluralité de plages (44) formées sur la surface extérieure (46) et s'étendant
entre les rainures (42), chaque plage de la pluralité de plages (44) présentant une
largeur axiale et une surface centrale, caractérisé en ce que la surface extérieure (46) présente un contour ondulant, chacune de la pluralité
de plages (44) présente une forme circulaire convexe sur laquelle la bande doit être
transportée, présentant un rayon de courbure dans l'intervalle de 0,508 mm à 30,5
mm, la largeur axiale de chacune de la pluralité de plages étant dans l'intervalle
de 0,508 mm à 2,67 mm,
les formes circulaires convexes des plages (44) et les largeurs axiales des rainures
(42) et des plages (44) sont choisies de manière à ce que, au début de la zone d'enroulement
durant la rotation du au moins un rouleau (18), la bande (30) à transporter ondule
le long de la largeur du rouleau (18) sur les plages (44) et jusque dans les rainures
mais est espacée par rapport aux formes circulaires convexes des plages, d'où il résulte
que de l'air entraîné entre la bande à transporter et les plages peut circuler dans
les rainures.
2. Dispositif selon la revendication 1, dans lequel l'angle d'enroulement (α) est dans
la plage de 10 à 300°.
3. Dispositif selon la revendication 1, comprenant en outre un moyen destiné à entraîner
ledit au moins un rouleau (18) pour transporter la bande à une vitesse dans l'intervalle
de 91,5 m par minute à 305 m par minute.
4. Dispositif selon la revendication 1, dans lequel les plages (44) sont continues.
5. Dispositif selon la revendication 1, dans lequel le rouleau de forme générale cylindrique
(18) présente un diamètre dans l'intervalle de 38,1 mm à 254 mm.
6. Dispositif selon la revendication 1, dans lequel ladite pluralité de rainures, espacées
axialement, s'étendant sur la circonférence (42) comprend au moins une rainure en
spirale présentant une largeur axiale, et ladite pluralité de plages (44) comprend
au moins une plage en spirale, la plage en spirale présentant une largeur axiale et
une surface centrale de forme circulaire convexe.
7. Dispositif selon la revendication 6, dans lequel la plage en spirale (44) est continue.
8. Dispositif selon la revendication 6, dans lequel la courbure convexe de forme circulaire
de la plage en spirale (44) et la largeur axiale de la rainure en spirale (42) et
de la plage en spirale (44) sont choisies de manière à ce que, au début de la zone
d'enroulement durant la rotation du au moins un rouleau (18), la bande (30) à transporter
ondule dans le sens de la largeur le long du au moins un rouleau (18) sur les spires
de la plage (44) et dans les spires de la rainure (42) mais est espacée de la courbure
convexe de forme circulaire de la plage en spirale, d'où il résulte que de l'air entraîné
entre la bande (30) à transporter et la plage en spirale (44) peut circuler dans la
rainure en spirale (42).