Introduction
[0001] The present invention relates, generally, to porous articles, and in particular to
porous zirconia or zirconium containing articles, to methods of making such articles,
and to methods of using such articles. One example of the porous articles are porous
particles. More particularly, the present invention relates to porous particles containing
zirconia and other metallic oxides including silica in combination and to the manufacture
and use of such particles. Even more particularly, the present invention relates to
the use of particles containing zirconia and other metallic oxides including optionally
containing silica, in separation applications, particularly in chromatographic applications.
One particular aspect of the present invention relates to derivatisation processes
whereby the surface of the porous zirconia or zirconium containing particles are modified
and to the use of such modified particles in chemical processes, particularly in chromatographic
applications.
[0002] Porous articles find use in certain applications because of their properties, such
as for example, their high surface area per unit volume. Such uses include use as
supports for a wide variety of chemical substances, such as catalyst supports and
as chemical sorbents. Where the porosity and the pore size of the particles can be
controlled, the porous particles also find particular use in chromatography applications
and in chemical separation applications generally. Porous silica, one example of a
porous particle, finds particular use in chromatographic applications, such as High
Performance Liquid Chromatography (HPLC). However, the use of porous silica is limited
by the chemical reactivity of the particles since porous silica is susceptible to
reactions in alkaline media and therefore is of only limited use in applications which
require resistance to alkaline attack or for operations conducted in alkaline media.
Thus, there is a need for a porous material which is not susceptible to alkaline attack
and can be used in alkaline media.
[0003] Another example of porous articles are organic polymers which are particularly useful
in a wide variety of applications due to their pore size or to the pore sizes being
readily controllable. However, at high temperatures and in certain organic solvents,
or when subjected to certain mechanical stress, the organic polymers have limited
strength, and can distort altering their pore sizes which in turn changes the separation
characteristics of the polymers and thus reduces their effectiveness and usefulness
in many applications. Disadvantages of using polymers are particularly prevalent in
situations where the polymer particles are mixed with liquids, since the low density
of the organic polymer particles, being similar to that of the liquids, prevents their
ready separation from the liquid. In particular, low density polymeric particles are
difficult to handle in fluidised beds due to the similarities of the densities of
the particles and of the liquids being treated in the fluidised bed. Thus, there is
a need to provide porous particles which retain their shape in a wide variety of chemical
and mechanical environments in order to prolong the useful working life of the particles
and to increase the variety of applications in which the particles may be used. Additionally,
there is a need to provide porous particles which can be readily separated from the
liquids being treated by the particles on the basis of the difference in densities
of the particles and liquids.
[0004] In the past there has been a proposal to use porous zirconia particles as the support
phase for chromatography applications (Rigney, Webber and Carr, Journal of Chromatography
484 (1989) 273-291). However, this proposal was not entirely successful due to the
particles being Unstable in some mechanical environments encountered in chromatographic
applications and due to the inability to modify the surface properties of the particles.
Such disadvantages arose primarily from the method used in making the particles. The
present invention sets out to overcome these and other weaknesses of the particles
and of the previously used method of making the particles.
[0005] Therefore, there is a need for porous particles which are resistant to alkaline attack,
which are of improved strength and of high density, which can be used in a wide variety
of chemical separation applications and which extend the applications in which such
porous particles can be utilised by modifying the surface of the particles. It has
now been discovered that it is possible to make porous zirconia which can provide
improved resistance to alkaline attack, which is of good strength and has a relatively
high density and which can be used in diverse chemical and mechanical environments
in which hithertobefore it has not been possible to use porous zirconia particles.
The improved properties result at least in part from the method of making the particles.
Porous Zirconia Particles
[0006] According to one aspect of the present invention there is provided porous zirconia
particles or zirconium-containing particles in which the particles comprise a substantially
continuous three dimensional interpenetrating network of interconnected pores, wherein
said pores are of substantially constant diameter throughout their length.
[0007] Typically, the pores have substantially constant diameter at the curves or bends
of the pores, and at the intersection of the pores. However, it is to be noted that
where two or more pores intersect, the diameter of the pores may be changed to account
for the individual pores not being exactly aligned with each other.
[0008] Typically, the zirconia or zirconium-containing particles also comprise a further
component. Typically, this component is a metal oxide, such as for example silica.
More typcially, the particles of the present invention comprise a combination of zirconia
and silica and can optionally include zircon. Preferably, there is from 1 to 100 %
zirconia and from 99 to 0 % silica, more preferably 5 to 90 % zirconia and 95 to 10
% silica.
[0009] Typically, the size of the particles can be up to 200 µm or greater, preferably 5
to 100 µm, more preferably 5 to 80 µm and even more preferably 10 to 70 µm.
[0010] Preferably, the porous zirconia of the present invention comprises particles having
interconnected pores of up to about 5 • 10
-7m (5000 Å) or greater, preferably between about 0,02 - 2 • 10
-7m (20-2000 Å) in diameter, more preferably between 0,2 and 1,5 • 10
-7m (200-1500 Å) in diameter, and even more preferably, pores of between 0,5 and 1 •
10
-7m (500-1000 Å). However, it is to be noted that pores of up to 5 • 10
-7m (5000 Å) or even larger are possible with some of the particles of the present invention
depending on the size of the particles. When the pore sizes become too large the effectiveness
of the particles in chemical separation applications reduces because the surface area
of the particles is reduced.
[0011] Typically, the surface area per unit mass of the particles can be up to 100 m
2/g, preferably 5 to 30 m
2/g with a typcial value being about 5 m
2/g.
[0012] Typically, the surfaces of the porous zirconia particles may be modified, more typically,
the outer surfaces of the particles or surfaces of the pores closer to the outer surface
of the particles. More typically, the surface modification of the particles involves
hydroxylation of the surface to impart a greater amount of hydroxide groups on the
surface of the particles.
[0013] Even more typically, the surface modified or surface treated particles can be further
modified with other functional groups. The surface modified particles find particular
usefulness in chromatography applications.
[0014] It will be understood that by use of the term "zirconia" in the present specification
is meant zirconia-rich compositions such as those commonly referred to in the art
as zirconia compositions or compositions containing a significant proportion of zirconia
or zirconium, preferably at least about 50% zirconia.
Crystallographic forms of Zirconia
[0015] Zirconia, which is also known as zirconium oxide (ZrO
2), may exist at room temperature in any of three crystallographic forms; monoclinic,
tetragonal or cubic. The monoclinic form is the most stable at room temperature, which
is to say that this crystallographic form has the lowest bulk energy of all three
forms at this temperature. The tetragonal form is of higher energy than the monoclinic
form and can be stabilised at room temperatures by the addition of dopants such as
for example, rare earth oxides including yttria, and also calcia and magnesia. Preferably,
the tetragonal form may be stabilised at room temperatures by the inclusion of yttria
or other rare earth oxides depending upon the grain size of the crystallites of tetragonal
zirconia, amongst other factors.
[0016] The transformation of zirconia from the tetragonal to monoclinic form is accompanied
by a 4% volume increase. Below a critical grain size, which will be dependent on a
number of factors, including the nature of the matrix material in which the zirconia
is embedded, the tetragonal form will be metastable due to the fact that the increase
in surface energy which would accompany a 4% volume increase is greater than the reduction
in the bulk energy on the transformation from the tetragonal to monoclinic form.
[0017] The cubic form which is of the highest bulk energy is more unstable at room temperatures
than the other forms, and may be stabilised at these temperatures by the addition
of dopants such as calcia and magnesia.
[0018] The crystallographic form of the zirconia present in particular particles may be
readily determined by any number of known methods, including X-ray diffraction.
[0019] It is to be noted that the porous zirconia particles or zirconia-containing particles
of the present invention may take any crystallographic form or combination of forms
of the zirconia.
[0020] It has been found that the monoclinic form of the zirconia is the preferred crystallographic
form from which the porous zirconia particles of the present invention can be composed
and results in particles having the most desired properties for porous materials used
in chemical separation applications. Therefore, it is preferable to use starting materials
which produce porous monoclinic zirconia particles comprising the substantially continuous
three dimentionally interpenetrating network of interconnected pores.
[0021] Further it is to be noted that where it is desired to surface modify the porous zirconia
particles, it is not at all critical that the porous particles are composed of the
monoclinic form of zirconia. The porous monoclinic zirconia particles of the present
invention exhibit improved strength and increased density when compared to conventional
porous materials such as porous silica or porous organic polymers. Therefore, the
porous monoclinic zirconia is particularly useful in applications for the separation
of chemicals and biochemicals, particularly using chromatographic or biochromatographic
techniques and other techniques such as batch procedures using stirred tanks, batch
. tanks, fluidised beds and the like.
[0022] The preparation of porous monoclinic zirconia having the required properties requires
careful control of the crystallographic structure and of the morphology of the zirconia.
Therefore, another aspect of the present invention relates to a process for the production
of porous monoclinic zirconia.
Method of Making Porous Monoclinic Zirconia
[0023] According to the present invention there is provided a method for the production
of porous monoclinic zirconia comprising the following steps in sequence:
(a) heating a zirconia-silica composition to provide particles of said composition
in a substantially homogeneous liquid melt form;
(b) quenching said particles to effect spinodal decomposition of the liquid melt to
provide quenched particles comprising a silica-rich phase and a zirconia-rich phase,
wherein said zirconiarich phase comprises zirconia substantially in a tetragonal form;
(c) annealing said quenched particles to transform the tetragonal form of the zirconia-rich
phase to the monoclinic form on cooling so as to provide annealed particles comprising
a continuous monoclinic zirconia-rich phase and a continuous silica-rich phase;
(d) leaching said silica-rich phase from the annealed particles to provide porous
monoclinic zirconia comprising a three dimensionally continuous interpenetrating network
of interconnected pores, said pores being of substantially constant diameter throughout
their length.
[0024] In the process for producing porous monoclinic zirconia particles according to the
present invention, a zirconia-silica composition is used as the starting composition,
which zirconia-silica composition is heated to form the homogeneous liquid melt which
undergoes phase separation on cooling to form one phase of zirconia and another of
silica.
[0025] Typically, in step (c) a third phase is formed. This third phase is typically zircon.
More typically, the zircon phase is not leached away when the silica phase is being
leached. Even more typically, the porous particles contai/n zircon in addition to
the zirconia.
[0026] The zirconia-silica composition used in step (a) may be either an admixture of zirconia
or a zirconia-containing material and silica or a silica-containing material or may
be a compound containing both zirconium or zirconia and silica or combination thereof.
Additionally, compositions or compounds which decomposes to provide a homogeneous
liquid melt of zirconia and silica may be used.
[0027] Preferably, the starting material used in this method of the present invention is
commercially available zircon. More preferably the zircon undergoes a pretreatment
such as for example sieving or similar to suit the end uses to which the porous particles
are to be put. Typically, the commercial zircon is screened to remove coarse particles
greater than 100 µm.
[0028] Typically, the zirconia:silica volume ratio in the quenched particles is about 1:1.
This ratio provides porous monoclinic zirconia after leaching of a particularly uniform
structure and of substantially even porosity. The molar volumes of both silica and
zirconia are very similar to each other and hence it is desirous to select a zirconia-silica
composition wherein the molar ratio of zirconia to silica is about 1:1, in order to
achieve a volume ratio of about 1:1. Where the zirconia-silica composition used in
this form of the method of the present invention is a composition which decomposes
to a homogeneous liquid melt of zirconia and silica the composition should decompose
to give a mixture of zirconia and silica in a molar ratio of about 1:1. However, it
is to be noted that the ratio of zirconia to silica can be altered according to the
final properties required of the porous particles since the leaching of the silica
is responsible for the productions of pores in the zirconia particles and hence the
amount of silica originally present in the starting zirconia-silica composition determines
at least in part the amount of the pores present in the particles.
[0029] Typically, zircon is a particularly preferred form of the starting zirconia-silica
composition. Zircon has the molecular formula ZrSiO
4 and decomposes to a 1:1 molar mixture of zirconia (ZrO
2) and silica (SiO
2).
[0030] Typically, admixtures of zirconia and silica or materials containing these compounds
may also be conveniently used to provide a volume ratio of about 1:1. However, it
is to be noted that any ratio may be used. Admixtures may also be used to provide
varying volume ratios, thereby allowing the degree or amount of porosity to be controlled
in the porous zirconia.
[0031] Typically, the pore size of a single particle is substantially constant. However,
the pore sizes may vary between particles. A typical pore size distribution can be
from 0.01 to 0.2 µm for a particle size range of from 40 to 80 µm.
[0032] Typically, the zirconia-silica composition may conveniently be provided in the form
of a powder or particles. The size of the particles will be determined by a number
of factors. The zirconia-silica particles are desirably of a size conveniently adapted
for the end use of the porous zirconia in the desired application, such as, for example,
use as chromatographic powders and the like. The zirconia-silica particles are preferably
sufficiently small so as to be able to form a homogeneous liquid melt. This size will
be determined by such things as the heating rate, heating time and thermal conductivity
of the zirconia-silica particles amongst other factors. The zirconia-silica particles
should also be sufficiently small so as to allow the homogeneous liquid melt to be
quenched at a rate which allows spinodal decomposition of the liquid melt as will
be discussed in more detail later in this specification. This size will be determined
by the required cooling rate which itself is dependent on the composition of the zirconia-silica
composition, the temperature of the quenching medium, the efficiency of heat transfer
from the particles to the quenching medium and the thermal conductivity of the particles
among other factors.
[0033] Typically, the zirconia-silica composition should ideally be heated to provide a
homogeneous liquid melt. The temperature necessary will be dependent on the zirconia-silica
composition. For example, the zirconia-silica composition which is equivalent to that
of zircon forms a liquid at temperatures in excess of about 2400°C. Typically, the
zirconia-silica composition would be heated to temperatures well above their respective
melting temperatures so that the time for forming the homogeneous liquid melt is reduced.
[0034] Typically, the zirconia-silica composition may be heated in any convenient heating
apparatus available to the skilled artisan, which heating apparatus is capable of
producing Temperatures sufficiently high to melt the zirconia-silica composition.
It has been found particularly preferable to utilise a plasma arc torch or reactor
to heat the zirconia-silica composition. When using a plasma arc reactor the zirconia-silica
composition is preferably in the form of particles comprising an intimate mixture
of zirconia and silica or in the form of a composition which will decompose to form
an intimate mixture of silica and zirconia. Zircon may be conveniently used as one
example of the zirconia-silica composition in a plasma arc torch. The particularly
preferred particles of zircon for use in a plasma arc torch have a particle size in
the range of from 5 µm to 100 µm in size. More preferably, the zircon particles are
in the range of 10 to 55 µm. Typically, the zircon particles are elongated, or acicular
and on heating the particles first disassociate and then melt to form a homogeneous
liquid melt.
[0035] Typically, the use of smaller zirconia-silica particles allows the use of lower temperatures
for heating, such as for example, passing through an oxyacetylene or oxyhydrogen flame.
Typcial particle sizes useful with flame spraying are in the range of from 3 to 15
µm.
[0036] Typically, the particles of the homogeneous liquid melt are quenched at a cooling
rate sufficient to prevent nucleation and growth or zirconia spherulites and to allow
spinodal decomposition of the liquid melt into zirconia-rich and silica-rich phases.
The spinodal decomposition of the homogeneous liquid melt gives an extremely fine
microstructure of zirconia-rich and silica-rich interpenetrating networks which exhibit
uniform periodicity and three dimensional continuity.
[0037] Typically, the quenched solid, non-porous particles have wave lengths of approximately
10
-8m (100 Å) between the different phases. By "wave length" in the present specification
is meant the average distance between one phase and the next.
[0038] By the term "uniform periodicity" is meant the wave length is substantially uniform.
[0039] By the term "three dimensional continuity" is meant that each phase forms an interconnected
three dimensional network.
[0040] Typically, the spheroidal particles formed from the homogeneous liquid melt are quenched
in a water bath. However, other liquid quenching media may be used. Liquid quenching
media are preferred due to the high heat transfer rates which can be achieved between
the particles and the liquid.
[0041] Typically, quenching will provide a cooling rate of the order of about 10
5 to 10
7°C sec
-1. However, other quenching rates are possible.
[0042] It will be understood by those skilled in the art that by the term "zirconia-rich"
is meant a phase containing a higher percentage of zirconia than contained in the
original homogenous liquid melt of the zirconia-silica composition.
[0043] It will be understood by those skilled in the art that by the term "silica-rich"
is meant a phase containing a higher percentage of silica than in the original homogeneous
liquid melt of the zirconia-silica composition.
[0044] Typically, the quenched particles comprise both a zirconia-rich and a silica-rich
phase. The zirconia-rich phase will be substantially in the tetragonal form which
is metastable and on leaching of the silica-rich phase therefrom will transform to
the stable monoclinic form. This transformation is accompanied by a 4% volume increase
which generally leads to the disintegration of the zirconia-rich network. Therefore,
if it were not for the annealing stage prior to the leaching stage it would not be
possible to produce porous particles having the characteristics and properties possessed
by the particles of the present invention.
[0045] The quenched particles are therefore annealed to coarsen the zirconia-rich phase.
Typically, the annealing takes place below the temperature at which substantial recombination
of zirconia and silica occurs at an appreciable rate. This temperature will be dependent
on the composition of the zirconia-rich phase and be readily determinable by simple
experimentation by the skilled artisan. However, it is to be noted that it is preferable
for some recombination of the silica and zirconia to take place to form zircon of
a similar structure to enhance the strength of the porous particles produced by leaching
the uncombined silica therefrom.
[0046] Preferably, the annealing takes place at a temperature sufficient for the coarsening
of the zirconia-rich phase at a rate convenient for manufacture, which is to say at
a rate which is fast enough to be accomplished on a reasonable time scale, but not
so fast as to render the coarsening uncontrollable. Preferably, the annealing takes
place at a temperature in the range of from about 1000°C to 1400°C, preferably 1200°C
to 1400°C and is achieved over a period of up to 5 hours, preferably from about 1
to 5 hours depending on the particle size of the particles.
[0047] Typically, the degree of coarsening of the zirconia-rich matrix aids in determining
the pore size in the porous zirconia. The longer or more extensive the coarsening
the larger the pore size in the porous zirconia. Typically, the coarsening of the
zirconia-rich phase occurs by diffusion of zirconia and silica.
[0048] During coarsening, the grain size of the zirconia crystallites increases. Typically,
the zirconia is of a grain size sufficient to allow the zirconia to transform from
the tetragonal form to the monoclinic form on cooling to ambient temperature. The
critical grain size is dependent on the composition of the zirconia-rich phase. The
temperature of the transformation from the tetragonal to monoclinic form is dependent
on the composition of the zirconia-rich phase and the grain size of the zirconia crystallites.
However, it is to be noted that it is preferable to have some silica or zircon present
in the zirconia phase before leaching to prevent collapse of the substantially pure
zirconia particles.
[0049] The transformation temperature of dissociated zircon that has been quenched and subsequently
annealed is typically about 720°C. After the quenched particles have been annealed
it is preferred that the particles are cooled slowly through the transformation temperature
so as to avoid disintegration of the particles so that particles having improved strength
can be obtained.
[0050] It is preferred that the zirconia-rich phase is not coarsened to such an extent that
the transformation of the tetragonal form to the monoclinic form, with its accompanying
4% volume increase, leads to shattering of the annealed particles on cooling. Above
a critical size, determined by the composition of the silica-rich phase among other
factors, the zirconia-rich phase on transformation introduces strains into the silica-rich
phase which can cause it to fail on cooling.
[0051] The annealed particles are then leached to remove the silica-rich phase. Alkali or
hydrofluoric acid may be used to leach the silica-rich phase. Preferably, the annealed
particles are leached with alkali, more preferably with sodium hydroxide. Typically,
the rate of leaching is increased with increased temperature. More preferably, the
annealed particles are leached with sodium hydroxide at a temperature of about 160
°C.
Method of Making Porous Tetragonal Zirconia
[0052] According to another aspect of the present invention there is provided a process
for the production of porous tetragonal zirconia comprising the following steps in
sequence:
(a) heating a zirconia-silica composition to provide particles of said composition
in the form of a substantially homogeneous liquid melt;
(b) quenching said particles such that spinodal decomposition of the liquid melt occurs
to provide quenched particles comprising a silica-rich phase and a zirconia-rich phase;
(c) annealing said quenched particles to coarsen the zirconia-rich phase such that
the desired pore size can be obtained in step (d);
(d) leaching said silica-rich phase from the annealed particles to provide porous
tetragonal zirconia comprising a three dimensionally continuous interpenetrating network
of pores, said pores being of substantially constant diameter throughout their length.
[0053] Preferably, the tetragonal zirconia is stabilised by the addition of dopants, such
as for example, rare earth oxides including yttria, calcia or magnesia or combinations
thereof. More preferably, yttria is used as the dopant. In order to produce porous
tetragonal zirconia it is referred that the dopants are intimately incorporated into
the zirconia-silica composition in the initial heating step. This enables a homogeneous
liquid melt to be readily formed on heating.
[0054] Typically, the zirconia-silica composition further comprises a dopant. Typically,
the dopant is a rare earth oxide, preferably yttria. Typcially, the dopant exists
as particles in the zirconia-silica composition. More typically, two phases are formed
in step (b), the dopant being preferably incorporated into the zirconia-rich phase.
[0055] The process for producing porous tetragonal zirconia as hereinabove described may
be carried out according to the parameters described with reference to the process
for producing porous monoclinic zirconia except for the annealing step. The annealing
step in the process for producing porous tetragonal zirconia preferably produces grains
of tetragonal zirconia which are stabilised by the presence of the dopant with respect
to transformation to the monoclinic form on cooling to ambient temperature and throughout
the leaching process. The stability of the grains of tetragonal zirconia is dependent
on the composition and amount of dopants in the zirconia-rich phase among other factors.
[0056] Porous tetragonal zirconia is particularly strong and can provide particles which
are particularly useful due to their strong and robust nature.
Method of Making Cubic Zirconia
[0057] According to another aspect of the present invention there is provided a process
for the production of porous cubic zirconia comprising the following steps in sequence:
(a) heating a zirconia-silica composition to provide particles of said composition
in the form of a substantially homogeneous liquid melt;
(b) quenching said particles to effect spinodal decomposition of the liquid melt to
provide quenched solid, non-porous particles comprising a silica-rich phase and a
zirconia-rich phase;
(c) annealing said quenched particles to coarsen the zirconia-rich phase so that the
desired pore diameter can be obtained after step (d); and
(d) leaching said silica-rich phase from the annealed particles to provide porous
cubic zirconia comprising a three dimensionally continuous interpenetrating network
of pores.
[0058] Preferably, the cubic zirconia is stabilised by the addition of dopants, such as,
for example, calcia, magnesia and the like. Typically, the dopant must be present
in sufficient quantities to stabilise the cubic form of the zirconia. In order to
produce porous cubic zirconia it is preferred that the dopants are intimately incorporated
into the zirconia-silica composition. This enables a homogeneous liquid melt to be
readily formed on heating.
[0059] The process for producing porous cubic zirconia as hereinabove described may be carried
out according to the parameters described with reference to the process for producing
porous monoclinic zirconia except for the annealing step. The annealing step in the
process for producing porous cubic zirconia preferably produces grains of cubic zirconia
which are stabilised with respect to transformation to either the tetragonal or subsequently
monoclinic form on cooling to ambient temperature and throughout the leaching process.
It is to be noted that while the annealing step is not necessary to stabilise the
zirconia particles, it influences the pore size of the particles. The stability of
the grains of cubic zirconia is dependent on the composition and amount of dopants
in the zirconia-rich phase as well as the grain size among other factors.
Derivatised Porous Zirconia
[0060] It is a further object of the present invention to provide derivatised porous zirconia
particles with enhanced stability under alkaline conditions, with enhanced strength
in a wider variety of harsh environments so that such particles can be used in a wider
variety of chemical separation applications, and with a wide variety of functional
groups on the surface of the particles so that the porous particles can be used in
a wide variety of chemical separation processes, including chromatographic applications.
[0061] According to the present invention there is provided porous zirconia particles having
functional molecules attached to the surface of the particles via a silane group reacting
with surface hydroxyls on the particle surface of the zirconia particles.
[0062] In a further form of the present invention there is provided porous zirconia particles
having a shell of organic polymer around or surrounding the zirconia particles wherein
the polymeric shell is cross-linked and attached to the hydroxyl groups on the surface
via silanes.
[0063] The present invention also relates to a method of preparing derivatised porous zirconia
particles by first treating the particles via a hydrothermal process to increase the
hydroxyl group density on the particle surface, and then reacting the hydroxyl surface
group with a silane.
[0064] Silane is a term recognised in the art relating to silicon hydrides and includes
disilanes as well as trisilanes. Other chemical groups may be coupled to the silane
molecules.
[0065] The hydrothermal treatment as practised in accordance with the present invention
is used to reintroduce hydroxyl groups to the surface of a zirconia particle and to
provide a high and uniform hydroxyl. group density on the surface. The hydrothermal
treatment is performed at temperatures between 100 and 300°C, typically 150°C and
elevated pressures. The pressure inside the autoclave is due to vapour pressure of
water and is a function of the temperature of the autoclave.
[0066] A high and uniform hydroxyl group density is a requirement for a high ligand density
during subsequent modification of the surface properties of the zirconia particle.
The quality of the modification and therefore the effectiveness of the hydrothermal
treatment is measured indirectly by determination of the uncovered zirconia surface
area. The effectiveness of the hydrothermal treatment is dependent on the duration
of the treatment and the temperature (pressure) involved. The higher the temperature
the faster the kinetics. As an example, using a temperature of 150°C the optimum reaction
time for the hydrothermal treatment of the zirconia particles is 6 hours. However,
any temperature, time, pressure combination within the limits of each of these parameters
can be used in the hydrothermal treatment to hydroxylate the surface of the particles.
[0067] In a further embodiment the invention provides a method of preparing derivatised
porous zirconia particles with a polymeric shell on the surface by adsorbing a monomeric
material onto the surface and then polymerising the monomeric material to form the
polymeric shell.
[0068] The porous zirconia of the present invention may be derivatised by the attachment
of organic molecules to the surface of the porous zirconia. Such organic molecules
which may be attached to the surface of the porous zirconia include affinity dyes,
hydrophobic and hydrophilic surfaces and the like, one example of which are the silanes.
Typically, the surface of the porous zirconia particles is activated with a substituted
silane onto which the organic molecule is bound. The derivatisation of the porous
zirconia provides an increased range of separation applications for which the porous
zirconia may be used and thus extends the application of the present invention.
[0069] It is to be noted that the porous zirconia or zirconia-containing or zirconium containing
particles, optionally containing other metallic oxides, such as rare earth oxides
and including silica, may be modified by attaching any suitable, desirable or convenient
chemical groups or molecules onto the surface depending on the properties desired
of the particles and the applications in which the particles are to be used.
[0070] Examples of chemical groups or molecules that can be attached to the particles, including
the following: Hydrophobic ligands in the form of alkyl chains, aromates or cyano
groups, hydrophilic ligands like polyols, carbohydrates, polyethers or polyesters,
anionic and cationic ion exchangers over a wide range of ionic strength, peptides,
proteins, enzymes, metal chelates and molecules forming specific interactions with
biological active substances, lipids, DNA, RNA, dyes oligonucleotides, and the like.
It is to be noted that the foregoing list is not exhaustive but rather is merely illustrative,
as would be apparent to the skilled worker.
[0071] It will be evident to those skilled in the art that the list is not exclusive.
[0072] Another embodiment of the present invention relates to the use of porous particles
in a process of chromatographically separating proteaceous molecules.
[0073] The invention will now be described by way of example with reference to the accompanying
drawings and the following non-limiting examples in which:
Figure 1 is a high magnification photo-micrograph of a caustic leached annealed particle
of zirconia showing the interconnected pore structure in accordance with the present
invention.
Figure 2 is a modification of zirconia with Cibacron Blue F3GA.
Figure 3 is a modification of zirconia with octadecylsilane.
Figure 4 is a modification and crosslinking of zirconia with carbohydrates.
Figure 5 is a modification of zirconia with iminodiacetic acid.
Figure 6 is a modification of zirconia with a protein such as Concanavalin-A, pepsin,
papain, trypsin, chymotrypsin.
Figure 7 is a flow chart of the steps of a typical example of making the particles
in accordance with the present invention showing typical processing conditions. It
is to be noted that not all particles are made by a method involving all of the steps
shown.
Example 1
Manufacture of Monoclinic Zirconia Particles
[0074] Zircon flour (supplied by Commercial Minerals) was first sifted to remove particles
coarser than ∼50 µm and then flame sprayed in order to improve the flow characteristics
of the powder such as by rounding or smoothing of the particles' surfaces. The flame
spraying was carried out in a Metco Type 6P-II Thermospray Gun flame spraying torch,
specifically designed for the flame spraying of ceramic and metallic powders. The
powders were injected into an oxy-acetylene flame with the assistance of a Metco Type
4PM Powder feed unit. The oxy-acetylene flame being slightly oxidising, this resulted
in the finer (<∼10 µm diameter) particles being spheroidised. It is to be noted that
the flame temperature was not sufficiently high to melt and spheroidise the larger
particles. This step was found to be necessary in some circumstances as it was found
to be difficult to introduce the untreated powder directly into the plasma torch on
occasions. The flame sprayed powder was collected in distilled water. After the powder
had been dried, it was then plasma sprayed, and again collected in distilled water.
The powder was plasma sprayed in a DC plasma torch (Plasmadyne SG-100, 40 kW subsonic
plasma torch) which produced a 36 kilowatt Ar/He plasma jet. The powder injection
was into the plasma tail flame. This resulted in the spheroidisation of all the zircon
particles.
[0075] X-ray diffraction analysis of the powder on a Rigaku Geigerflex system equipped with
a wide angle goniometer was used to determine the crystalline phases present. The
X-ray diffraction analysis revealed that the zirconia was present in the tetragonal
form of zirconia. The silica produced from the dissociation of the zircon during the
plasma treatment was amorphous (glassy).
[0076] The powder was then heat treated in a Rapid High Temperature Furnace (Kanthal) at
1400°C for 2 hours in order to coarsen the spinodal structure to such an extent that
the tetragonal zirconia would transform to the thermodynamically stable monoclinic
form on cooling. X-ray diffraction was used to confirm this. In order to prevent reduction
in mechanical strength of the particles due to the phase transformation a very slow
cooling rate was used through 720°C, the transformation temperature.
[0077] The silica was removed from the powder by leaching with a 60% aqueous solution of
NaOH at 160°C in a nickel crucible.
[0078] The powders were then examined under the SEM to check the morphology of the particles
and also to obtain a particle size distribution.
[0079] Powder sizing - The spheroidised powders were mixed with water and then separated
into narrow size ranges using a Warman Cyclosizing apparatus. This consists of a series
of five cyclones, the size ranges trapped in each cyclone depending on the operating
parameters as well as the particle size and shape.
[0080] Particle size analysis - Particle size analysis was carried out by the direct measurement
of SEM photographs of the particles using a Zeiss Particle Size Analyser TGZ-3.
[0081] Scanning Electron Microscopy (SEM) - A JEOL JSM-840 scanning electron microscope
equipped with energy dispersive X-ray analysis facilities was used to examine the
particles. Both secondary electron images and back scattered electron images were
obtained. The latter gave atomic number contrast.
[0082] A typical pore structure of a zirconia particle made by the above method is shown
in figure 1.
Example 2
[0083] Two types of ceramic particles based on zirconia were used in the comparison of this
example. One (referred to as PDZ later in this example) was prepared in the Department
of Materials Engineering at Monash University in accordance with the methods of the
present invention. These particles had an average size of 7 µm, a pore size of 1000A
and a specific surface area of between 1.0 and 4.2 m
2/g (measured by BET). The other particles were provided by the 3M company, St. Paul,
Minnesota 55144, USA, (Batch-No. 90 588 P15) and were made in accordance with a different
process (i.e. the precipitation process) to that of the present invention for use
as a comparison to the PDZ materials. These particles had an average particle size
of 15 µm a pore size of 160A and a surface area of 32 m
2/g.
Determination of the Surface Area by Adsorption of Phosphate
[0084] Phosphate anions are known to bind strongly to zirconia surfaces. Therefore, the
amount of bound phosphate ions on the support particles can be used to determine the
surface area of this support or after modification to determine the remaining uncovered
surface of the particles.
[0085] These measurements were used as an alternative to elemental analysis to determine
the success of the modification process of the present invention.
[0086] For this purpose a phosphate solution of known phosphate concentration was prepared.
A part of this solution was stored as a standard solution for the determination of
the concentration. To the other part zirconia particles were added and the suspension
was shaken over night. Then the solid parts were removed by filtration and the phosphate
concentration of the supernatant was measured.
Example 3
Hydrothermal treatment to increase the hydroxyl group density on the zirconia surface
[0087] To increase the hydroxyl group density on zirconia surfaces the hydrothermal treatment
as previously described was able to achieve a higher amount of reactive hydroxyl groups
for the modification.
[0088] The zirconia particles were treated in an autoclave in a water steam atmosphere at
150°C for different times reaching from 1 to 16 hours. After the treatment the particles
were modified with a C
18-silane and the uncovered zirconia surface was determined by the adsorption of phosphate
ions. One possible set of conditions to achieve optimal results was 6 hours at 150°C.
Example 4
Molybdenum Blue Method:
[0089] Orthophosphate and molybdate ions form an acidic solution of molybdophosphoric acid,
which can be selectively reduced by hydrazine sulphate to form molybdenum blue, a
compound of uncertain composition. This complex can be measured photometrically at
its absorption maximum at 820-830 mn.
[0090] Procedure: The concentration of the sample should be smaller than 4 mg phosphorus
per litre. 50 µl of sample at neutral pH was mixed with 10 µl molybdate solution and
4 µl hydrazine sulphate solution and diluted to 100 µl. The mixture was heated in
a boiling water bath for 10 minutes and then cooled rapidly. The volume was adjusted
and the absorption was measured at 690 nm. The absorption of the sample was measured
in a microtiter plate together with different dilutions of the standard phosphate
solution as calibration.
[0091] Table I shows the results of the phosphate adsorption on different modified and non-modified
support materials. From the values obtained in Table I it can be readily seen that
the amount of phosphate adsorbed on PDZ zirconia was considerable less than the amount
adsorbed on the zirconia for both unmodified and modified forms of the respective
zirconia. This indicates that the hydrothermal treatment of the zirconia significantly
improves the ligand density during the modification step. Furthermore, the performance
of the zirconia particles made in accordance with the present invention performed
significantly better than the 3M derived particles due, it is thought, to the different
structure of the pores of the particles made in accordance with the present invention
which structure only clearly distinguishes the PDZ particles of the present invention.
Modification of the supports
[0092] Two principally different methods to modify the surface of a sorbent particle are
available. The first approach is to use a silane which will react with a hydroxyl
group present on the support surface. This will lead to a monomeric modification.
The other possibility to introduce a desired interactive surface is to cover the surface
of the particle with a polymer coating. The polymeric coating can but does not have
to be covalently attached to the surface.
Example 5
Modification with Mercaptosilane and Cibacron Blue F3GA
[0093] To study the possibility to derivatise the zirconia particles a Cibacron Blue modification
was chosen because it is easy to see whether the modification was successful or not
by observation of the intensity of colour of the final product as shown in figure
2.
[0094] The modification with Cibacron Blue was performed in three steps. First a hydrothermal
treatment, as described above (150°C, 6 hours) was performed to insure a high and
uniform hydroxyl group distribution on the zirconia surface. Second the zirconia particles
were activated with 3-mercaptopropyl-trimethoxysilane and then modified with Cibacron
Blue F3GA. To couple the silane to the surface of the particles, the particles were
suspended in nitric acid at a pH of 3.5. The silane was added and the suspension was
shaken at 90°C for three hours. The binding of the triazine dye was performed at 60°C
in sodium carbonate buffer at a pH of 8.0 containing 0.5 M NaCl overnight.
[0095] The amount of silane necessary to modify the particles was calculated by the product
of the specific surface area, the amount of zirconia, the hydroxyl group density (about
8 µmol/m
2) and the molecular weight of the silane. Because of steric reasons only half of the
hydroxyl groups are accessible for the silane. Therefore, using 8 µmol/m
2 as hydroxyl group density results in a twofold excess of silane. A higher amount
of silane should be avoided because of the tendency of the trimethoxy group to polymerise
which may fill up some pores then rendering the particles less useful in subsequent
applications.
[0096] Immobilising the dye is not limited by the number of reactive sites on the particles'
surface but by the size of the molecule. The maximum amount of dye able to bind to
the support is about 1 µmol/m
2. Again, a twofold excess was used for the reaction. After the reaction was completed
the supports were washed with water and 2-propanol.
Example 6
Modification with Octadecyldimethyl-chlorosilane
[0097] First a hydrothermal treatment, as described above (150°C, 6 hours) was performed
to insure a high and uniform hydroxyl group distribution on the zirconia surface.
The ceramic support materials were modified with octadecyldimethyl-chlorosilane (ODS)
in order to achieve RP-sorbents. The modification was performed in anhydrous toluene,
using imidazole as a catalyst. The toluene was stored over sodium metal and freshly
distilled before use. To remove physically adsorbed water from the surface of the
particles the particles were suspended in the solvent, the imidazole and the silane
were added and the mixture treated in an ultrasonic bath for five minutes and then
heated under reflux for six hours. The silane was added in an eightfold excess assuming
that the maximum ligand density is about 4 µmol/m
2 as shown in figure 3.
[0098] To prevent a grinding of the particles the use of a magnetic stirrer was avoided.
After the reaction was finished, the sorbent material was washed with toluene, 2-propanol
and water.
Example 7
Modification with Polybutadiene
[0099] Another method of producing a reversed phase material in accordance with the present
invention is to attach a polymeric layer onto the surface. Depending on the amount
of polymer desired to bind on the surface different methods to prepare these support
materials are available. The polymeric layer should not be too thick otherwise it
will fill up the pores and decrease the surface area to a very high degree thus reducing
the effectiveness of the particles. Pretreatment of the particles to increase the
hydroxyl group surface concentration was not necessary in all cases for the coating
with polybutadiene, but could be used if desired or required.
[0100] The particles were modified using two different amounts of prepolymerised polybutadiene
(PBD) resulting in supports with different thickness of the polymeric layer. For the
low carbon loading, the amount of PBD was calculated to be 0.5 mg/m
2. The PBD and the dicumylperoxide (DCP) were dissolved in dry pentane and the dried
zirconia particles made in accordance with the method of the present invention were
added. The pentane was removed under vacuum and the coated particles were heated to
60°C under vacuum for 12 hours. The final step was a heat treatment at 200°C under
nitrogen atmosphere for 4 hours to crosslink the coating. To effect modification with
the polybutadiene it is preferred that the particles have a large pore size.
Example 8
Modification with Aminosilane and Carbohydrate
[0101] The purpose of this Example was to produce a hydrophilic bonded phase which would
be easy to derivatise and which would have a high pH stability. Glucose and Maltose
were coupled to aminopropyl derivatised PDZ-powder. First a hydrothermal treatment,
as described above (150°C, 6 hours) was performed to insure a high and uniform hydroxyl
group distribution on the zirconia surface. To 1 g of zirconia (dried overnight under
vacuum at 180°C) suspended in 50 ml anhydrous toluene an amount of 3-aminopropyltrimethoxysilane
was added corresponding to a twofold excess compared to the accessible hydroxyl group
density on the zirconia surface (as described in Example 5 for the modification with
3-mercaptopropyl triethoxysilane). The reaction was performed by treating the suspension
under reflux for six hours. After completion the particles were extensively washed
with toluene, 2-propanol, 10aM HCl and water.
[0102] Glucose or maltose was coupled to the aminopropyl zirconia in a 50mM sodium carbonate
buffer pH 6.8. An estimated 10 times excess of glucose or maltose was used for the
coupling, which was performed by shaking the suspension at 60°C overnight. An equimolar
amount compared to the amount of carbohydrate of sodiumcyanoborohydride was included
to reduce the Schiff's base that is formed. After the reaction was completed the particles
were washed and suspended in acetone to crosslink different amounts of butadiene diepoxide
reaching from 10 to 100 µl per gram of particles have been used. The crosslinking
reaction was performed for two hours at ambient temperature with borontrifluoride
diethyletherate as catalyst.
[0103] Any remaining epoxide rings were opened either by an acid treatment or by deactivation
with ethanolamine. The derivatised sorbents were either used without any further treatment
or modified with Cibacron Blue F3GA. For the modification the particles were suspended
in 100mM Sodium carbonate buffer pH 9.5 containing 0.5M NaCl and an excessive amount
of Cibacron Blue was dissolved. The reaction was performed at 60°C overnight, after
which the particles were washed with water and 2-propanol to give the results in Figure
4. The amount of coupled aminosilane was determined by elemental analysis and coupled
glucose via the difference between noncoupled glucose in the supernatant and glucose
in the "coupling solution". The result indicates that 97% of the amino groups are
derivatised by a glucose unit. This is supported by the fact that zirconia modified
via aminosilane and glucose does not give any colour reaction with picryl sulphonic
acid, a reagent detecting amino group.
Modification with 3-glycidoxypropyl-trimethoxysilane (Glymo)
[0104] Two different modification procedures were used; modification at anhydrous conditions
and modifications in aqueous solution at acidic conditions. Under anhydrous conditions
the silane will bind monomerically to the zirconia while at acidic conditions a polymeric
layer will be formed.
Example 9
Modification under Anhydrous Conditions
[0105] Two grams of zirconia were rehydroxylated with hydrothermal treatment as described
in Example 3. at 150°C for six hours, after which the particles were dried under vacuum
at 180°C overnight. The particles were suspended in 50ml anhydrous toluene. 17 mg
silane and 15 mg imidazole as a catalyst were added and the suspension was treated
under reflux for six hours. The modified particles were washed with toluene, 2-propanol
and water.
Example 10
Modification under Aqueous Conditions at Acidic pH
[0106] The zirconia particles were rehydroxylated as described under Example 3. Two grams
zirconia were suspended in 20 ml of a 10% solution of Glymo in water adjusted at pH
3.5 with nitric acid. The suspension was treated at 90°C for two hours after which
the particles were washed with water to neutrality.
pH Stability Tests
[0107] The stability of the various modified particles made in accordance with the methods
of the present invention were investigated in three different ways. Firstly, the modified
particles were treated with buffers of various pH and the leakage was directly monitored
in a UV detector; secondly radioactively labelled ligands were immobilised and the
leakage was detected by release of radioactivity in the supernatant; and thirdly the
performance of the particles in HPLC column experiments was used as an indicator of
ligand leakage.
1) direct monitoring of ligand leakage in batch experiment:
The Cibacron Blue modified particles were suspended in 100 mM sodium carbonate buffer
solutions at different pH-values and shaken overnight. After this time the particles
were centrifuged and the supernatant was examined for leaking ligands. This was done
photometrically at 280 nm. In one experimental series several different buffers were
employed for a pH stability test of glucose and Cibacron Blue modified zirconia. The
buffers used were sodium phosphate, sodium carbonate and β-alanine all at concentrations
of 100 mM, as well as water titrated with sodium hydroxide.
2) Detection of 14C labelled ligands in batch experiments 100 mg of modified zirconia particles were
suspended in 2 ml of a 0.1 m sodium carbonate buffer and shaken for 24 hours. After
this time two samples (each 0.5 ml) were taken and mixed with 4.5 ml scintillation
liquid and counted for 2 min. The particles were resuspended in a new buffer with
increased pH. The pH was increased in steps of 0.5 and the whole procedure was repeated
up to pH 14.
3) RP chromatographic performance as indicator of ligand leakage.
The octadecyl modified support was packed in a column supplied by Bischoff, Leonberg
FRG. The column dimensions were 33 mm in length x 8 mm ID (column volume 1.66 ml).
The HPLC equipment used consisted of two Waters pumps Model 6000A, a Waters gradient
former Model 660, a Millipore Waters LC spectrometer Lambda Max Model 481, a Waters
Data Module and a DuPont Chartrecorder.
- Sample:
- Aniline, Toluene and Naphthalene (1mg/ml each)
- Solvent:
- Water + 0.1% Trifluoroacetic acid (TFA)
- Flowrate:
- 1 ml/min
- Wavelength:
- 254 nm
[0108] The column was exposed to a 0.1 M carbonate buffer of pH 9.0 for 1000 column volumes
with a flow rate of 1.0 ml/min. After each 100 column volumes the performance was
tested by injecting the test mixture. After 1000 column volumes the pH was increased
by one. A decrease in retention time or in the plate number would have indicated a
decrease in ligand coverage.
[0109] No change in the retention time could be observed up to pH 13.
Detection of "Non-Specific" Protein interaction on Carbohydrates and Glymo derivatised
Zirconia Sorbents
[0110] Four different modified zirconia materials were tested: particles modified with glucose,
maltose, and also glymo prepared under anhydrous and aqueous conditions. The sorbents
were packed in 100 x 2 mm analytical columns and equilibrated in the chromatographic
buffer. Three different solvents were used. 10mM sodium carbonate buffer pH 6.5 with
no, 100 and 500 mM NaCl added. Three proteins were used as adsorbate: bovine ribonuclease
A (pI 8.9), bovine carbonic anhydrase (pI 5.9) and ovalbumin (pI 4.7). The proteins
were run three times each at all salt concentrations. The total volume was determined
with acetone. The elutions of these proteins were expressed in terms of elution volume
of the protein divided by the elution volume of the acetone. Since a material with
3000A pore size was used, there should be no exclusion effect and the proteins should
elute at the same volume as the acetone unless interactions between the protein and
the particle surface occur.
pH Stability Tests in a Batch Experiment
Example 11
Using Dye Modified Zirconia
[0111] To determine the chemical stability of the modification the zirconia modified with
Cibacron Blue F3GA was suspended n buffer solutions of various pH and then shaken
for 24 hours. After this treatment the suspension was centrifuged and the supernatant
was examined for dye bleeding off the support. When no leakage occurred the whole
procedure was repeated in a buffer adjusted at a pH 0.5 higher than the previous.
Under these conditions no leakage occurred at pH 8.0, 8.5, 9.0 and 9.5. At pH = 10.0
the supernatant was coloured, indicating that the modification is not stable under
these conditions.
[0112] The water in the supernatant was evaporated and the solid remaining was used for
an elemental analysis. The material was tested for its nitrogen, silicon and zirconium
content. According to the presumed structure, the cleavage could occur at three different
places:
1. the bead was actually dissolving, which would give positive results in the zirconium
silicon and nitrogen content,
2. the cleavage occurred between the particle surface and the silicon, giving positive
results for the silicon and nitrogen content but negative results for the zirconium
and
3. the cleavage occurred at the sulfur group between the silane and the dye molecule,
resulting in very small amounts of both silicon and zirconium.
[0113] The actual result of the elemental analysis was 8.8% nitrogen, 1.3% silicon and 0.0047%
zirconium, indicating that the cleavage occurred at the Zr-O-Si bond.
Example 12
pH Stability Tests using the Carbohydrate-Dye Modified Zirconia
[0114] A stability test for zirconia was performed using different buffers: a phosphate,
a carbonate and a β-alanine buffer. Water titrated with NaOH was used as a reference.
The stability tests were performed with a carbohydrate-Cibacron Blue modified zirconia
in a batch experiment. Loss of the modification was monitored at 280 nm. In each case
450 mg zirconia particles were suspended in 5 ml buffer and shaken for 24 hours each.
The experiments were started at pH 9.0 and the pH was increased by 1 after each run.
The results of this experiment are presented in Table 2.
[0115] This experiment showed that there were no significant differences in stability of
this bonded phase in the different buffer solutions, indicating that these ions are
not able to displace covalently attached silanes from the zirconia surface. The modification
in this case showed a high stability, at least up to pH 11.0. The experiments were
repeated several times, always with the same result.
[0116] The modified zirconia produced with immobilised maltose were stable up to pH 12 as
documented in Table 2.
Example 13
[0117] In this example two materials were compared, one with crosslinking and one without
crosslinking. Both materials were zirconia particles made in accordance with the methods
of the present invention and derivatised with Cibacron Blue F3GA. A 100 mM phosphate
buffer was used. The results obtained are set out in Table 3.
[0118] These results show clearly that not only the crosslinked material but also the non-crosslinked
particles are remarkably stable. The high stability of these modified zirconia supports
were also seen, when glucose-dye modified particles were suspended in 1M sodium hydroxide
and treated for 24 hours. After washing to neutrality and drying no leakage of the
dye could be detected. It is needless to point out that the zirconia particles made
in accordance with the present invention show a substantially higher stability compared
to silica particles.
Example 14
[0119] The results from the "non-specific" protein interaction measurements are presented
in Table 4. The results for the carbohydrate modified zirconias, both glucose and
maltose, were very similar, so only the results for the glucose modified particles
are listed in this Table.
[0120] The three different modified sorbents showed distinctly different properties. The
Glymo support prepared in water at an acidic pH has a polymeric coating, which is
covalently attached to the surface. This coating results in a good coverage of the
surface indicated by the protein elution characteristics of the support. However,
this kind of modification leads to a thick layer reducing the chromatographic performance
of the support due to increased pore diffusion effects. Both the carbohydrate modified
particles and the support synthesised with Glymo under anhydrous conditions result
in a monomeric modification with a controlled thickness of the interactive surface.
[0121] From these monomeric modified supports, the particles with the carbohydrate ligands
showed a superior performance over the particles modified with Glymo. It is thought
that this difference could be explained by the length of the carbohydrate ligand exceeding
that of Glymo and therefore preventing the protein from reaching the zirconia surface.
There is also a qualitative difference between these two materials. while the carbohydrate
modified sorbent interacted only with the most basic protein (Ribonuclease A), the
Glymo modified particles also adsorbed the more acidic proteins ovalbumin and carbonic
anhydrase. This indicates, that there are both Lewis acid and base groups present
on the zirconia surface.
[0122] The results of the experiments indicated in the foregoing examples of this specification
demonstrate an easy method of producing chromatographic sorbent materials having superior
chemical stability when compared to silica based sorbents and having better physical
characteristics than sorbents based on organic polymers.
Modification with Iminodiacetic Acid (IDA)
[0123] In the following examples the synthesis of a metal chelate and conconavalin-A modified
sorbents and their evaluation are described. To modify the zirconia support with IDA
the following procedure was used. In a first step the silane is produced. 1 g iminodiacetic
acid and 1.503 g NaOH are dissolved in 18 m l water and cooled in an ice bath. 1.776
g 3-glycidoxypropyltrimethoxy-silane is added dropwise. The solution is stirred and
allowed to warm to room temperature and then heated to 60°C overnight.
[0124] To modify the zirconia particles after first subjecting the particles to a hydrothermal
treatment, as described above (150°C, 6 hours) to insure a high and uniform hydroxyl
group distribution on the zirconia surface, a five times excessive amount of the silane
solution is adjusted to pH 3.0 with HCl and 1 g of particles is suspended in this
solution. The suspension is heated to 90°C for three hours giving the results in Figure
5.
[0125] The particles were washed with 0.1 M hydrochloric acid, water and 2-propanol and
suspended in a solution of coppersulphate to saturate the chelate groups with Cu(II)
ions.
Example 13
Modification with Concanavalin-A
[0126] The modification with a protein is done in two steps. First a hydrothermal treatment,
as described above (150°C, 6 hours) was performed to insure a high and uniform hydroxyl
group distribution on the zirconia surface. Secondly the support material is modified
with 3-isothiocyanatopropyl-triethoxysilane to introduce reactive groups onto the
zirconia surface and then the protein is attached via free amino groups on the protein
surface.
[0127] To modify the support with the silane, the particles were dried at 180°C in vacuum.
Toluene was dried over sodium metal and freshly distilled. The particles were suspended
in the toluene and the silane was added. The amount of silane was calculated for 8
µmol/m
2 support surface area. A small amount of imidazole was added as a catalyst. The suspension
was sonicated for five minutes to remove air trapped inside the pores. The mixture
was treated under reflux for 24 hours and then washed with toluene, 2-propanol and
water.
[0128] To attach the protein, the modified particles were suspended in acetate buffer pH
6.5 and 10 mM MnCl
2 and CaCl
2 were added to maintain the biological activity of Con-A. The suspension was treated
at room temperature for 48 hours and washed with the same buffer. The particles were
never dried. The results are shown in Figure 6.
[0129] To block remaining NCS-groups the particles were treated with a solution of ethanolamine
pH 7.0 overnight.
Example 14
Batch Adsorption Experiments with Metal Chelate Modified Zirconia
[0130] 1 g of 3M zirconia was suspended in 20 ml of 20 mM phosphate buffer pH 7.0 with 0.2
M NaCl added. Due to the lower specific surface area of the PDZ particles 2 g were
used for the adsorption experiments with this support material. Horse heart myoglobin
was dissolved in the same buffer used for the suspension at a concentration of 1 mg/ml
and added successively to metal chelate sorbents. During the whole experiment the
temperature of the suspension was kept at 7°C. The rate of adsorption was monitored
at 280 mn and recorded until equilibrium was reached. The equilibrium concentrations
were used to plot the adsorption isotherm which was evaluated using three different
linearisation approaches (double reciprocal plot, semi reciprocal plot and Scatchard
plot [5-10].
Example 15
Batch Adsorption Experiments with Concanavalin-A Modified Zirconia
[0131] For the adsorption of horseradish peroxidase on Concanavalin-A modified zirconia
a 20 mM phosphate buffer with 0.2 M NaCl added was adjusted to pH 6.5. The buffer
contained 1 mM of each CaCl
2, MnCl
2 and MgCl
2 to sustain the biological activity of Concanavalin-A. The buffer was filtered prior
to use to remove undissolved Mn- or Ca-phosphate precipitation. As before either 1g
of 3M zirconia or 2g of PDZ zirconia was used in each experiment. The particles were
suspended in 25 ml of the buffer and the suspension was thermostatted at 7°C. Horseradish
peroxidase was dissolved in the described buffer at a concentration of 1 mg/ml. To
examine whether the binding was due to specific interaction the adsorbate was eluted
after the recording of the adsorption isotherm was completed using methyl-D-mannopyranoside
and the adsorption step was repeated.
[0132] To evaluate the adsorption data the same approach as in case of the metal chelate
modified supports was employed. In both cases the adsorption coefficient of the protein
under the chosen conditions was determined by recording a calibration curve without
the presence of sorbent material. The results for Qm and Kd are listed in Table 5.
The utilisation of the 3M zirconia for the Con-A affinity adsorption appeared to be
not practical due to a 5 significant reduction of the pore size by the ligand and
a resulting very restricted pore diffusion of the adsorbate. The result of the pore
diffusion appears when the adsorption kinetics for the adsorption of myoglobin on
IDA-zirconia is compared with the adsorption of peroxidase onto Con-A modified particles.
An increase in temperature to 25°C in order to increase the diffusion kinetics did
not improve the results in a satisfying way, so only the results obtained with the
PDZ zirconia at 7°C are presented. The results for Qm and Kd are listed in Table 6.
[0133] The good concordance between the first adsorption and the consecutive experiment
after specific elution indicates that the binding of peroxidase to the sorbent is
due to specific interactions between the carbohydrate binding site of Concanavalin-A
and the glyco-part of the peroxidase molecule and that the elution step is complete
to retain the original capacity.
[0134] The results obtained in the foregoing examples of this specification show clearly
that the modification chemistry 5 for various sorbents can also be applied to synthesise
affinity supports. The zirconia particles of the present invention can be surface
modified in a variety of ways in accordance with diverse chemical separation applications
that the surface modified particles are to be used in.
Example 16
[0135] Desirable properties of support material for immobilisation of enzymes are: hydrophilic
surface characteristics, good packing properties, high surface area, permeability
and mechanical stability.
[0136] Two inorganic, porous sorbent materials were used as a matrix to attach the proteases.
The main focus was put on a porous zirconia. Due to the high density of zirconia,
these particles offer ideal characteristics for use in bioseparators. They exhibit
a superior settling rate in closed systems and allow higher flowrates in continuous
reactors.
[0137] For the immobilisation of the protease the particles of zirconia were activated with
3-isothiocyanatopropyltriethoxysilane as described in Example 13.
[0138] Coupling of the enzyme to the activated carrier. 200 mg activated support were suspended
in 10 ml buffer solution containing 11 mg protease. The suspension was shaken headover
at room temperature for 24 hours. After the coupling procedure, the suspension was
filtered and the supernatant preserved. The immobilised enzyme was washed with 0.5M
NaCl and the remaining NCS-groups were blocked with ethanolamine.
[0139] The coupling procedure were modified in order to accommodate the specific requirements
of each enzyme. For pepsin lower pH values were used since pepsin is rapidly and irreversibly
denaturated at alkaline pH values, but is stable between pH 5 and 5.5; the presence
of calcium chloride in the coupling mixture for trypsin improves the specific activity
of the immobilised trypsin by reducing the autodigestion. The application of buffers
which contain amino groups have been avoided during the coupling process to avoid
blocking of the NCS groups by these buffers.
[0140] The following coupling conditions were applied for the different proteases:
| Trypsin |
a) |
0.02 M CaCl2-solution, pH 7.0 |
| |
b) |
100 mM HEPES buffer with 0.02 M CaCl2, pH 8.0 |
| |
c) |
199 mM Clark and Lubs solution (according to Elliot et al) with 0.02 M CaCl2, pH 9.0 |
| Chymotryspin |
a) |
0.02 M CaCl2 solution, pH 7.0 |
| |
b) |
100 mM HEPES, pH 8.0 |
| Papain |
a) |
water, pH 7.0 |
| |
b) |
100 mM HEPES buffer, pH 8.0 |
| |
c) |
100 mM Clark and Lubs solution, pH 9.0 |
| |
|
(only with zirconia) |
| Pepsin |
a) |
100 mM Citrate buffer, pH 5.0 |
| |
b) |
100 mM Citrate buffer, pH 5.5 |
| |
c) |
100 mM Citrate buffer, pH 6.0 |
| |
d) |
100 mM Acetate buffer, pH 4.5 |
| |
e) |
100 mM Acetate buffer, pH 5.6 |
[0141] a), b) and c) were performed with silica only.
[0142] After the coupling and blocking of remaining NCS groups the enzyme derivatives were
washed extensively with buffer and stored at room temperature in the following buffers:
| Trypsin |
in 100 mM Tris/HCl, 20 mM CaCl2, pH 8.0 |
| Chymotrypsin |
in 100 mM Tris/HCl, pH 8.0 |
| Papain |
in 100 mM Acetate buffer, pH 5.0 |
| Pepsin |
in 50 mM Acetate buffer, pH 4.0 |
Example 17
[0143] Humic substances appear in all open water sources, and their removal is an important
task to improve the water quality. Although humic acid is not toxic per se it has
a distinct brownish colour, making the water less attractive to the consumer. Because
of the huge volumes involved, an effective water purification method has to be efficient,
fast and inexpensive. A stirred tank or fluidised bed adsorption setup with dense,
high capacity particles is preferred to the more costly alternatives, e.g. packed
bed purification systems, because of the scale-up requirements (megalitres per hour
requirements are often encountered in water process facilities) and the associated
process economics. The particles act as ion exchangers, typically anionic exchangers.
[0144] A weak anionic exchanger (4-amino-4',4"-bisdimethylaminotriphenylcarbinol, 4-amino
malachite green) was synthesised by condensing 1 part p-nitrobenzaldehyde with 2 parts
N,N'-dimethylaniline. The nitrogroup was reduced to form an amine group, which also
reduced the carbinol group. The carbinol group was reintroduced in a third step to
form the target compound.
[0145] Zirconia was hydrothermally treated as described before and modified with 3-isothiocyanotopropyltriethoxysilane
to introduce NCS-functional groups to the zirconia surface, which are able to react
with the amine group of the 4-amino malachite green molecule.
[0146] For the preparation of the strong anionic exchangers, the zirconia (or silica) particles
were modified with a polystyrene-based coating. The zirconia particles were hydrothermally
treated as described previously and modified with 3-aminopropyltriethoxy-silane. Styrene
was polymerised using anionic polymerisation, initiated with sodium naphthalene to
achieve a narrow molecular weight range. The polymer was chloromethylated and coupled
to the amino-modified zirconia or silica. An excessive amount of chloromethylated
polystyrene was added ensuring that only a small portion of the chloromethyl groups
of a given polystyrene chain had the chance to react with the activated zirconia,
leaving the majority of the chloromethyl groups available for the generation of ion
exchange groups as well as resulting in a tentacle type modification. The unreacted
chloromethyl groups were derivatised with either trimethylamine or triethylamine resulting
in a zirconia adsorbent chemically coated with polystyrene-trimethylammonium chloride
or polystyrene-triethylammonium chloride groups.
[0147] To determine the effectiveness of using surface modified zirconia in removing humic
acid from a river, water sample obtained from a river in the wine growing district
of South Australia was obtained and different amounts of the modified zirconia adsorbents
were suspended in 50 ml of the water sample under controlled temperature conditions
and the adsorption process monitored continuously from the change in optical absorbance
at 254 nm.
[0148] It was found that the humic acid substances in Barossa Valley water consist of a
variety of compounds with different affinities for ion exchangers of different strength.
Three different surface modification procedures resulted in adsorbents which exhibit
different ion exchange capacities. A malachite green modification can be considered
a weak anion exchanger while the triethyl- and trimethyl-phenylammonium-chloride modifications
are strong ion exchangers. The trimethyl modification resulted in an even stronger
ion exchanger than the triethyl modification. The various strengths of the ion exchangers
dominate the way the adsorbents interact with the humic substances in the water. Besides
the maximum capacity, the adsorption kinetics are also a very important feature in
the adsorption process because they determine the throughput or the efficiency of
the system. The best performances were observed when the malachite green and the trimethylphenylammonium
modifications were used, whilst the trietbylphenylawmonium modified SAX particles
showed significantly slower kinetics.
[0149] Due to the higher density of zirconia however, these particles should have a distinct
advantage in terms of their settling rate when they are employed in large scale expanded
bed processes. Faster settling rates mean faster separation times between the liquid
and the solid phase and an increase in efficiency due to a reduced cycle time. Another
important advantage of surface modified zirconia adsorbents is the high chemical stability
over a wide range of pH conditions, thus offering a greater variety of elution and
regeneration possibilities.
Advantages and Industrial Applicability
[0150] The uniform distribution of pores in the porous zirconia particle render porous zirconia
of the present invention particularly useful in applications relating to the separation
of chemicals and biochemicals as well as for use as supports for catalysts and catalyst
compositions.
[0151] The porous zirconia of the present invention is chemically stable and can be used
in alkaline media in which porous silica fails. The porous zirconia has good strength
and is of high density when compared to porous silica and organic polymers. The porous
zirconia of the present invention may be used in the purification of high value chemicals,
polymers and high molecular weight biochemicals using packed or fluidised beds of
porous zirconia particles. The porous zirconia of the present invention may also be
used for the analysis of high molecular weight polymers and biochemicals by chromatographic
techniques using immobilised low molecular weight ligands bound to the surface of
the porous zirconia. The porous zirconia of the present invention may also be used
for the chromatographic analysis of chemicals and biochemicals using highly specific,
bound, high molecular weight ligands or the like.
[0152] Other applications for the use of porous zirconia of the present invention include
bio-sensors which may be used in on-line sensors for process and environmental control,
as supports for bio-catalysts and as supports for conventional catalysts.
[0153] The porous zirconia of the present invention may also be used to separate contaminants.
Such separation applications include the recovery of product from reaction mixtures.
These include the recovery in the downstream processing of fermentation broths or
cell cultures or as an alternative to ultrafiltration. The porous zirconia may be
used as a sorbent for separation of micellar mixtures without liquid/liquid extractions.
The porous zirconia may also be used for high resolution removal of toxins or contaminants
from process streams or recovery of high value inorganic materials such as the rarer
metals or the like. The porous zirconia may also be used for the removal of liquid
aerosols from gas streams with, or without, recovery of the liquid phase.
[0154] The porous zirconia of the present invention which has been used in chromatographic,
separative and catalysis applications and which has been spent may be readily regenerable
by the burning of any organic matter out of the porous zirconia. This is particularly
advantageous where the porous zirconia is used to extract organic molecules from process
streams.
TABLE 1
| Material |
amout of phosphate adsorbed [mg] |
free surface area [%] |
| 3M not modified |
1.53 |
100 |
| 3M Cibacron Blue mod. |
0.39 |
25.5 |
| 3M Glucose modified |
0.67 |
43.8 |
| PDZ not modified |
0.158 |
100 |
| PDZ Cibacron Blue mod. |
0.036 |
22.8 |
| PDZ C18 modified |
0.023 |
14.5 |
TABLE 2
| Buffer/pH |
9.0 |
10.0 |
11.0 |
12.0 |
13.0 |
| phosphate |
0.26 |
0.25 |
0.25 |
0.31 |
0.46 |
| β-alanine |
0.22 |
0.25 |
0.33 |
0.38 |
0.56 |
| carbonate |
0.25 |
0.32 |
0.34 |
0.36 |
0.56 |
| NaOH |
0.31 |
0.26 |
0.28 |
0.46 |
0.59 |
TABLE 3
| Support/pH |
9.0 |
10.0 |
11.0 |
12.0 |
13.0 |
14.0 |
| non crossl. |
0.027 |
0.031 |
0.031 |
0.037 |
0.077 |
0.081 |
| crosslinked |
0.025 |
0.032 |
0.029 |
0.029 |
0.054 |
0.076 |
TABLE 4
| a |
Protein |
no salt |
100mM NaCl |
500mM NaCl |
| |
Ovalbumin |
0.97 |
1.05 |
1.18 |
| Carbonic anhydrase |
1.07 |
1.07 |
1.05 |
| Ribonuclease A |
not eluted |
2.01 |
1.04 |
| b |
Protein |
no salt |
100mM NaCl |
500mM NaCl |
| |
Ovalbumin |
not eluted |
1.09 |
0.99 |
| Carbonic anhydrase |
not eluted |
not eluted |
1.32 |
| Ribonuclease A |
not eluted |
1.74 |
1.20 |
| c |
Protein |
no salt |
100mM NaCl |
500mM NaCl |
| |
Ovalbumin |
0.96 |
1.02 |
1.07 |
| Carbonic anhydrase |
0.99 |
1.01 |
1.04 |
| Ribonuclease A |
not eluted |
1.27 |
1.13 |
Table 4: Protein interaction on different hydrophilic modified zirconia supports:
a) Glucose modified particles
b) Glymo modified under anhydrous conditions
c) Glymo modified under acidic aqueous conditions
The elution of the proteins is expressed in elution volume of the protein divided
by the elution volume of acetone |
TABLE 5
| 3M zirconia |
| |
double rec. plot |
semi rec. plot |
Scatchard plot |
| all data used |
qm= 3.68 · 10-2
Kd= 5.09 · 10-4 |
qm= 3.19 · 10-5
Kd= 2.83 · 10-7 |
qm= 3.58 · 10-5
Kd= 3.61 · 10-7 |
5 smallest conc.
neglected |
qm= 3.53 · 10-5
Kd= 3.27 · 10-7 |
qm= 3.18 · 10-5
Kd= 2.49 · 10-7 |
qm= 3.34 · 10-5
Kd= 2.89 · 10-7 |
| PDZ zirconia |
| |
double rec. plot |
semi rec. plot |
Scatchard plot |
| all data used |
qm= 4.46 · 10-6
Kd= 4.65 · 10-8 |
qm= 7.67 · 10-6
Kd= 1.76 · 10-7 |
qm= 6.84 · 10-6
Kd=1.16 · 10-7 |
spurious data points
neglected |
qm= 6.04 · 10-6
Kd= 1.12 · 10-7 |
qm= 7.75 · 10-6
Kd= 2.12 · 10-7 |
qm= 7.00 · 10-6
Kd= 1.55 · 10-7 |
TABLE 6
| PDZ zirconia modified with Con-A: first adsorption experiment |
| |
double rec. plot |
semi rec. plot |
Scatchard plot |
| all data used |
qm= 1.76 · 10-5
Kd= 5.16 · 10-6 |
qm= 5.65 · 10-6
Kd= 1.48 · 10-6 |
qm=5.54 · 10-6
Kd= 1.42 · 10-6 |
smallest conc.
neglected |
qm= 4.66 · 10-6
Kd= 1.08 · 10-6 |
qm= 5.59 · 10-6
Kd= 1.43 · 10-6 |
qm= 5.39 · 10-6
Kd= 1.33 · 10-6 |
| second adsorption after elution with α-methylmannose |
| |
double rec. plot |
semi rec. plot |
Scatchard plot |
| all data used |
qm=1.32 · 10-5
Kd= 6.35 10-6 |
qm=4.92 · 10-6
Kd= 1.97 · 10-6 |
qm=6.31 · 10-6
Kd= 2.70 · 10-6 |
1. A porous zirconia composition comprising zirconia or zirconium-containing particles
in which the particles comprise a substantially continuous three dimensional interpenetrating
network of interconnected pores, said pores being of substantially constant diameter
throughout their length.
2. A composition according to claim 1 further comprising a metal oxide.
3. A composition according to claim 2 in which the metal oxide is silica or zircon.
4. A composition according to any preceding claim comprising from 1 to 100% zirconia
and from 99 to 0% silica preferably 5-90% zirconia and 95-10% silica.
5. The porous zirconia composition according to any preceding claim comprising particles
having interconnected pores of up to 5·10-7 m (5000 Å) or greater, preferably between 2·10-9 m and (20 Å) and 2·10-7 m (2000 Å) in diameter, more preferably between 2·10-8 m (200 Å) and 1,5·10-7 m (1500 Å) in diameter, even more preferably between 5·10-8 m (500 Å) and 1·10-7 m (1000 Å) in diameter.
6. A composition according to any preceding claim in which the particles are up to 200
µm or greater in size, preferably 5-100 µm, more preferably 5 to 80 and 10-70 µm.
7. A composition according to any preceding claim in which the surface area per unit
mass of the particles is 1.0 m2/g, or greater, preferably from 5 to 10 m2/g and more preferably about 5 m2/g.
8. A zirconia composition according to any preceding claim in which the surface of the
porous zirconia or zirconium-containing particles is modified.
9. A composition according to claim 8 in which the modification is hydroxylation of the
surface to impart a greater number of hydroxide groups on the surface.
10. A composition according to claim 8 or 9 in which the particles are silanised to attach
a silane group to the surface, preferably to the hydroxylated surface.
11. A composition according to any one of claims 8 to 10 in which the modification further
comprises adding a functional group, a functional molecule, polymeric groups or biologically
active or reactive groups to the surface of the particles, preferably to the silane
group containing entity.
12. A composition according to any one of claims 8 to 11 in which the modification comprises
attaching one or more of the following onto the surface of the particles; hydrophobic
ligands in the form of alkyl chains, aromates or cyano groups, hydrophilic ligands
like polyols, carbohydrates, polyethers or polyesters, anionic and cationic ion exchangers
over a wide range of ionic strength, peptides, proteins, enzymes, metal chelates and
molecules forming specific interactions with biologically active substances, lipids,
DNA, RNA, dyes, oligonucleotides and the like.
13. A composition according to any one of claims 8 to 12 in which the surface of the particles
are modified by incorporating proteins as ligands or adsorbates.
14. A zirconia composition according to any preceding claim in which the zirconia particles
are in the form of monoclinic zirconia or tetragonal zirconia or cubic zirconia, preferably
monoclinic.
15. A method for the production of porous zirconia according to one of the claim 1 to
14, comprising the following steps in sequence:
(a) heating a zirconia-silica composition to provide particles of said composition
in a substantially homogeneous liquid melt form;
(b) quenching said particles to effect spinodal decomposition of the liquid melt to
provide quenched particles comprising a silica-rich phase and a zirconia-rich phase,
wherein said zirconiarich phase comprises zirconia substantially in a tetragonal form;
(c) annealing said quenched particles to transform the tetragonal form of the zirconia-rich
phase to the monoclinic form on cooling so as to provide annealed particles comprising
a continuous monoclinic zirconia-rich phase and a continuous silica-rich phase;
(d) leaching said silica-rich phase from the annealed particles to provide porous
monoclinic zirconia comprising a three dimensionally continuous interpenetrating network
of interconnected pores, said pores being of substantially constant diameter throughout
their length.
16. A method according to claim 15 in which a third phase is formed in step (c).
17. A method according to claim 16 in which the third phase is zircon.
18. A method according to claim 17 in which the zircon is not leached away from and remains
in the zirconia phase after leaching when the silica phase is leached away.
19. A method according to claim 18 in which the porous particles comprise zirconia and
zircon in which the zircon is intimately incorporated into the zirconia.
20. A method according to any one of claims 15 to 19 in which the zirconia-silica composition
is a substantially uniform composition or provides a liquid melt of a substantially
uniform composition.
21. A method according to any one of claims 15 to 20 in which the zirconia-silica composition
is an admixture of zirconia or zirconia-containing material and a silica or silica-containing
material or a compound containing both zirconia and silica or a composition, mixture
or compound which decomposes to provide a substantially homogeneous liquid melt of
zirconia and silica.
22. A method according to any one of claims 15 to 21 in which the percentage of zirconia
to silica in the quenched particles is from about 100-1% zirconia to 0-99% silica,
preferably the zirconia to silica volume ratio in the quenched particles is about
1:1.
23. A method according to claim 21 in which the molar ratio of zirconia to silica is in
accordance with the percentage range as claimed in claim 22, preferably about 1:1.
24. A method according to any one of claims 15 to 23 in which the zirconia-silica composition
is zircon, preferably commercially available zircon, more preferably the zircon composition
undergoes a pretreatment step, such as for example, a sieving step or a preheating
step.
25. A method according to any one of claims 15 to 24 in which the zirconia-silica composition
is in the form of a powder or particles.
26. A method according to any one of claims 15 to 25 in which the pore size of a single
particle is substantially constant and there is a distribution of varying pore sizes
between the particles, such as a distribution of 0.01 to 0.2 µm for pore size in a
distribution of particle size range of 40 to 80 µm.
27. A method according to any one of claims 15 to 26 in which the zirconia-silica composition
forms the liquid melt at temperatures in excess of about 2400°C.
28. A method according to any one of claims 15 to 27 in which heating of the zirconia-silica
composition occurs in a plasma arc torch.
29. A method according to any one of claims 15 to 28 in which the particles of zircon
heated in the plasma arc torch have a particle size in the range of from 5 to 100
µm, preferably in the range from 30 to 55 µm.
30. A method according to any one of claims 15 to 29 in which the zircon particles are
elongated and on heating the particles first dissociate and then melt to form a substantially
homogeneous liquid melt.
31. A method according to any one of claims 15 to 30 in which the zirconia-silica composition
is heated by flame spraying using an oxyacetylene flame.
32. A method according to claim 31 in which the zirconia-silica particles are heated by
flame spraying with an oxyacetylene flame and the particle sizes so treated are in
the range of from 3 to 15 µm.
33. A method according to any one of claims 15 to 32 in which the particles of the substantially
homogeneous liquid melt are quenched at a cooling rate sufficient to prevent nucleation
and growth of zirconia spherulites and to allow spinodal decomposition of the liquid
melt into a substantially fine micro-structure of zirconia-rich and silica-rich phases,
optionally containing a further phase.
34. A method according to any one of claims 15 to 33 in which the quenched particles have
wave lengths of about 10-8 m (100 Å) and have uniform periodicity and three dimensional continuity.
35. A method according to any one of claims 15 to 34 in which the homogeneous liquid melt
is quenched in a liquid.
36. A method according to any one of claims 15 to 35 in which quenching provides a cooling
rate in the range of about 105 to 107 °C sec-1.
37. A method according to any one of claims 15 to 36 in which the quenched particles comprise
both a zirconia-rich and silica-rich phase in which the zirconia-rich phase is substantially
in tetragonal form.
38. A method according to any one of claims 15 to 37 in which on leaching of the silica-rich
phase the zirconia-rich phase will transform from tetragonal to stable monoclinic
form.
39. A method according to any one of claims 15 to 38 in which the annealing takes place
below the temperature at which recombination of zirconia and silica-occurs at any
appreciable rate.
40. A method according to claim 39 in which some recombination of zirconia and silica
occurs to form zircon to enhance the strength of the porous particles produced by
leaching the silica therefrom, said zircon being optionally incorporated into the
zirconia phase.
41. A method according to any one of claims 15 to 40 in which annealing takes place at
a temperature in the range from about 1000°C to 1400°C, preferably 1200°C to 1400°C
and is achieved over a period of from up to 5 hours or more, preferably about 1 to
5 hours.
42. The method of any one of claims 15 to 41 in which the transformation temperature of
dissociated zircon quenched and subsequently annealed is typically about 720°C.
43. A method according to any one of claims 15 to 42 in which the zirconia-rich phase
is not coarsened to such an extent that the transformation of the tetragonal form
to the monoclinic form leads to shattering of the annealed particles on cooling.
44. A method according to any one of claims 15 to 43 in which alkali or hydrofluoric acid
are used to leach the silica-rich phase.
45. The method of claim 44 in which the annealed particles are leached with alkali, preferably
sodium hydroxide, at a temperature of about 160°C.
46. A method for the production of porous tetragonal zirconia according to one of the
claims 1 to 14, comprising the following steps in sequence:
(a) heating a zirconia-silica composition to provide particles of said composition
in the form of a substantially homogeneous liquid melt;
(b) quenching said particles such that spinodal decomposition of the liquid melt occurs
to provide quenched particles comprising a silica-rich phase and a zirconia-rich phase;
(c) annealing said quenched particles to coarsen the zirconia-rich phase such that
the desired pore size can be obtained in step (d);
(d) leaching said silica-rich phase from the annealed particles to provide porous
tetragonal zirconia comprising a three dimensionally continuous interpenetrating network
of pores, said pores being of substantially constant diameter throughout their length.
47. The method of claim 46 in which the tetragonal zirconia is stabilised by the addition
of dopants of rare earth oxides or other metal oxides, preferably magnesia, yttria,
calcia, or combinations thereof, most preferably yttria.
48. The method of claim 46 or 47 in which the zirconia-silica composition further comprises
a dopant intimately incorporated into the composition.
49. The method of claim 47 or 48 in which the dopant is yttria.
50. The method of any one of claims 46 to 49 in which the particles comprise a third phase
of a dopant of yttria, preferably the yttria is incorporated into the zirconia-rich
phase.
51. A method for the production of porous cubic zirconia comprising the following steps
in sequence:
(a) heating a zirconia-silica composition to provide particles of said composition
in the form of a substantially homogeneous liquid melt;
(b) quenching said particles to effect spinodal decomposition of the liquid melt to
provide quenched particles comprising a silica-rich phase and a zirconia-rich phase;
(c) annealing said quenched particles to coarsen the zirconia-rich phase such that
desired pore size can be obtained in step (d); and
(d) leaching said silica-rich phase from the annealed particles to provide porous
cubic zirconia comprising a three dimensionally continuous interpenetrating network
of interconnected pores, said pores being of substantially constant diameter throughout
their length.
52. A method according to claim 51 in which the particles further comprise a dopant.
53. The method of claim 50 in which the dopant is calcia, magnesia or the like.
54. A method according to any one of the claims 51 to 53 in which the zirconia-silica
composition further comprises a dopant intimately incorporated into the zirconia-silica
composition.
55. The method of any one of claims 51 to 54 in which the particles comprise a third phase
of a dopant, preferably incorporated into the zirconia-rich phase.
56. The method of any one of claims 46 to 55 further comprising the steps of any one of
claims 15 to 45.
57. Porous zirconia particles according to claim 1 having functional molecules or groups
attached to the surface of the particles, said functional molecules or groups being
attached via a silane group which has previously reacted with surface hydroxyl groups
on the surface of the zirconia particles.
58. Particles according to claim 57 in which the functional molecules or groups include
a shell of organic polymeric material around or surrounding the zirconia particles,
preferably the polymeric shell being crosslinked and optionally covalently attached
to the surface of the particles.
59. Particles according to claim 57 or 58 in which the particles are first treated via
a hydrothermal process to increase the hydroxyl group density on the particle surface
and then reacting the hydroxyl surface group with a silane.
60. Particles according to any one of claims 57 to 59 in which the functional molecules
or groups include hydrophobic ligands in the form of alkyl chains, aromatics or cyano
groups, hydrophilic ligands like polyols, carbohydrates, polyethers or polyesters,
anionic and cationic ion exchangers over a wide range of ionic strength, peptides,
proteins, enzymes, metal chelates and molecules forming specific interactions with
biologically active substances, lipids, DNA, RNA, dyes, oligonucleotides and the like.
61. Particles according to any one of claims 57 to 60 in which the particles have been
treated with a hydrothermal process.
62. Porous particles according to any one of claims 57 to 61 in which the surface of the
particles are modified by adsorbing a monomeric material onto the surface of the particles
and polymerising the monomeric material to form the polymeric shell.
63. A porous zirconia particle or composition obtainable by the method of any one of claims
15 to 56.
64. The use of the particles of any one of claims 1 to 15 or 57 to 63 for separating chemical
entities, preferably a biologically active or reactive entity.
65. The use according to claim 64 in which the pore size of the particles is of a sufficient
size to accommodate proteins as ligands or as adsorbates.
66. The use according to claim 64 or 65 for use in separating chemical or biological entities
having a wide diverse molecular size in which either the relatively larger molecules
or the relatively smaller of the molecules being separated are immobilised on the
particles and the other of the relatively smaller or larger molecules respectively
are separated by interaction with the immobilised molecules.
67. The use according to any one of claims 64 to 66 in which the particles are used for
protein separation.
68. The use according to any one of claims 64 to 67 in which the particles are used to
immobilise chemical or biological material thereon for use in biological or chemical
applications.
69. The use according to any one of claims 64 to 68 for use in chromatographic or biochromatographic
applications or in chemical or biological separation applications.
70. The use according to any one of claims 64 to 69 in which the particles are used in
chemical or biological separation applications in columns, including packed columns,
in open systems, such as batch tanks, or in fluidised bed systems or the like.
1. Poröse Zirkondioxidverbindung, umfassend Zirkondioxid oder zirkoniumhaltige Partikel,
wobei die Partikel ein im wesentlichen kontinuierliches, dreidimensionales, ineinandergreifendes
Netz aus miteinander in Verbindung stehenden Poren umfassen und wobei die Poren über
ihre gesamte Länge hinweg einen im wesentlichen konstanten Durchmesser aufweisen.
2. Verbindung nach Anspruch 1, die darüber hinaus ein Metalloxid umfasst.
3. Verbindung nach Anspruch 2, wobei es sich bei dem Metalloxid um Siliciumdioxid oder
Zirkondioxid handelt.
4. Verbindung nach einem der vorhergehenden Ansprüche, umfassend zwischen 1 und 100 %
Zirkondioxid und 99 bis 0 % Siliciumdioxid, vorzugsweise 5 - 90 % Zirkondioxid und
95 - 10 % Siliciumdioxid.
5. Poröse Zirkondioxidverbindung nach einem der vorhergehenden Ansprüche, umfassend Partikel
mit untereinander verbundenen Poren mit einer Größe von bis zu 5•10-7 m (5000 Å) oder mehr, vorzugsweise zwischen 2•10-9 m (20 Å) und 2•10-7 m (2000 Å) im Durchmesser, bevorzugterweise zwischen 2•10-8 m (200 Å) und 1,5•10-7 m (1500 Å) im Durchmesser, und noch bevorzugter zwischen 5•10-8 m (500 Å) und 1•10-7 m (1000 Å) im Durchmesser.
6. Verbindung nach einem der vorhergehenden Ansprüche, wobei die Partikel eine Größe
von bis zu 200 µm oder mehr, bevorzugt 5 - 100 µm, und besonders bevorzugt 5 bis 80
und 10 - 70 µm aufweisen.
7. Verbindung nach einem der vorhergehenden Ansprüche, wobei der Oberflächenbereich pro
Masseneinheit der Partikel 1,0 m2/g oder mehr, vorzugsweise zwischen 5 und 10 m2/g und bevorzugterweise etwa 5 m2/g beträgt.
8. Zirkondioxidverbindung nach einem der vorhergehenden Ansprüche, wobei die Oberfläche
der porösen Zirkondioxid oder Zirkondioxidhaltigen Partikel modifiziert ist.
9. Verbindung nach Anspruch 8, wobei es sich bei der Modifizierung um eine Hydroxylation
der Oberfläche handelt, um der Oberfläche eine größere Anzahl an Hydroxidgruppen zu
verleihen.
10. Verbindung nach Anspruch 8 oder 9, wobei die Partikel silanisiert werden, um eine
Silangruppe an der Oberfläche, vorzugsweise an der hydroxylierten Oberfläche, zu befestigen.
11. Verbindung nach einem der Ansprüche 8 bis 10, wobei die Modifizierung des weiteren
das Hinzufügen einer funktionellen Gruppe, eines funktionellen Moleküls, polymerer
Gruppen oder biologisch aktiver oder reaktiver Gruppen zur Oberfläche der Partikel,
vorzugsweise der silangruppenenthaltenden Einheit, umfaßt.
12. Verbindung nach einem der Ansprüche 8 bis 11, wobei die Modifizierung das Befestigen
einer oder mehrerer der folgenden auf der Oberfläche der Partikel umfaßt: hydrophobe
Liganden in Form von Alkylketten, Aromate oder Cyanogruppen, hydrophile Liganden wie
Polyole, Kohlenhydrate, Polyether oder Polyester, anionische oder kationische Ionenaustauscher
mit einer großen Bandbreite hinsichtlich der Ionenstärke, Peptide, Proteine, Enzyme,
Metallchelatverbindungen und Moleküle, welche spezifische Interaktionen mit biologisch
aktiven Substanzen, Lipiden, DNA, RNA, Farbstoffen, Oligonukleotiden und ähnlichem
bilden.
13. Verbindung nach einem der Ansprüche 8 bis 12, wobei die Oberfläche der Partikel durch
die Aufnahme von Proteinen als Liganden oder Adsorbate modifiziert ist.
14. Zirkondioxidverbindung nach einem der vorhergehenden Ansprüche, wobei die Zirkondioxidpartikel
in Form von monokliner Zirkondioxid oder tetragonaler Zirkondioxid oder kubischer
Zirkondioxid vorhanden sind, wobei die monokline Form bevorzugt wird.
15. Verfahren zur Herstellung von poröser Zirkondioxid nach einem der Ansprüche 1 bis
14, umfassend die folgenden Schritte in Abfolge:
(a) Erwärmen einer Zirkondioxid-Siliciumdioxid-Verbindung zur Schaffung von Partikeln
der Verbindung in einer im wesentlichen homogenen flüssigen Schmelzform;
(b) Abschrecken der Partikel, um eine spinodale Zerlegung der flüssigen Schmelze zu
bewirken, um abgeschreckte Partikel zu schaffen, welche eine siliciumdioxidreiche
und eine Zirkondioxidreiche Phase aufweisen, wobei die Zirkondioxidreiche Phase Zirkondioxid
in einer im wesentlichen tetragonalen Form umfaßt;
(c) Ausglühen der abgeschreckten Partikel, um die tetragonale Form der Zirkondioxidreichen
Phase beim Abkühlen in eine monokline Phase überzuführen, um auf diese Weise ausgeglühte
Partikel zu schaffen, welche eine kontinuierliche, monokline, Zirkondioxidreiche Phase
und eine kontinuierliche siliciumdioxidreiche Phase aufweisen;
(d) Auslaugen der siliciumdioxidreichen Phase von den ausgeglühten Partikeln, um eine
poröse, monokline Zirkondioxid zu schaffen, umfassend ein dreidimensionales, kontinuierliches,
ineinandergreifendes Netz aus miteinander in Verbindung stehenden Poren, wobei die
Poren über ihre gesamte Länge einen im wesentlichen konstanten Durchmesser aufweisen.
16. Verfahren nach Anspruch 15, wobei eine dritte Phase in Schritt (c) gebildet wird.
17. Verfahren nach Anspruch 16, wobei es sich bei der dritten Phase um Zirkon handelt.
18. Verfahren nach Anspruch 17, wobei das Zirkon nach dem Auslaugen, wenn die Siliciumdioxidphase
weggelaugt ist, nicht weggelaugt ist und in der Zirkondioxidphase bleibt.
19. Verfahren nach Anspruch 18, wobei die porösen Partikel Zirkondioxid und Zirkon umfassen,
wobei das Zirkon sehr eng in die Zirkondioxid aufgenommen wird.
20. Verfahren nach einem der Ansprüche 15 bis 19, wobei die Zirkondioxid-Siliciumdioxid-Verbindung
eine im wesentlichen gleichförmige Verbindung darstellt oder eine flüssige Schmelze
einer im wesentlichen gleichförmigen Verbindung schafft.
21. Verfahren nach einem der Ansprüche 15 bis 20, wobei es sich bei der Zirkondioxid-Siliciumdioxid-Verbindung
um eine Mischung von Zirkondioxid oder Zirkondioxidhaltigem Material und einem Siliciumdioxid
oder siliciumdioxidhaltigem Material oder eine Verbindung handelt, welche sowohl Zirkondioxid
als auch Siliciumdioxid enthält, oder eine Verbindung, Gemisch oder Zusammensetzung,
welche zerfällt, um eine im wesentlichen homogene, flüssige Schmelze aus Zirkondioxid
und Siliciumdioxid zu schaffen.
22. Verfahren nach einem der Ansprüche 15 bis 21, wobei der Verhältnisanteil zwischen
Zirkondioxid und Siliciumdioxid in den abgeschreckten Partikeln von etwa 100 - 1 %
Zirkondioxid bis 0 - 99 % Siliciumdioxid reicht, und vorzugsweise das Volumenverhältnis
zwischen Zirkondioxid und Siliciumdioxid in den abgeschreckten Partikeln etwa 1:1
beträgt.
23. Verfahren nach Anspruch 21, wobei das Molverhältnis zwischen Zirkondioxid und Siliciumdioxid
in Übereinstimmung mit dem in Anspruch 22 genannten Prozentsatz liegt und vorzugsweise
etwa 1:1 beträgt.
24. Verfahren nach einem der Ansprüche 15 bis 23, wobei es sich bei der Zirkondioxid-Siliciumdioxid-Verbindung
um Zirkon, und zwar bevorzugt um kommerziell erhältliches Zirkon, handelt, und wobei
besonders bevorzugt die Zirkonverbindung einem Vorbehandlungsschritt unterzogen wird,
wie zum Beispiel einem Siebschritt oder einem Vorerwärmungsschritt.
25. Verfahren nach einem der Ansprüche 15 bis 24, wobei die Zirkondioxid-Siliciumdioxid-Verbindung
in Form eines Pulvers oder in Partikelform vorliegt.
26. Verfahren nach einem der Ansprüche 15 bis 25, wobei die Porengröße eines einzelnen
Partikels im wesentlichen konstant ist und es eine Verteilung unterschiedlicher Porengrößen
zwischen den Partikeln gibt, wie zum Beispiel eine Verteilung von 0,01 bis 0,2 µm
für die Porengröße in einer Verteilung des Partikelgrößenbereichs von 40 bis 80 µm.
27. Verfahren nach einem der Ansprüche 15 bis 26, wobei die Zirkondioxid-Siliciumdioxid-Verbindung
die flüssige Schmelze bei Temperaturen von mehr als etwa 2400 °C bildet.
28. Verfahren nach einem der Ansprüche 15 bis 27, wobei die Erwärmung der Zirkondioxid-Siliciumdioxid-Verbindung
in einem Plasmabrenner geschieht.
29. Verfahren nach einem der Ansprüche 15 bis 28, wobei die im Plasmabrenner erwärmten
Zirkonpartikel eine Partikelgröße im Bereich von 5 bis 100 µm und vorzugsweise im
Bereich von 30 bis 55 µm besitzen.
30. Verfahren nach einem der Ansprüche 15 bis 29, wobei die Zirkonpartikel länglich sind
und die Partikel beim Erwärmen zuerst zerfallen und danach schmelzen, um eine im wesentlichen
homogene flüssige Schmelze zu bilden.
31. Verfahren nach einem der Ansprüche 15 bis 30, wobei die Zirkondioxid-Siliciumdioxid-Verbindung
durch Flammspritzen mit Hilfe einer Oxyacetylenflamme erwärmt wird.
32. Verfahren nach Anspruch 31, wobei die Zirkondioxid-Siliciumdioxid-Partikel durch Flammspritzen
mit einer Oxyacetylenflamme erwärmt werden und die Größe der so behandelten Partikel
im Bereich von 3 bis 15 µm liegt.
33. Verfahren nach einem der Ansprüche 15 bis 32, wobei die Partikel der im wesentlichen
homogenen flüssigen Schmelze mit einer Abkühlrate gekühlt werden, die ausreicht, um
eine Kristallisationskeimbildung und die Entstehung von Zirkondioxidsphärolithen zu
verhindern und eine spinodale Zerlegung der flüssigen Schmelze in eine im wesentlichen
feine Mikrostruktur einer Zirkondioxidreichen Phase und einer siliciumdioxidreichen
Phase zu ermöglichen, wobei wahlweise eine weitere Phase enthalten sein kann.
34. Verfahren nach einem der Ansprüche 15 bis 33, wobei die abgeschreckten Partikel Wellenlängen
von etwa 10-8 m (100 Å) und eine gleichförmige Periodizität und eine dreidimensionale Kontinuität
aufweisen.
35. Verfahren nach einem der Ansprüche 15 bis 34, wobei die homogene flüssige Schmelze
in einer Flüssigkeit abgeschreckt wird.
36. Verfahren nach einem der Ansprüche 15 bis 35, wobei die Abschreckung eine Abkühlrate
im Bereich von etwa 105 bis 107 °C pro Sekunde ermöglicht.
37. Verfahren nach einem der Ansprüche 15 bis 36, wobei die abgeschreckten Partikel sowohl
eine Zirkondioxidreiche Phase als auch eine siliciumdioxidreiche Phase umfassen, wobei
die Zirkondioxidreiche Phase im wesentlichen in tetragonaler Form vorhanden ist.
38. Verfahren nach einem der Ansprüche 15 bis 37, wobei sich beim Auslaugen der siliciumdioxidreichen
Phase die Zirkondioxidreiche Phase von einer tetragonalen Form in eine stabile monokline
Form umwandelt.
39. Verfahren nach einem der Ansprüche 15 bis 38, wobei das Ausglühen unterhalb jener
Temperatur stattfindet, bei der eine Rekombinierung von Zirkondioxid und Siliciumdioxid
mit einer abschätzbaren Rate geschieht.
40. Verfahren nach Anspruch 39, wobei es zu einer gewissen Rekombinierung zwischen Zirkondioxid
und Siliciumdioxid kommt, um Zirkon zu bilden, um die Festigkeit der porösen Partikel
zu verstärken, welche durch das Auslaugen des Siliciumdioxids entstanden sind, wobei
das Zirkon wahlweise in die Zirkondioxidphase aufgenommen werden kann.
41. Verfahren nach einem der Ansprüche 15 bis 40, wobei das Ausglühen bei einer Temperatur
im Bereich von 1000 °C bis 1400 °C und vorzugsweise in einem Bereich von 1200 °C bis
1400 °C stattfindet und über einen Zeitraum von bis zu 5 Stunden und mehr, vorzugsweise
aber von 1 bis 5 Stunden durchgeführt wird.
42. Verfahren nach einem der Ansprüche 15 bis 41, wobei die Übergangstemperatur des abgeschreckten
und danach ausgeglühten zerfallenen Zirkons typischerweise etwa 720 °C beträgt.
43. Verfahren nach einem der Ansprüche 15 bis 42, wobei die Zirkondioxidreiche Phase nicht
in einem solchen Ausmaß vergröbert wird, daß die Umwandlung von der tetragonalen Form
in die monokline Form zu einer Fragmentation der ausgeglühten Partikel beim Abkühlen
führt.
44. Verfahren nach einem der Ansprüche 15 bis 43, wobei Lauge oder Flußsäure zum Auslaugen
der siliciumdioxidreichen Phase verwendet wird.
45. Verfahren nach Anspruch 44, wobei die ausgeglühten Partikel mit Lauge, vorzugsweise
Natriumhydroxid, bei einer Temperatur von etwa 160 °C ausgelaugt werden.
46. Verfahren zur Herstellung von poröser, tetragonaler Zirkondioxid gemäß einem der Ansprüche
1 bis 14, umfassend die folgenden Schritte in Abfolge:
(a) Erwärmen einer Zirkondioxid-Siliciumdioxid-Verbindung zur Schaffung von Partikeln
der Verbindung in Form einer im wesentlichen homogenen flüssigen Schmelze;
(b) Abschrecken der Partikel, um eine spinodale Zerlegung der flüssigen Schmelze zu
bewirken, um abgeschreckte Partikel zu schaffen, welche eine siliciumdioxidreiche
und eine Zirkondioxidreiche Phase aufweisen;
(c) Ausglühen der abgeschreckten Partikel, um die Zirkondioxidreiche Phase zu vergröbern,
so daß die gewünschte Porengröße in Schritt (d) erzielt werden kann;
(d) Auslaugen der siliciumdioxidreichen Phase von den ausgeglühten Partikeln, um eine
poröse, tetragonale Zirkondioxid zu schaffen, umfassend ein dreidimensionales, kontinuierliches,
ineinandergreifendes Netz aus miteinander in Verbindung stehenden Poren, wobei die
Poren über ihre gesamte Länge einen im wesentlichen konstanten Durchmesser aufweisen.
47. Verfahren nach Anspruch 46, wobei die tetragonale Zirkondioxid durch Zugabe von Dotierstoffen
aus Seltenerdoxiden oder anderen Metalloxiden, bevorzugt Magnesiumoxid, Yttriumoxid,
Calciumoxid oder Kombinationen davon, besonders bevorzugt jedoch Yttriumoxid, stabilisiert
wird.
48. Verfahren nach Anspruch 46 oder 47, wobei die Zirkondioxid-Siliciumdioxid-Verbindung
weiters einen Dotierstoff umfaßt, der eng in die Verbindung aufgenommen ist.
49. Verfahren nach Anspruch 47 oder 48, wobei es sich bei dem Dotierstoff um Yttriumoxid
handelt.
50. Verfahren nach einem der Ansprüche 46 bis 49, wobei die Partikel eine dritte Phase
eines Dotierstoffs von Yttriumoxid umfassen, wobei die Yttriumoxid vorzugsweise in
der Zirkondioxidreichen Phase enthalten ist.
51. Verfahren zur Herstellung einer porösen, kubischen Zirkondioxid, umfassend die folgenden
Schritte in Abfolge:
(a) Erwärmen einer Zirkondioxid-Siliciumdioxid-Verbindung zur Schaffung von Partikeln
der Verbindung in Form einer im wesentlichen homogenen flüssigen Schmelze;
(b) Abschrecken der Partikel, um eine spinodale Zerlegung der flüssigen Schmelze zu
bewirken, um abgeschreckte Partikel zu schaffen, welche eine siliciumdioxidreiche
und eine Zirkondioxidreiche Phase aufweisen;
(c) Ausglühen der abgeschreckten Partikel, um die Zirkondioxidreiche Phase zu vergröbern,
so daß die gewünschte Porengröße in Schritt (d) erzielt werden kann; und
(d) das Auslaugen der siliciumdioxidreichen Phase aus den ausgeglühten Partikeln,
um eine poröse, kubische Zirkondioxid zu schaffen, umfassend ein dreidimensionales,
kontinuierliches, ineinandergreifendes Netz aus miteinander in Verbindung stehenden
Poren, wobei die Poren über ihre gesamte Länge einen im wesentlichen konstanten Durchmesser
aufweisen.
52. Verfahren nach Anspruch 51, wobei die Partikel weiters einen Dotierstoff umfassen.
53. Verfahren nach Anspruch 50, wobei es sich bei dem Dotierstoff um Calciumoxid, Magnesiumoxid
oder ähnliche Stoffe handelt.
54. Verfahren nach einem der Ansprüche 51 bis 53, wobei die Zirkondioxid-Siliciumdioxid-Verbindung
weiters einen Dotierstoff umfaßt, der eng in die Zirkondioxid-Siliciumdioxid-Verbindung
aufgenommen ist.
55. Verfahren nach einem der Ansprüche 51 bis 54, wobei die Partikel eine dritte Phase
eines Dotierstoffs umfassen, der vorzugsweise in die Zirkondioxidreiche Phase aufgenommen
ist.
56. Verfahren nach einem der Ansprüche 46 bis 55, weiters umfassend die Schritte eines
der Ansprüche 15 bis 45.
57. Poröse Zirkondioxid-Partikel nach Anspruch 1 mit funktionellen Molekülen oder Gruppen,
die an der Oberfläche der Partikel befestigt sind, wobei die funktionellen Moleküle
oder Gruppen über eine Silangruppe befestigt sind, welche zuvor mit Oberflächenhydroxylgruppen
auf der Oberfläche der Zirkondioxid-Partikel reagiert haben.
58. Partikel nach Anspruch 57, wobei die funktionellen Moleküle oder Gruppen eine Umhüllung
aus organischem Polymermaterial rund um die Zirkondioxid-Partikel oder die Zirkondioxid-Partikel
umgebend aufweisen, wobei die Polymerumhüllung vorzugsweise quervernetzt und wahlweise
kovalent an der Oberfläche der Partikel befestigt ist.
59. Partikel nach Anspruch 57 oder 58, wobei die Partikel zuerst mit einem hydrothermalen
Prozeß behandelt werden, um die Hydroxylgruppendichte an der Partikeloberfläche zu
vergrößern, und danach die Hydroxyloberflächengruppe zu einer Reaktion mit einem Silan
gebracht wird.
60. Partikel nach einem der Ansprüche 57 bis 59, wobei die funktionellen Moleküle oder
Gruppen hydrophobe Liganden in der Form von Alkylketten, Aromaten oder Cyangruppen,
hydrophile Liganden wie Polyole, Kohlenhydrate, Polyether oder Polyester, anionische
und kationische Austauscher über einen weiten Bereich an Ionenstärke, Peptide, Proteine,
Enzyme, Metallchelate und Moleküle umfassen, welche bestimmte Wechselwirkungen mit
biologisch aktiven Substanzen, Lipiden, DNA, RNA, Farbstoffen, Oligonucleotiden und
ähnlichem verursachen.
61. Partikel nach einem der Ansprüche 57 bis 60, wobei die Partikel mit einem hydrothermalen
Prozeß behandelt wurden.
62. Poröse Partikel nach einem der Ansprüche 57 bis 61, wobei die Oberfläche der Partikel
durch Adsorbieren eines monomerischen Materials auf die Oberfläche der Partikel und
durch Polymerisieren des monomerischen Materials zur Bildung der Polymerumhüllung
modifiziert ist.
63. Poröse Zirkondioxid-Partikel oder -Verbindung, welche durch die Methode eines der
Ansprüche 15 bis 56 erhalten werden kann.
64. Verwendung der Partikel nach einem der Ansprüche 1 bis 15 oder 57 bis 63 zum Trennen
von chemischen Einheiten, und zwar vorzugsweise biologisch aktiven oder reaktiven
Einheiten.
65. Verwendung nach Anspruch 64, wobei die Porengröße der Partikel ausreicht, um Proteine
als Liganden oder als Adsorbate unterzubringen.
66. Verwendung nach Anspruch 64 oder 65 zum Trennen von chemischen oder biologischen Einheiten
mit einer sehr breit gestreuten Molekulargröße, wobei entweder die relativ größeren
Moleküle oder die relativ kleineren der Moleküle, welche getrennt werden, auf den
Partikeln bewegungsunfähig gemacht werden und die anderen der relativ kleineren bzw.
größeren Moleküle durch Wechselwirkung mit den unbeweglich gemachten Molekülen getrennt
werden.
67. Verwendung nach einem der Ansprüche 64 bis 66, wobei die Partikel für die Proteintrennung
verwendet werden.
68. Verwendung nach einem der Ansprüche 64 bis 67, wobei die Partikel verwendet werden,
um darauf chemisches oder biologisches Material zur Verwendung in biologischen oder
chemischen Anwendungen unbeweglich zu machen.
69. Verwendung nach einem der Ansprüche 64 bis 68 zur Anwendung in chromatographischen
oder biochromatographischen Anwendungen oder in chemischen oder biologischen Trennungsanwendungen.
70. Verwendung nach einem der Ansprüche 64 bis 69, wobei die Partikel in chemischen oder
biologischen Trennungsanwendungen in Säulen, einschließlich Füllkörpersäulen, in offenen
Systemen, wie zum Beispiel Chargenbehältern, oder in Fließbettsystemen oder ähnlichem
verwendet werden.
1. Composition de zircone poreuse comprenant des particules contenant de la zircone ou
du zirconium dans laquelle les particules comprennent un réseau de pores interconnectés,
essentiellement continu, tridimensionnel et interpénétrant, lesdits pores étant de
diamètre essentiellement constant sur toute leur longueur.
2. Composition selon la revendication 1 comprenant également un oxyde métallique.
3. Composition selon la revendication 2 dans laquelle l'oxyde métallique est une silice
ou une zircone.
4. Composition selon l'une des revendications précédentes comprenant entre 1 et 100 %
de zircone et entre 99 et 0 % de silice, de préférence entre 5 et 90 % de zircone
et 95 et 10 % de silice.
5. Composition de zircone poreuse selon l'une des revendications précédentes comprenant
des particules présentant des pores interconnectés un diamètre pouvant atteindre 5•10-7 m (5000 Å) ou plus, de préférence compris entre 2•10-9 m (20 Å) et 2•10-7 m (2000 Å), encore plus de préférence entre 2•10-8 m (200 Å) et 1,5•10-7 m (1500 Å), ou encore mieux entre 5•10-8 m (500 Å) et 1•10-7 m (1000 Å).
6. Composition selon l'une des revendications précédentes dans laquelle la grosseur des
particules peut atteindre 200 mm ou plus, est de préférence comprise entre 5 et 100
mm, ou plus de préférence entre 5 à 80 et 10 à 70 mm.
7. Composition selon l'une des revendications précédentes dans laquelle l'aire de surface
par masse unitaire de particules est de 1,0 m2/g ou plus, de préférence comprise entre 5 et 10 m2/g et plus de préférence d'environ 5 m2/g.
8. Composition de zircone selon l'une des revendications précédentes dans laquelle la
surface de la zircone poreuse ou des particules contenant de la zircone est modifiée.
9. Composition selon la revendication 8 dans laquelle la modification est effectuée par
hydroxylation de la surface de sorte à amener une quantité supérieure de groupes hydroxydes
sur la surface.
10. Composition selon la revendication 8 ou 9 dans laquelle les particules sont traitées
au silane de sorte à fixer un groupe silane sur la surface, de préférence sur la surface
hydroxylée.
11. Composition selon l'une des revendications 8 à 10 dans laquelle la modification inclut
également l'ajout d'un groupe fonctionnel, d'une molécule fonctionnelle, de groupes
polymères ou de groupes biologiquement actifs ou réactifs, ce sur la surface des particules,
de préférence sur l'entité contenant le groupe silane.
12. Composition selon l'une des revendications 8 à 11 dans laquelle la modification inclut
la fixation de l'un ou plusieurs des éléments suivants sur la surface des particules
: ligands hydrophobes sous la forme de chaînes alkyles, aromates ou groupes cyano,
ligands hydrophiles tels que polyalcools, hydrates de carbone, polyéthers ou polyesters,
échangeurs d'ions anioniques et cationiques sur une large plage de basicité, peptides,
protéines, enzymes, chélates métalliques et molécules formant des interactions spécifiques
avec des substances biologiquement actives, lipides, ADN, ARN, teintures, oligonucléotides
et similaires.
13. Composition selon l'une des revendications 8 à 12 dans laquelle la surface des particules
est modifiée par incorporation de protéines comme ligands ou adsorbats.
14. Composition de zircone selon l'une des revendications précédentes dans laquelle les
particules de zircone se présentent sous la forme de zircone monoclinique ou quadratique
ou cubique, de préférence monoclinique.
15. Procédé pour la fabrication d'une zircone poreuse selon l'une des revendications 1
à 14, comprenant les étapes suivantes dans l'ordre suivant :
(a) chauffer une composition de zircone-silice de sorte à donner aux particules de
ladite composition une forme forme liquide fondue essentiellement homogène ;
(b) refroidir brusquement lesdites particules de sorte à provoquer une décomposition
spinodale de la composition liquide fondue et obtenir des particules trempées comprenant
une phase riche en silice et une phase riche en zircone, ladite phase riche en zircone
comprenant de la zircone essentiellement sous forme quadratique ;
(c) recuire lesdites particules trempées de sorte à transformer la forme quadratique
de la phase riche en zircone en forme monoclinique au refroidissement et obtenir des
particules recuites comprenant une phase riche en zircone monoclinique continue et
une phase riche en silice continue ;
(d) lessiver pour extraire des particules recuites ladite phase riche en silice de
sorte à obtenir une zircone monoclinique poreuse comprenant un réseau de pores interconnectés,
continu en trois dimensions et interpénétrant, lesdits pores étant de diamètre essentiellement
constant sur toute leur longueur.
16. Procédé selon la revendication 15 dans lequel une troisième phase se forme pendant
l'étape (c).
17. Procédé selon la revendication 16 dans lequel la troisième phase est du zircon.
18. Procédé selon la revendication 17 dans lequel le zircon n'est pas éliminé par lessivage
de la phase riche en zircone et reste dans cette phase même après l'élimination par
lessivage de la phase riche en silice.
19. Procédé selon la revendication 18 dans lequel les particules poreuses comprennent
de la zircone et du zircon, le zircon étant intimement incorporé dans la zircone.
20. Procédé selon l'une des revendications 15 à 19 dans lequel la composition zircone-silice
est une composition essentiellement uniforme ou une chaude liquide de composition
essentiellement uniforme.
21. Procédé selon l'une des revendications 15 à 20 dans lequel la composition zircone-silice
est un fondant de la zircone ou de matière contenant de la zircone et une silice ou
une matière contenant de la silice ou un composé contenant de la zircone et de la
silice ou une composition, un mélange ou un composé qui se décompose de sorte à produire
une chaude liquide de zircone et silice essentiellement homogène.
22. Procédé selon l'une des revendications 15 à 21 dans lequel le pourcentage de zircone
par rapport à la silice dans les particules trempées est d'environ 100-1 % de zircone
pour 0-99 % de silice, le rapport volumique entre la zircone et la silice dans les
particules trempées étant de préférence d'approximativement 1 : 1.
23. Procédé selon la revendication 21 dans lequel le rapport molaire entre la zircone
et la silice est conforme à la plage en pourcentage indiquée dans la revendication
22, de préférence d'approximativement 1 : 1.
24. Procédé selon l'une des revendications 15 à 23 dans lequel la composition zircone-silice
est du zircon, de préférence du zircon disponible dans le commerce, et dans lequel
la composition de zircon est de préférence soumise à une étape de traitement préalable
telle qu'une étape de tamisage ou de préchauffage.
25. Procédé selon l'une des revendications 15 à 24 dans lequel la composition zircone-silice
se présente sous la forme d'une poudre ou de particules.
26. Procédé selon l'une des revendications 15 à 25 dans lequel la grosseur de pore d'une
particule individuelle est essentiellement constante et avec lequel il y a une distribution
de grosseurs de pore variant entre les particules, telle qu'une distribution de grosseur
de pore comprise entre 0,01 et 0,2 µm pour une répartition granulométrique des particules
comprise entre 40 et 80 µm.
27. Procédé selon l'une des revendications 15 à 26 dans lequel la composition zircone-silice
forme une chaude liquide à des températures supérieures à approximativement 2400 °C.
28. Procédé selon l'une des revendications 15 à 27 dans lequel le chauffage de la composition
zircone-silice s'effectue au moyen d'une torche à arc-plasma.
29. Procédé selon l'une des revendications 15 à 28 dans lequel les particules de zircon
chauffées au moyen de la torche à arc-plasma présente une granulométrie comprise entre
5 et 100 µm, de préférence entre 30 et 55 µm.
30. Procédé selon l'une des revendications 15 à 29 dans lequel les particules de zircon
sont allongées et dans lequel les particules se dissocient au chauffage dans un premier
temps avant de fondre pour former une chaude liquide essentiellement homogène.
31. Procédé selon l'une des revendications 15 à 30 dans lequel la composition zircone-silice
est chauffée au moyen d'un pistolet à flamme oxyacétylénique.
32. Procédé selon la revendication 31 dans lequel les particules zircone-silice sont chauffées
au moyen d'un pistolet à flamme oxyacétylénique et selon lequel les particules ainsi
traitées présentent une granulométrie comprise entre 3 et 15 mm.
33. Procédé selon l'une des revendications 15 à 32 dans lequel les particules de la chauffe
liquide essentiellement homogène sont refroidies brusquement à un taux de refroidissement
suffisant pour éviter la formation de germes cristallins et la formation de sphérolites
de zircone et permettre la décomposition spinodale de la chaude liquide en une micro-structure
essentiellement fine de phases riche en zircone et riche en silice, pouvant contenir
une autre phase facultative.
34. Procédé selon l'une des revendications 15 à 33 dans lequel les particules trempées
présentent des longueurs d'ondes d'approximativement 10-8 m (100 Å) ainsi qu'une périodicité uniforme et une continuité tridimensionnelle.
35. Procédé selon l'une des revendications 15 à 34 dans lequel la chaude liquide homogène
est refroidie brutalement en un liquide.
36. Procédé selon l'une des revendications 15 à 35 dans lequel la trempe permet un taux
de refroidissement compris entre approximativement 105 et 107 °C sec-1.
37. Procédé selon l'une des revendications 15 à 36 dans lequel les particules trempées
comprennent une phase riche en zircone et une phase riche en silice, la phase riche
en zircone étant essentiellement de forme quadratique.
38. Procédé selon l'une des revendications 15 à 37 dans lequel la phase riche en zircone
passe d'une forme quadratique à une forme monoclinique stable lors du lessivage de
la phase riche en silice.
39. Procédé selon l'une des revendications 15 à 38 dans lequel le racuit s'opère en dessous
de la température à laquelle se produit à un taux sensible une recombinaison de la
zircone et de la silice.
40. Procédé selon la revendication 39 dans lequel une recombinaison de zircone et de silice
se produit de sorte à renforcer la force des particules poreuses obtenues par lessivage
de la silice, ledit zircon pouvant de manière facultative être incorporé dans la phase
de zircone.
41. Procédé selon l'une des revendications 15 à 40 dans lequel le recuit est effectué
à une température comprise entre approximativement 1000 °C et 1400 °C, de préférence
entre 1200 °C et 1400 °C et pour une durée pouvant atteindre 5 heures ou plus, mais
comprise de préférence entre 1 et 5 heures.
42. Procédé selon l'une des revendications 15 à 41 dans lequel la température de transformation
du zircon dissocié, trempé puis recuit, est typiquement d'approximativement 720 °C.
43. Procédé selon l'une des revendications 15 à 42 dans lequel la phase riche en zircone
n'est pas rendue grossière à un point tel que le passage de la forme quadratique à
la forme monoclinique puisse conduire à un éclatement des particules recuites lors
du refroidissement.
44. Procédé selon l'une des revendications 15 à 43 dans lequel on utilise un alcali ou
un acide fluorhydrique pour lessiver la phase riche en silice.
45. Procédé selon la revendication 44 dans lequel les particules recuites sont lessivées
avec un alcali, de préférence de la soude caustique, à une température d'approximativement
160 °C.
46. Procédé de fabrication d'une zircone quadratique poreuse selon l'une des revendications
1 à 14, comprenant les étapes suivantes dans l'ordre suivant:
(a) chauffer une composition de zircone-silice de sorte à donner aux particules de
ladite composition une forme forme liquide fondue essentiellement homogène ;
(b) refroidir brusquement lesdites particules de sorte à provoquer une décomposition
spinodale de la composition liquide fondue et obtenir des particules trempées comprenant
une phase riche en silice et une phase riche en zircone ;
(c) recuire les particules trempées de sorte à rendre grossière la phase riche en
zircone et obtenir dans l'étape (d) la grosseur de pore désirée ;
(d) lessiver pour extraire des particules recuites ladite phase riche en silice de
sorte à obtenir une zircone quadratique poreuse comprenant un réseau de pores, continu
en trois dimensions et interpénétrant, lesdits pores étant de diamètre essentiellement
constant sur toute leur longueur.
47. Procédé selon la revendication 46 dans lequel la zircone quadratique est stabilisée
par addition d'agents de dopage d'oxydes de terres rares ou d'autres oxydes métalliques,
de préférence de magnésie, oxyde d'yttrium, oxyde de calcium ou de leurs combinaisons,
de préférence particulièrement d'oxyde d'yttrium.
48. Procédé selon la revendication 46 ou 47 dans lequel la composition zircone-silice
comprend en outre un agent dopant intimement incorporé dans la composition.
49. Procédé selon la revendication 47 ou 48 dans lequel l'agent dopant est l'oxyde d'yttrium.
50. Procédé selon l'une des revendications 46 à 49 dans lequel les particules comprennent
une troisième phase avec un agent dopant de l'oxyde d'yttrium, l'oxyde d'yttrium étant
de préférence incorporé dans la phase riche en zircone.
51. Procédé de fabrication d'une zircone cubique poreuse selon l'une des revendications
1 à 14, comprenant les étapes suivantes dans l'ordre suivant :
(a) chauffer une composition de zircone-silice de sorte à donner aux particules de
ladite composition une forme forme liquide fondue essentiellement homogène ;
(b) refroidir brusquement lesdites particules de sorte à provoquer une décomposition
spinodale de la composition liquide fondue et obtenir des particules trempées comprenant
une phase riche en silice et une phase riche en zircone ;
(c) recuire les particules trempées de sorte à rendre grossière la phase riche en
zircone et obtenir dans l'étape (d) la grosseur de pore désirée ;
(d) lessiver pour extraire des particules recuites ladite phase riche en silice de
sorte à obtenir une zircone cubique poreuse comprenant un réseau de pores interconnectés,
continu en trois dimensions et interpénétrant, lesdits pores étant de diamètre essentiellement
constant sur toute leur longueur.
52. Procédé selon la revendication 51 dans lequel les particules comprennent par ailleurs
un agent dopant.
53. Procédé selon la revendication 50 selon lequel l'agent dopant est une oxyde de calcium,
une magnésie ou similaire.
54. Procédé selon l'une des revendications 51 à 53 dans lequel la composition zircone-silice
comprend en outre un agent dopant intimement incorporé dans la composition zircone-silice.
55. Procédé selon l'une des revendications 51 à 54 dans lequel les particules comprennent
une troisième phase avec un agent dopant, de préférence incorporé dans la phase riche
en zircone.
56. Procédé selon l'une des revendications 46 à 55 incluant par ailleurs les étapes selon
l'une des revendications 15 à 45.
57. Particules de zircone poreuse selon la revendication 1 présentant des molécules ou
groupes fonctionnels fixés sur la surface des particules, ces derniers étant liés
par l'intermédiaire d'un groupe silane qui a préalablement réagi avec des groupes
hydroxyles superficiels sur la surface des particules de zircone.
58. Particules selon la revendication 57 sur lesquelles les molécules ou groupes fonctionnels
incluent une coquille de matière polymère organique autour des particules de zircone
ou les entourant, cette coquille polymère étant de préférence réticulée et facultativement
liée de manière covalente à la surface des particules.
59. Particules selon la revendication 57 ou 58, ces particules étant d'abord traitées
dans un processus hydrotherme de sorte à augmenter la densité du groupe hydroxyle
sur la surface particulaire, ce groupe hydroxyle superficiel réagissant ensuite avec
un silane.
60. Particules selon l'une des revendications 57 à 59 sur lesquelles les molécules ou
groupes fonctionnels incluent des ligands hydrophobes sous la forme de chaînes alkyles,
d'aromates ou de groupes cyano, des ligands hydrophiles tels que des polyalcools,
hydrates de carbone, polyéthers ou polyesters, échangeurs d'ions anioniques et cationiques
sur une large plage de basicité, peptides, protéines, enzymes, chélates métalliques
et molécules formant des interactions spécifiques avec des substances biologiquement
actives, lipides, ADN, ARN, teintures, oligonucléotides et similaires.
61. Particules selon l'une des revendications 57 à 60, ces particules ayant été traitées
dans un processus hydrotherme.
62. Particules poreuses selon l'une des revendications 57 à 61 sur lesquelles la surface
des particules est modifiée par adsorption d'une matière monomère sur la surface des
particules, cette matière monomère étant polymérisée de sorte à former la coquille
polymère.
63. Particule ou composition de zircone poreuse pouvant être obtenues au moyen du procédé
selon l'une des revendications 15 à 56.
64. Utilisation de particules selon l'une des revendications 1 à 15 ou 57 à 63 de sorte
à isoler des entités chimiques, de préférence une entité biologiquement active ou
réactive.
65. Utilisation selon la revendication 64, la grosseur de pore des particules étant suffisante
pour accueillir des protéines servant de ligands ou d'adsorbats.
66. Utilisation selon la revendication 64 ou 65 à des fins d'isolation d'entités chimiques
ou biologiques présentant une répartition granulométrique très large, selon laquelle
les molécules relativement grosses ou relativement petites isolées sont immobilisées
sur les particules alors que les autres particules respectivement relativement plus
petites ou plus grosses sont séparées par interaction avec les molécules immobilisées.
67. Utilisation selon l'une des revendications 64 à 66, les particules y étant utilisées
à des fins d'isolation des protéines.
68. Utilisation selon l'une des revendications 64 à 67, les particules étant utilisées
de sorte à immobiliser de la matière chimique ou biologique destinée à un usage dans
des applications biologiques ou chimiques.
69. Utilisation selon l'une des revendications 64 à 68 pour un usage dans des applications
chromatographiques ou biochromatographiques ou dans des applications d'isolation chimiques
ou biologiques.
70. Utilisation selon l'une des revendications 64 à 69, les particules étant utilisées
pour des applications d'isolation chimiques ou biologiques dans des colonnes, colonnes
à garnissage inclues, dans des systèmes ouverts tels que des cuves à charges , ou
dans des systèmes à lits fluidisés ou similaires.