|
(11) | EP 0 712 854 A1 |
| (12) | EUROPEAN PATENT APPLICATION |
|
|
|
|
|||||||||||||||||||
| (54) | Baccatin derivatives and processes for preparing the same |
| (57) A compound represented by the formula [I]:
wherein R³ represents a lower alkanoyl group; R⁴ represents a substituted or unsubstituted benzoyl group; ring A represents a substituted or unsubstituted cyclopropane ring; X represents a single bond or a group represented by -O-, -S- or -NH-; R represents a substituted or unsubstituted lower alkyl group wherein said lower alkyl group may have attached a cycloalkyl moiety; a substituted or unsubstituted aryl group or a substituted or unstibstituted aromatic heterocyclic group; E represents a hydrogen atom or a group represented by -CO(CH₂)nZY; Y represents a residue obtained from an amino acid or a dipeptide by removing the hydroxyl group from one carboxyl group, wherein the existing amino group in said residue may be protected, and the existing carboxyl group in said residue may be esterified or amidated; Z represents a group represented by the formula -O- or -NH-; and n represents 1, 2, 3, 4, 5 or 6, and pharmaceutically acceptable salts thereof have excellent antitumor activity and therefore are useful in the prophylaxis or treatment of a wide range of tumors such as breast cancer, ovary cancer lung cancer and malignant melanoma. |
Technical Field
Prior Art
Brief Description of Invention
Detailed Description of the Invention
(1) by reacting a compound represented by the formula [II]:
wherein R¹ represents a hydroxyl protecting group; R represents a hydroxyl protecting
group; R³, R⁴, and ring A are the same as defined above, or a salt thereof with a
compound represented by the formula [III]:
RX-COOH [III]
wherein R and X are the same as defined above, a salt thereof, or a reactive derivative
thereof to obtain a compound represented by the formula [V]:
wherein R¹, R, R³, R⁴, ring A, X, and R are the same as defined above, and removing
the protecting groups of the hydroxyl groups at the 7-position and the 10-position
in the compound;
(2) by reacting the compound [II] or a salt thereof with the compound [III], a salt
thereof, or a reactive derivative thereof, to obtain the compound [V], reacting the
compound [V] with a compound represented by the formula [IV]:
E'OH [IV]
wherein E' is a group represented by -CO(CH₂)nZY; Y, Z, and n are the same as defined above, a salt thereof, or a reactive derivative
thereof, and removing the protecting groups of the hydroxyl groups at the 7-position
and the 10-position in the compound obtained; or
(3) by reacting the compound [II] or a salt thereof with the compound [III], a salt thereof, or a reactive derivative thereof, to obtain the compound [V], removing the protecting groups of the hydroxyl groups at the 7-position and the 10-position in the compound [V], and then reacting the resulting compound with a compound of the formula [IV], a salt thereof, or a reactive derivative thereof.
(a) reacting the compound [II] or a salt thereof with the compound [III], a salt thereof, or a reactive compound to obtain the compound [V];
(b) reacting the compound [V] with a compound represented by the formula [VI]:
R⁵Z(CH₂)nCOOH [VI]
wherein R⁵ represents a hydroxyl or amino protecting group, Z and n are the same as
defined above, a salt thereof, or a reactive derivative thereof;
(c) removing the protecting group R⁵ from the compound obtained to obtain a compound
represented by the formula [VII]:
wherein R¹, R, R³, R⁴, ring A, X, R, Z, and n are the same as defined above;
(d) reacting the compound [VII] with a compound represented by the formula [VIII]:
YOH [VIII]
wherein Y is the same as defined above; and
(e) removing the hydroxyl protecting group, if necessary, removing the amino protecting group and the carboxyl group ester residue.
Examples
Example 1
(1) To a suspension of 85.8 g of methoxycarbonylmethylenetriphenylphosphorane in 550 ml of benzene is added dropwise a solution of 15.0 g of cyclopropanecarbaldehyde in 50 ml of benzene at room temperature under argon atmosphere. The mixture is stirred at 55 °C overnight. After the reaction mixture is cooled to room temperature, the reaction mixture is poured into 800ml of ice water. The aqueous mixture is extracted with 600 ml of chloroform twice. The chloroform layer is washed with brine. The organic layer is dried and evaporated under reduced pressure to remove the solvent. The residue is purified by silica gel column chromatography (solvent; hexane:ethyl acetate=12:1) to give 17.4 g of methyl trans-3-cyclopropylacrylate.
Yield:65%
MS(m/z):126(M⁺)
IR(neat,cm⁻¹):1720,1660
NMR(CDCl₃, δ ):0.60-0.68(2H,m), 0.91-0.99(2H,m), 1.51-1.64(1H,m), 3.71(3H,s), 5.90(1H,d,J=15Hz), 6.43(1H,dd,J=10,15Hz)
(2)To a solution of 68.2 g of potassium ferricyanide and 28.6 g of potassium carbonate in 640 ml of tert-butanol-water (1 : 1) is added 0.537 g of 1,4-bis(9-O-dihydroquinidyl)phthalazine. The pH of the reaction mixture is adjusted to pH 10.9 with an aqueous solution of phosphoric acid. After a solution of osmium tetroxide in 0.35 ml of toluene (0.393M) is added to the mixture, the resulting mixture is stirred at room temperature for 30 minutes. Then, methyl trans-3-cyclopropylacrylate is added to the mixture, and the mixture is stirred for 24 hours. After the reaction mixture is cooled with ice, 106 g of sodium sulfite is added to the mixture. Then, the mixture is stirred for 30 minutes. The mixture is extracted with ethyl acetate four times. The organic layer is dried and the solvent is removed in vacuo. The residue is purified by silica gel column chromatography (solvent; hexane:ethyl acetate=3:1) to give 4.22 g of methyl (2S,3R)-3-cyclopropyl-2,3-dihydroxypropionate.
Yield:38%
m.p.:54-57°C
[α]D ⁰ +42.7° (c=1,chloroform)
FAB-MS(m/z):183(M⁺ +Na)
IR(nujol,cm⁻¹):3440,1730
NMR(CDCI₃, δ ):0.25-0.34(1H,m), 0.38-0.47(1H,m), 0.52-0.69(2H,m), 1.15-1.28(1H,m), 2.24(1H,d,J=7Hz), 3.12(1H,ddd,J=2,7,9Hz),3.18(1H,d,J=6Hz), 3.82(3H,s), 4.25(1H,dd,J=2,6Hz).
(3) Under argon atmosphere, a solution of 4.22 g of methyl (2S,3R)-3-cyclopropyl-2,3-dihydroxypropionate in 140 ml of methylene chloride is cooled to -3 °C. Then, 4.00 g of triethylamine and 5.17 g of p-toluenesulfonyl chloride are added to the mixture successively. The mixture is stirred for 3 days. Then, the solvent is removed in vacuo. The residue is poured into a mixture of ethyl acetate and water. The organic layer is washed with brine and dried. The solvent is removed in vacuo. The residue is purified by silica gel column chromatography (solvent; hexane:ethyl acetate=1:3) to give 6.54 g of methyl (2S,3R)-3-cyclopropyl-3-hydroxy-2-(p-toluenesulfonyloxy)propionate.
Yield:79%
m.p.:75-78°C
MS(m/z):312(M⁺-2)
IR(neat,cm⁻¹):3520,1760
NMR(CDCl₃, δ ):0.16-0.26(1H,m), 0.36-0.46(2H,m), 0.53-0.65(1H,m), 0.90-1.05(1H,m), 2.11(1H,d,J=7Hz), 2.45(3H,s), 3.26(1H,ddd,J=4,7,10Hz), 3.69(3H,s), 4.93(1H,d,J=4Hz), 7.32-7.38(2H,m), 7.82-7.88(2H,m).
(4) To a solution of 2.97 g of methyl (2S,3R)-3-cyclopropyl-3-hydroxy-2-(p-toluenesulfonyloxy)propionate in 50 ml of acetonitrile are added 10.86 ml of water and 3.96 g of potassium carbonate successively at room temperature. Then, the reaction mixture is stirred at 50 °C for 2 days. The reaction mixture is cooled to room temperature, and insoluble materials are removed by filtration. The filtrate is concentrated under reduced pressure. The residue is purified by silica gel column chromatography (solvent; diethylether) to give methyl (2R,3R)-3-cyclopropyl-2,3-epoxypropionate quantitatively.
MS(m/z):142(M⁺)
IR(neat,cm⁻¹):1750
NMR(CDCl₃,δ):0.36-0.44(1H,m), 0.52-0.76(3H,m), 0.86-0.98(1H,m), 2.58(1H,dd,J=4,8Hz), 3.56(1H,d,J=4Hz), 3.83(3H,s).
(5) To a solution of 2.89 g of methyl (2R,3R)-3-cyclopropyl-2,3-epoxypropionate in 112.5 ml of methanol-water (8:1) are added 14 ml of methyl formate and 16.60 g of sodium azide. Then, the reaction mixture is stirred at 50 °C overnight. The reaction mixture is cooled to room temperature and evaporated to remove methanol. The residue is dissolved in ethyl acetate. The solution is washed with brine and dried. The solvent is removed in vacuo. The residue is purified by silica gel column chromatography (solvent; hexane:ethyl acetate=4:1) to give 2.61 g of methyl (2R,3S)-3-cyclopropyl-3-azido-2-hydroxypropionate.
Yield:70%
[α]D ³ -67.19° (c=1,chloroform)
FAB-MS(m/z):186(MH⁺)
IR(neat,cm⁻¹):3480,2100,1740
NMR(CDCl₃, δ):0.29-0.39(1H,m), 0.50-0.59(1H,m), 0.63-0.73(1H,m), 0.80-0.90(1H,m), 1.37-1.51(lH,m), 2.83(1H,dd,J=2,10Hz), 3.06(1H,d,J=7Hz), 3.82(3H,s), 4.29(1H,dd,J=2,7Hz).
(6) To a solution of 1.82 g of methyl (2R,3S)-3-cyclopropyl-3-azido-2-hydroxypropionate in 60 ml of ethyl acetate are added 600 mg of 10 % palladium-carbon and 2.57 g of t-butoxycarboxylic anhydride. The mixture is stirred under the atmospheric pressure of hydrogen at room temperature for one hour. The inorganic materials are removed by filtration, and the filtrate is condensed. The residue is purified by silica gel column chromatography (solvent; hexane:ethyl acetate=2:1) to give 2.78 g of methyl (2R,3S)-3-cyclopropyl-3-tert-butoxycarbonylamino-2-hydroxypropionate.
Yield:100%
m.p.:93°C
[α]D ³ -59.79° (c=1,chroloform)
FAB-MS(m/z):260(MH⁺)
IR(nujol,cm⁻¹):3520,3440,3320,1740,1720,1710,1690
NMR(CDCl₃,δ):0.32-0.39(1H,m), 0.41-0.51(1H,m), 0.51-0.62(2H,m), 1.07-1.21(1H,m), 1.41(9H,s), 3.19(1H,d,J=5Hz), 3.29(1H,dt,J=2,10Hz), 3.78(3H,s), 4.31(1H,dd,J=2,5Hz), 4.90(1H,dlike).
(7)To a solution of 2.63 g of methyl (2R,3S)-3-cyclopropyl-3-tert-butoxycarbonylamino-2-hydroxypropionate in 60 ml of benzene are added 1.94 ml of isopropenylmethylether and 0.25 g of p-toluenesulfonic acid pyridinium salt. The mixture is stirred at room temperature for one hour, and then refluxed for 40 minutes. After the mixture is cooled, 1.94 ml of isopropenylmethylether is added to the reaction mixture. The mixture is stirred at room temperature for 10 minutes, refluxed for 40 minutes, and evaporated to remove the solvent. The residue is purified by silica gel column chromatography, (solvent; hexane:ethyl acetate=8:1) to give 2.69 g of methyl (4S,5R)-3-tert-butoxycarbonyl-2,2-dimethyl-4-cyclopropyl-5-oxazolidinecarboxylate.
Yield:89%
MS(m/z):299(M⁺)
IR(neat,cm⁻¹):1760,1720,1700
NMR(CDCl₃,δ):0.23-0.33(1H,m), 0.43-0.54(1H,m), 0.61-0.76(2H,m), 1.10-1.22(1H,m), 1.49(9H,s), 1.62(3H,s), 1.64(3H,s), 3.73-3.88(1H,m), 3.77(3H,s), 4.42(1H,d,J=2.0Hz).
(8)To a solution of 2.66 g of methyl (4S,5R)-3-tert-butoxycarbonyl-2,2-dimethyl-4-cyclopropyl-5-oxazolidinecarboxylate in 60 ml of methanol is added dropwise a solution of 255 mg of lithium hydroxide in 30 ml of water under ice-cooling. The reaction mixture is warmed to room temperature, stirred for one hour and evaporated under reduced pressure to remove methanol. Chloroform is added to the residue. The pH of the mixture is adjusted to about pH 2 with 10 % hydrochloric acid under ice-cooling thereto. The chloroform layer is washed with brine, dried, and evaporated under reduced pressure to remove the solvent to give 2.65 g of (4S,5R)-3-tert-butoxycarbonyl-2,2-dimethyl-4-cyclopropyl-5-oxazolidinecarboxylic acid.
Yield:100%
m.p.:104-108°C
FAB-MS(m/z):286(MH⁺)
IR(nujol,cm⁻¹):3080,1720,1690
NMR(CDCl₃,δ):0.27-0.38(1H,m), 0.45-0.56(1H,m), 0.62-0.76(2H,m), 1.11-1.24(1H,m), 1.49(9H,s), 1.65(3H,s), 1.66(3H,s), 3.75-3.88(1H,m), 4.45(1H,d,J=2Hz), 6.60(1H,brs).
(9-1)To a solution of 1.20 g of (4S,5R)-3-tert-butoxycarbonyl-2,2-dimethyl-4-cyclopropyl-5-oxazolidinecarboxylic acid and 2.5 g of 4 α-acetoxy-2α-benzoyloxy-5β,20-epoxy-1β,13α-dihydroxy-7β,10 β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one in 60 ml of toluene are added 922 mg of 1,3-dicyclohexylcarbodiimide and 171 mg of 4-dimethylaminopyridine. The mixture is stirred at 80 °C for 90 minutes. Insoluble materials are removed from the reaction mixture by filtration, and the filtrate is evaporated in vacuo. The residue is purified by silica gel column chromatography (solvent; hexane:ethyl acetate=3:1) to give 3.1 g of 4 α-acetoxy-2α-benzoyloxy-13α-[(4S,5R)-3-tert-butoxycarbonyl-2,2-dimethyl-4-cyclopropyloxazolidin-5-ylcarbonyloxy]-5β,20-epoxy-1β-hydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one.
Yield:96%
FAB-MS(m/z):1162(MH⁺)
IR(nujol,cm⁻¹):3500,1760,1740,1700
NMR(CDCl₃,δ):0.23-0.33(1H,m), 0.45-0.57(1H,m), 0.64-0.80(2H,m), 1.08-1.18(1H,m), 1.20(3H,s), 1.27(3H,s), 1.50(9H,s), 1.58(3H,s), 1.66(6H,s), 1.71(1H,s), 1.85(3H,s), 2.00-2.14(1H,m), 2.08(3H,d,J=1Hz), 2.24-2.33(2H,m), 2.42(3H,s), 2.64(1H,ddd,J=7,10,14Hz), 3.90-3.95(1H,m), 3.97(1H,d,J=7Hz), 4.17(1H,d,J=8Hz), 4.35(1H,d,J=8Hz), 4.45(1H,d,J=2Hz), 4.60(1H,d,J=12Hz), 4.75(1H,d,J=12Hz), 4.80(1H,d,J=12Hz), 4.92(1H,d,J=12Hz), 4.95-5.01(1H,m), 5.61(1H,dd,J=7,11Hz), 5.70(1H,d,J=7Hz), 6.18-6.26(1H,m), 6.27(1H,s), 7.46-7.54(2H,m), 7.60-7.67(1H,m), 8.06-8.12(2H,m).
(9-2)To a solution of 85.5 mg of (4S,5R)-3-tert-butoxycarbonyl-2,2-dimethyl-4-cyclopropyl-5-oxazolidinecarboxylic acid in 1 ml of toluene are added under argon atmosphere 44 µl of triethylamine and 38.4 mg of 4-(N,N-dimethylamino)pyridine at 0 °C. A solution of 76.7 mg of 2,4,6-trichlorobenzoyl chloride in 1 ml of toluene is added to the mixture. The mixture is stirred at room temperature for 1 hour. Then, to the mixture is added 171.2 mg of 4α-acetoxy-2α-benzoyloxy-5β-20-epoxy-1β, 13α-dihydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one, and the mixture is continued to be stirred at the same temperature for 2 hours. The reaction mixture is diluted with ethyl acetate, washed with 1 % hydrochloric acid, saturated aqueous sodium hydrogen carbonate solution, water, and brine in this order, and dried over sodium sulfate. The solvent is removed in vacuo. The residue is purified by silica gel column chromatography (solvent; n-hexane : ethyl acetate= 3 : 2) to give 183 mg of 4 α-acetoxy-2α-benzoyloxy-13α-[(4S,5R)-3-tert-butoxycarbonyl-2,2-dimethyl-4-cyclopropyloxazolidin-5-ylcarbonyloxy]-5β-20-epoxy-1β-hydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one. The physical properties of the product are the same as those of the compound of Example 1(9-1).
(10)A solution of 3.04 g of 4α-acetoxy-2α-benzoyloxy-13α-[(4S,5R)-3-tert-butoxycarbonyl-2,2-dimethyl-4-cyclopropyloxazolidin-5-ylcarbonyloxy]-5β,20-epoxy-1β-hydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one in 50 ml of formic acid is stirred at room temperature for 2 hours. After formic acid is removed in vacuo, the reaction mixture is crystallized from ethanol-diisopropylether. Crystals are collected by filtration, washed with diisopropylether and then dried to give 2.54 g of 4α-acetoxy-2α-benzoyloxy-13α-[(2R,3S)-3-amino-3-cyclopropyl-2-hydroxypropionyloxy]-5β,20-epoxy-1β-hydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one formate.
Yield:91 %
m.p.:154-172°C(decomposed)
FAB-MS(m/z):1022(MH⁺)
IR(nujol,cm⁻¹):3440,1760,1720
NMR(CDCl₃,δ):0.28-0.40(1H,m), 0.43-0.57(1H,m), 0.57-0.78(2H,m), 1.10-1.15(1H,m), 1.18(3H,s), 1.23(3H,s), 1.84(3H,s), 2.00-2.12(1H,m), 2.04(3H,s), 2.24-2.32(2H,m), 2.39(3H,s), 2.55-2.69(1H,m), 2.69-2.78(1H,m), 3.90(1H,d,)=7Hz), 4.16(1H,d,J=8Hz), 4.20-4.62(5H,m), 4.33(1H,d,J=8Hz), 4.48(1H,d,J=6Hz), 4.59(1H,d,J=12Hz), 4.77(2H,slike), 4.87(1H,d,J=12Hz), 4.94-5.00(1H,m), 5.53(1H,dd,J=7,11Hz), 5.69(1H,d,J=7Hz), 6.20-6.29(1H,m), 6.23(1H,s), 7.45-7.53(2H,m), 7.57-7.66(1H,m), 8.03-8.10(2H,m), 8.32(1H,brs).
(11)To a solution of 600 mg of 4α-acetoxy-2α-benzoyloxy-13α-[(2R,3S)-3-amino-3-cyclopropyl-2-hydroxypropionyloxy]-5β,20-epoxy-1β-hydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one formate in 15 ml of tetrahydrofuran are added dropwise a solution of 169 mg of potassium bicarbonate and 245 mg of tert-butoxycarboxylic anhydride in 5 ml of tetrahydrofuran. The mixture is stirred for 2.5 hours at room temperature. Inorganic materials are removed by filtration. Ethyl acetate is added to the filtrate. The mixture is washed with a saturated aqueous sodium bicarbonate solution, water and brine and dried. The solvent is removed in vacuo. The residue is purified by silica gel column chromatography (solvent; hexane:ethyl acetate=2:1) to give 471 mg of 4α-acetoxy-2α-benzoyloxy-13α-[(2R,3S)-3-tert-butoxycarbonylamino-3-cyclopropyl-2-hydroxypropionyloxy]-5β,20-epoxy-1β-hydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one.
Yield:75%
FAB-MS(m/z):1122(MH⁺)
IR(nujol,cm⁻¹):3440,1760,1720
NMR(CDCl₃,δ):0.24-0.32(1H,m), 0.43-0.52(1H,m), 0.61-0.70(2H,m), 1.18-1.32(1H,m), 1.20(3H,s), 1.27(3H,s), 1.34(9H,s), 1.71(3H,s), 1.86(3H,s), 2.02(3H,d,J=1Hz), 2.05-2.13(1H,m), 2.30-2.38(2H,m), 2.39(3H,s), 2.64(1H,ddd,J=7,10,14Hz), 3.31(1H,dt,J=2,9Hz), 3.34(1H,d,J=6Hz), 3.91(1H,d,J=7Hz), 4.18(1H,d,J=8Hz), 4.34(1H,d,J=8Hz), 4.40(1H,dd,J=2,6Hz), 4.60(1H,d,J=12Hz), 4.75(1H,d,J=12Hz), 4.80(1H,d,J=12Hz), 4.88-4.93(1H,m), 4.91(1H,d,J=12Hz), 4.98(1H,d,J=8Hz), 5.56(1H,dd,J=7,11Hz), 5.71(1H,d,J=7Hz), 6.11-6.20(1H,m), 6.26(1H,s), 7.47-7.54(2H,m), 7.59-7.66(1H,m), 8.08-8.13(2H,m).
(12)To a solution of 181 mg of ((3S)-3-benzyloxycarbonylamino-3-ethoxycarbonylpropionyloxy)acetic acid and 479 mg of 4α-acetoxy-2α-benzoyloxy-13α-[(2R,3S)-3-tert-butoxycarbonylamino-3-cyclopropyl-2-hydroxypropionyloxyl]-5β,20-epoxy-1β-hydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one in 20 ml of tetrahydrofuran are added 106 mg of 1,3-dicyclohexylcarbodiimide and 5.2 mg of 4-dimethylaminopyridine. The mixture is stirred at 60 °C for 2 hours. Insoluble materials are removed by filtration, and the filtrate is evaporated under reduced pressure. The residue is purified by silica gel column chromatography (solvent; chloroform: methanol=60:1), and then silica gel column chromatography (solvent; hexane:ethyl acetate=2:1) to give 496 mg of 4α-acetoxy-2α-benzoyloxy-13α-{(2R,3S)-3-tert-butoxycarbonylamino-2-[(3S)-3-benzyloxycarbonylamino-3-ethoxycarbonylpropionyloxyacetoxy]-3-cyclopropylpropionyloxy}-5β,20-epoxy-1β-hydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one.
Yield:80%
m.p.:107-121°C(decomposed)
FAB-MS(m/z):1479(MH⁺+Na)
IR(nujol,cm⁻¹):3380,1760,1720
NMR(CDCl₃, δ):0.20-0.26(1H,m), 0.46-0.51(1H,m), 0.61-0.67(211,m), 1.06-1.08(1H,m), 1.19(3H,s), 1.24(3H,s), 1.25-1.30(3H,m), 1.32(9H,s), 1.69(1H,s), 1.85(3H,s), 2.04(3H,s), 2.05-2.10(1H,m), 2.23-2.35(2H,m), 2.37(3H,s), 2.58-2.67(1H,m), 2.96-3.04(1H,m), 3.13-3.21(1H,m), 3.55-3.62(1H,m), 3.91(1H,d,J=7Hz), 4.17(1H,d,J=8Hz), 4.19-4.28(2H,m), 4.34(1H,d,J=8Hz), 4.58(1H,d,J=12Hz), 4.64-4.70(1H,m), 4.73(1H,d,J=16Hz), 4.74(1H,d,J=16Hz), 4.74(1H,d,)=12Hz), 4.78(1H,d,J=12Hz), 4.85(1H,d,J=16Hz), 4.89(1H,d,J=12Hz), 4.98(1H,dlike,J=9Hz), 5.09-5.21 (5H,m), 5.56(1H,dd,j=7,11Hz), 5.70(1H,d,J=7Hz), 5.81(1H,dlike,J=8Hz), 6.12-6.19(1H,m), 6.25(1H,s), 7.29-7.38(5H,m), 7.50(2H,tlike), 7.62(1H,t,J=7Hz), 8.10(2H,d,J=7Hz).
(13)To a solution of 262 mg of 4α-acetoxy-13α-{(2R,3S)-3-tert-butoxycarbonylamino-2-[(3S)-3-benzyloxycarbonylamino-3-ethoxycarbonylpropionyloxyacetoxy]-3-cyclopropylpropionyloxy}-2α-benzoyloxy-5β,20-epoxy-1β-hydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one in a mixture of 20 ml of methanol and 4 ml of acetic acid is added 352 mg of zinc powder. The mixture is stirred at 60 °C for 30 minutes. Inorganic materials are removed by filtration, and the filtrate is evaporated under reduced pressure. The residue is extracted with ethyl acetate by adding ethyl acetate and water. The extract is washed with 1 % hydrochloric acid, water and a saturated aqueous sodium successively, and the solvent is removed in vacuo. The residue is purified by silica gel column chromatography (solvent; chloroform: methanol=50:1) to give 155 mg of 4α-acetoxy-13α-((2R,3S)-3-tert-butoxycarbonylamino-2-[(3S)-3-benzyloxycarbonylamino-3-ethoxycarbonylpropionyloxyacetoxy]-3-cyclopropylpropionyloxy)-2α-benzoyloxy-5β,20-epoxy-1β,7β,10β-trihydroxytax-11-en-9-one.
Yield:78%
FAB-MS(m/z):1107(MH⁺)
IR(nujol,cm⁻¹):3400,1750,1700
NMR(CDCl₃, δ):0.20-0.28(1H,m), 0.43-0.52(1H,m), 0.58-0.66(2H,m), 0.97-1.07(1H,m), 1.12(3H,s), 1.20(3H,s), 1.27(3H,t,J=7Hz), 1.32(9H,s), 1.60-1.73(1H,m), 1.68(1H,s), 1.75(3H,s), 1.79-1.90(1H,m), 1.92(3H,brs), 2.15-2.28(2H,m), 2.31(3H,s), 2.52-2.66(1H,m), 2.99(1H,dd,)=4,17Hz), 3.19(1H,dd,J=4,17Hz), 3.55-3.66(1H,m), 3.90(1H,d,J=7Hz), 4.15-4.28(5H,m), 4.31(1H,d,J=8Hz), 4.64-4.83(3H,m), 4.78(2H,d,J=8Hz), 4.93-4.99(1H,m), 5.08-5.17(1H,m), 5.14(2H,slike), 5.18-5.27(2H,m), 5.68(1H,d,J=7Hz), 5.88-5.97(1H,m), 6.11-6.21(1H,m), 7.30-7.38(5H,m), 7.46-7.53(2H,m), 7.57-7.65(1H,m), 8.07-8.14(2H,m).
(14)To a solution of 243 mg of 4α-acetoxy-13α-{(2R,3S)-3-tert-butoxycarbonylamino-2-[(3S)-3-benzyloxycarbonylamino-3-ethoxycarbonylpropionyloxyacetoxy]-3-cyclopropyl-propionyloxy}-2α-benzoyloxy-5β,20-epoxy-1β,7β,10β-trihydroxytax-11-en-9-one in 35 ml of tetrahydrofuran are added 150 mg of 10 % palladium-carbon and 0.032 mg of methanesulfonic acid. The mixture is stirred under the atmospheric pressure of hydrogen at room temperature for 45 minutes. Inorganic materials are removed by filtration, and the filtrate is removed in vacuo. Diethylether is added to the residue to precipitate crystals. Crystals are collected by filtration, washed with diethylether, and dried to give 174 mg of 4α-acetoxy-2α-benzoyloxy-13α-{(2R,3S)-3-tert-butoxycarbonylamino-2-[(3S)-3-amino-3-ethoxycarbonylpropionyloxyacetoxy]-3-cyclopropylpropionyloxy}-5β,20-epoxy-1β,7β,10β-trihydroxytax-11-en-9-one methanesulfonate.
Yield:74%
m.p.:151°C(decomposed)
FAB-MS(m/z):973(MH⁺)
IR(nujol,cm⁻¹):3400,1740,1700
NMR(DMSO-d₆,δ):0.20-0.30(1H,m), 0.32-0.42(1H,m), 0.48-0.57(2H,m), 1.00-1.06(1H,m), 1.02(3H,s), 1.04(3H,s), 1.24(3H,t,J=7Hz), 1.35(9H,s), 1.55(3H,s),1.60-1.75(1H,m), 1.79(3H,s), 2.18-2.29(3H,m), 2.31(6H,s), 3.04(1H,dd,J=6,18Hz), 3.11(1H,dd,J=6,18Hz), 3.37-3.48(1H,m), 3.75(1H,d,J=7Hz), 4.02-4.13(3H,m), 4.16-4.28(2H,m), 4.40(1H,t,J=6Hz), 4.65(1H,s), 4.90(2H,s), 4.92-4.98(2H,m), 5.03(1H,d,J=7Hz), 5.07(1H,d,J=4Hz), 5.14(1H,s), 5.47(1H,d,J=7Hz), 5.90-6.00(1H,m), 7.18(1H,d,J=9Hz), 7.52-7.60(2H,m), 7.63-7.71(1H,m), 7.98-8.05(2H,m), 8.38(3H,brs).
Example 2
Yield:85%
m.p.:173-179°C
[α]D -55.59° (c=1,chloroform)
FAB-MS(m/z):772(MH⁺)
IR(nujol,cm-1):3400,1700
NMR(CDCl₃,δ):0.23-0.32(1H,m), 0.42-0.52(1H,m), 0.59-0.68(2H,m), 1.13(3H,s), 1.19-1.29(1H,m), 1.23(3H,s), 1.33(9H,s), 1.58-1.67(1H,m), 1.69(1H,s), 1.75(3H,s), 1.79-1.91(1H,m), 1.93(3H,d,J=1Hz), 2.29(2H,d,J=9Hz), 2.37(3H,s), 2.59(1H,ddd,J=7,10,14Hz), 3.32(1H,dt,J=2,9Hz), 3.46(1H,d,J=6Hz), 3.92(1H,d,J=7Hz), 4.19(1H,d,J=8Hz), 4.2-4.3(1H,m), 4.21(1H,d,J=2Hz), 4.34(1H,d,J=8Hz), 4.39(1H,dd,J=2,6Hz), 4.90-5.00(2H,m), 5.22(1H,d,J=2Hz), 5.69(1H,d,J=7Hz), 6.12-6.22(1H,m), 7.46-7.54(2H,m), 7.57-7.65(1H,m), 8.07-8.13(2H,m).
Example 3
(1)A solution of 4α-acetoxy-2α-benzoyloxy-13α-[(2R,3S)-3-amino-3-cyclopropyl-2-hydroxypropionyloxy]-5β,20-epoxy-1β-hydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one formate obtained in Example 1(10) in ethyl acetate is treated with saturated aqueous sodium bicarbonate solution to give 4α-acetoxy-2α-benzoyloxy-13α-[(2R,3S)-3-amino-3-cyclopropyl-2-hydroxypropionyloxy]-5β,20-epoxy-1β-hydroxy-7β,10β-bis(2,2,2-trichloroethoxy-carbonyloxy)tax-11-en-9-one. To a solution of 504 mg of the resulting free base in methylene chloride is added 73 mg of t-butylisocyanate at room temperature under argon atmosphere, and the mixture is stirred overnight. Water is added to the reaction mixture, and the mixture is extracted with chloroform. The extract is washed with brine, dried, and evaporated under reduced pressure to remove the solvent. The residue is purified by silica gel column chromatography (solvent; hexane:ethyl acetate=3:1) to give 376 mg of 4α-acetoxy-2α-benzoyloxy-13α-[(2R,3S)-3-tert-butylaminocarbonylamino-3-cyclopropyl-2-hydroxypropionyloxy]-5β,20-epoxy-1β-hydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one.
Yield:68%
m.p.:167-174°C
FAB-MS(m/z):1143(M⁺+Na)
IR(nujol,cm⁻¹):3400,1760,1720,1660
NMR(CDCl₃,δ):0.24-0.31(1H,m), 0.41-0.50(1H,m), 0.54-0.70(2H,m), 1.19-1.28(7H,m), 1.24(9H,s),1.76(1H,s), 1.86(3H,s), 2.00-2.12(1H,m), 2.03(3H,d,J=1Hz), 2.25-2.49(2H,m), 2.41(3H,s), 2.63(1H,ddd,J=7,10,14Hz), 3.35-3.45(1H,ddlike,J=2,9Hz), 3.75(1H,d,J=7Hz), 3.91(1H,d,J=7Hz), 4.18(1H,d,J=8Hz), 4.26(1H,brs), 4.37(1H,d,J=8Hz), 4.39(1H,dd,J=2,7Hz), 4.53(1H,d,J=9Hz), 4.60(1H,d,J=12Hz), 4.75(1H,d,J=12Hz), 4.80(1H,d,J=12Hz), 4.91(1H,d,J=12Hz), 4.95-5.01(1H,dlike), 5.56(1H,dd,J=7,11Hz), 5.72(1H,d,J=7Hz), 6.10-6.19(1H,m), 6.26(1H,s), 7.47-7.55(2H,m), 7.59-7.67(1H,m), 8.07-8.13(2H,m).
(2)A 355 mg of 4α-acetoxy-2α-benzoyloxy-13α-[(2R,3S)-3-tert-butylaminocarbonylamino-3-cyclopropyl-2-hydroxypropionyloxy]-5β,20-epoxy-1β-hydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one is treated in the same manner as described in Example 1(12)-(14) to give 158 mg of 4α-acetoxy-13α-{(2R,3S)-3-tert-butylaminocarbonylamino-2-[(3S)-3-amino-3-ethoxycarbonylpropionyloxy)acetoxy]-3-cyclopropylpropionyloxy}-2α-benzoyloxy-5β,20-epoxy-1β,7β,10β-trihydroxytax-11-en-9-one methanesulfonate.
Yield:80%
m.p.:165-169°C
FAB-MS(m/z):972(MH⁺)
IR(nujol,cm⁻¹):3400,1750,1660
NMR(DMSO-d₆,δ):0.08-0.17(1H,m), 0.28-0.37(1H,m), 0.46-0.53(2H,m), 0.97-1.08(1H,m), 1.03(6H,brs), 1.15(9H,brs), 1.23(3H,t,J=7Hz), 1.54(3H,s), 1.61-1.72(1H,m), 1.78(3H,s), 2.21-2.36(3H,m), 2.32(3H,s), 2.33(3H,s), 3.04(1H,dd,J=6,18Hz), 3.12(1H,dd,J=6,18Hz), 3.74(1H,d,J=7Hz), 3.75-3.81(1H,m), 4.01-4.13(3H,m), 4.15-4.28(2H,m), 4.40(1H,t,J=6Hz), 4.62(1H,s), 4.90-5.00(2H,m), 4.90(1H,d,J=16Hz), 4.96(1H,d,J=16Hz), 5.05(1H,d,J=7Hz), 5.10(1H,d,J=3Hz), 5.14(1H,brs), 5.47(1H,d,J=7Hz), 5.75(1H,brs), 5.88-5.98(2H,m), 7.53-7.61(2H,m), 7.63-7.71(1H,m), 8.01-8.07(2H,m), 8.35(3H,brs).
Example 4
(1-1)To a solution of 500 mg of ethyl (2R,3R)-3-cyclopropyl-2,3-epoxypropionate in 20 ml of tetrahydrofuran is added dropwise 3.52 ml of 1N sodium hydroxide under ice-cooling. The reaction mixture is stirred at room temperature for 2.5 hours. After the reaction mixture is concentrated under reduced pressure, the residue is diluted with 20 ml of water. The reaction mixture is washed with diethylether. The aqueous layer is cooled in an ice-bath. Then, 508 mg of 4-dimethylaminopyridine hydrochloride is added to the mixture. After the resulting mixture is stirred at room temperature for one hour, the reaction mixture is purified by non-ionic absorbing resin HP-20 (Mitsubishi Kasei Kogyo Ltd.) and aqueous eluate is lyophilized to give 503 mg of 4-dimethylaminopyridinium (2R,3R)-3-cyclopropyl-2,3-epoxypropionate. A suspension of 38 mg of 4-dimethylaminopyridinium (2R,3R)-3-cyclopropyl-2,3-epoxypropionate, 45 mg of 4α-acetoxy-2α-benzoyloxy-5β,20-epoxy-1β,13α-dihydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one and 31 mg of 1,3-dicyclohexylcarbodiimide in 1 ml of toluene is stirred at 50°C for one hour. The reaction mixture is cooled to room temperature and diluted with diethylether, and insoluble materials are removed by filtration. The filtrate is washed with brine, dried and evaporated to remove the solvent. The residue is purified by thin layer chromatography (solvent; hexane:ethyl acetate=3:2) to give 45 mg of 4α-acetoxy-2α-benzoyloxy-13α-[(2R,3R)-3-cyclopropyl-2,3-epoxypropionyloxy]-5β,20-epoxy-1β-hydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one.
Yield:90%
FAB-MS(m/z):1025(M⁺+Na), 1027([M⁺+Na]+2), 1029([M⁺+Na]+4)
IR(nujol,cm⁻¹):3480,1760,1720
NMR(300MHz, CDCl₃,δ):0.42(1H,m), 0.66(2H,m), 0.81(1H,m), 0.95(1H,m), 1,20(3H,s), 1.26(3H,s), 1.70(lH,s,D₂ Oexch), 1.86(3H,s), 2.05-2.1(1H,m), 2.09(3H,d,J=1Hz), 2.25-2.35(2H,m), 2.39(3H,s), 2.63(1H,dd,J=4,9Hz), 2.64(1H,m), 3.69(1H,d,J=4Hz), 3.96(1H,d,J=7Hz), 4.17(1H,d,J=9Hz), 4.35(1H,d,J=9Hz), 4.61(11-1,d,J=12Hz), 4.78(1H,d,J=12Hz), 4.91(1H,d,J=12Hz), 4.98(1H,m), 5.59(1H,dd,J=7,11 Hz), 5.69(1H,d,J=7Hz), 6.27(1H,s), 6.31(1H,m), 7.49(2H,m), 7.63(1H,m), 8.08(2H,m).
(1-2)A 2.04 g of benzyl (2R,3R)-3-cyclopropyl-2,3-epoxypropionate is dissolved in 40 ml of tetrahydrofuran and subjected to catalytic hydrogenation at room temperature under atmospheric pressure using 1g of 10 % palladium-carbon. After 2 hours, the catalyst is removed by filtration. After 40 ml of toluene is added to the filtrate, the resulting mixture is concentrated under reduced pressure to remove tetrahydrofuran to give a solution of (2R,3R)-3-cyclopropyl-2,3-epoxypropionic acid in toluene. Then, 2.74 g of 4α-acetoxy-2α-benzoyloxy-5β,20-epoxy-1β,13α-dihydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one, 1.89 g of 1,3-dicyclohexylcarbodiimide and 187 mg of 4-dimethylaminopyridine are added to the resulting solution of (2R,3R)-3-cyclopropyl-2,3-epoxypropionic acid in toluene. The mixture is stirred at 80 °C for one hour. The reaction mixture is cooled to room temperature and treated in the same manner as described in Example 4(1-1). The residue is purified by silica gel frash column chromatography (solvent; ethyl acetate:hexane=1:2) to give 3.02 g of 4α-acetoxy-2α-benzoyloxy-13α-[(2R,3R)-3-cyclopropyl-2,3-epoxypropionyloxy]-5β,20-epoxy-1β-hydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one. The physical properties of the product are the same as those of the compound of Example 4(1-1).
(2-1)To a solution of 108 mg of 4α-acetoxy-2α-benzoyloxy-13α-[(2R,3R)-3-cyclopropyl-2,3-epoxypropionyloxy]-5β,20-epoxy-1β-hydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one in 3 ml of methanol-water (8:1) and 0.3 ml of methyl formate is added 211 mg of sodium azide. The reaction mixture is stirred at 50 °C for 15 hours. The reaction mixture is cooled to room temperature, poured into ice-water, and extracted with ethyl acetate. The organic layer is washed with brine, dried and evaporated to remove the solvent. The residue is purified by thin layer chromatography (solvent; chloroform:ethyl acetate=10:1) to give 4α-acetoxy-2α-benzoyloxy-13α-[(2R,3S)-3-azide-3-cyclopropyl-2-hydroxypropionyloxy]-5β,20-epoxy-1β-hydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one.
Yield:80%
FAB-MS(m/z):1068(M⁺+Na), 1070([M⁺+Na]+2), 1072([M⁺+Na]+4)
IR(nujol,cm⁻¹):3500,2110,1760,1720
NMR(300MHz, CDCl₃,δ):0.35(1H,m), 0.62(1H,m), 0.71(1H,m), 0.91(1H,m), 1.21(3H,s), 1.28(3H,s), 1.47(1H,m), 1.74(1H,s,D₂ Oexch), 1.87(3H,s), 2.08(1H,m), 2.12(3H,d,J=1Hz), 2.2-2.3(2H,m), 2.36(3H,s), 2.65(1H,m), 3.05(1H,dd,J=2,10Hz), 3.11(1H,d,J=8Hz,D₂ Oexch), 3.93(1H,d,J=7Hz), 4.18(1H,d,J=8Hz), 4.34(1H,d,J=8Hz), 4.39(1H,dd,J=2,8Hz), 4.61(1H,d,J=12Hz), 4.76(1H,d,J=12Hz), 4.81(1H,d,J=12Hz), 4.92(1H,d,J=12Hz), 4.98(1H,m), 5.57(1H,dd,J=7,11Hz), 5.70(1H,d,J=7Hz), 6.22(1H,m), 6.28(1H,s), 7.49(2H,m), 7.63(1H,m), 8.07(2H,m).
(2-2)To a solution of 55 mg of 4α-acetoxy-2α-benzoyloxy-13α-[(2R,3R)-3-cyclopropyl-2,3-epoxypropionyloxy]-5β,20-epoxy-1β-hydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one in 0.5 ml of tetra(n-butyl)tin azide is added a catalytic amount of zinc iodide. The reaction mixture is stirred at 50 °C. After 19 hours, the reaction mixture is cooled to room temperature and purified by silica gel frash column chromatography (solvent; chloroform:ethyl acetate=20:1) and thin layer chromatography (solvent; chloroform:ethyl acetate=10:1) to give 51 mg of 4α-acetoxy-2α-benzoyloxy-13α-[(2R,3S)-3-azide-3-cyclopropyl-2-hydroxypropionyloxy]-5β,20-epoxy-1β-hydroxy-7β,10β-bis(2,2,2-trichloroethoxycarboiiyloxy)tax-11-en-9-one. The physical properties of the product are the same as those of the compound of Example 4(2-1).
(3-1)To a solution of 69 mg of 4α-acetoxy-2α-benzoyloxy-13α-[(2R,3S)-3-azide-3-cyclopropyl-2-hydroxypropionyloxy]-5β,20-epoxy-1β-hydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one in 3 ml of tetrahydrofuran is added 13 mg of platinum oxide. The reaction mixture is subjected to catalytic hydrogenation at room temperature under atmospheric pressure for 3 hours. After the catalyst is removed by filtration. Then, 0.1 ml of formic acid is added to the filtrate, and the mixture is evaporated to remove the solvent. To the residue is added methanol, and insoluble materials are removed by filtration. Then, the filtrate is evaporated to remove the solvent. The residue is washed to give 46 mg of 4α-acetoxy-2α-benzoyloxy-13α-[(2R,3S)-3-amino-3-cyclopropyl-2-hydroxypropionyloxy]-5β,20-epoxy-1β-hydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one formate. The physical properties of the product are the same as those of the compound of Example 1(10).
(3-2)To a solution of 314 mg of 4α-acetoxy-2α-benzoyloxy-13α-[(2R,3S)-3-azide-3-cyclopropyl-2-hydroxypropionyloxy]-5β,20-epoxy-1β-hydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one in 12 ml of methanol are added 157 mg of 10 % palladium-carbon and 305 ml of 1N hydrochloric acid. The mixture is subjected to catalytic hydrogenation at room temperature under atmospheric pressure. After 1.5 hours, the catalyst is removed by filtration. The filtrate is evaporated to remove the solvent. Diisopropylether is added to the residue, and the resulting solid materials are collected by filtration to give 289 mg of 4α-acetoxy-2α-benzoyloxy-13α-[(2R,3S)-3-amino-3-cyclopropyl-2-hydroxypropionyloxy]-5β,20-epoxy-1β-hydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one hydrochloride.
Yield:91%
FAB-MS(m/z):1022(MH⁺+2)
IR(nujol,cm⁻¹):3410,3140,1760,1740,1730,1710
NMR(DMSO-d₆,δ):0.20-0.27(1H,m), 0.56-0.59(2H,m), 0.64-0.68(1H,m), 1.03(3H,s), 1.07-1.10(1H,m), 1.13(3H,s), 1.72(3H,s), 1.84-1.92(1H,m), 1.99(3H,s), 2.21(1H,dd,J=9,15Hz), 2.32-2.37(1H,m), 2.37(3H,s), 2.56-2.62(1H,m), 3.81(1H,d,J=7Hz), 4.08-4.15(3H,m), 4.44(1H,brdd,J=6,7Hz), 4.79(1H,d,J=12Hz), 4.95(1H,d,J=12Hz), 4.97(1H,d,J=12Hz), 5.03(1H,d,J=12Hz), 5.05(1H,d,J=10Hz), 5.11(1H,s), 5.48(1H,dd,J=7,11 Hz), 5.52(1H,d,J=7Hz), 6.10(1H,brt,J=9Hz), 6.16(1H,s), 6.94(1H,d,J=5Hz), 7.57(2H,brt,J=8Hz), 7.69(1H,brt,J=7Hz), 7.99(2H,brd,J=7Hz), 8.28(3H,brs).
(4)4α-Acetoxy-2α-benzoyloxy-13α-[(2R,3S)-3-amino-3-cyclopropyl-2-hydroxypropionyloxy]-5β,20-epoxy-1β-hydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one formate is treated in the same manner as described in Example 1(11) to give 4α-acetoxy-2α-benzoyloxy-13α-[(2R,3S)-3-tert-butoxycarbonylamino-3-cyclopropyl-2-hydroxypropionyloxy]-5β,20-epoxy-1β-hydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one. The physical properties of the product are the same as those of the compound of Example 1(11).
(5)To a solution of 861 mg of 4α-acetoxy-2α-benzoyloxy-13α-[(2R,3S)-3-tert-butoxycarbonylamino-3-cyclopropyl-2-hydroxypropionyloxy]-5β,20-epoxy-1β-hydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one in 40 ml of tetrahydrofuran are added 321 mg of benzyloxy acetic acid, a solution of 404 mg of 1,3-dicyclohexylcarbodiimide in 10 ml of tetrahydrofuran and 9 mg of 4-dimethylaminopyridine. The reaction mixture is stirred at room temperature for 1.5 hours and condensed. The residue is dissolved in diethylether, and insoluble materials are removed by filtration. The filtrate is washed, dried and evaporated to remove the solvent. The residue is purified by silica gel frash column chromatography (solvent; hexane:ethyl acetate=3:1) to give 650 mg of 4α-acetoxy-2α-benzoyloxy-13α-[(2R,3S)-3-tert-butoxycarbonylamino-3-cyclopropyl-2-benzyloxyacetoxypropionyloxy]-5β,20-epoxy-1β-hydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one.
Yield:67%
ESI-MS(m/z):1292(M+Na⁺+2), 1290(M+Na⁺)
IR(nujol,cm⁻¹):3444,1760,1725
NMR(CDCl₃,δ):0.22-0.26(1H,m), 0.45-0.51(1H,m), 0.60-0.67(2H,m), 1.03-1.11(1H,m), 1.19(3H,s), 1.26(3H,s), 1.33(9H,s), 1.70(1H,s), 1.85(3H,s), 2.02-2.11(1H,m), 2.07(3H,J=1Hz), 2.29-2.34(2H,m), 2.39(3H,s), 2.65(1H,ddd,J=14,9,7Hz), 3.59(1H,dt,J=10,2Hz), 3.93(1H,d,J=7Hz), 4.17(1H,d,J=9Hz), 4.25(1H,d,J=17Hz), 4.31(1H,d,J=17Hz), 4.35(1H,d,J=1Hz), 4.60(1H,d,J=12Hz), 4.69(2H,s), 4.75(1H,d,J=12Hz), 4.79(1H,d,J=12Hz), 4.86-4.89(1H,m), 4.92(1H,d,J=12Hz), 4.99(1H,d,J=8Hz), 5.20(1H,d,J=2.0Hz), 5.58(1H,dd,J=7,11Hz), 5.71(1H,d,J=7Hz), 6.15-6.21(1H,m), 6.26(1H,s), 7.32-7.40(5H,m), 7.51(2H,t,J=8Hz), 7.63(1H,tt,J=1,7Hz), 8.11(2H,brdd,J=2,9Hz).
(6)To a solution of 129 mg of 4α-acetoxy-2α-benzoyloxy-13α-[(2R,3S)-3-tert-butoxycarbonylamino-3-cyclopropyl-2-benzyloxyacetoxypropionyloxy]-5β,20-epoxy-1β-hydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one in 9 ml of tetrahydrofuran-acetic acid (1:2) is added 271 mg of 10 % palladium-carbon. The reaction mixture is subjected to catalytic hydrogenation at room temperature under atmospheric pressure for 2.5 hours. After the catalyst is removed by filtration, the filtrate is evaporated to remove the solvent. The residue is dissolved in ethyl acetate, washed with brine, dried and evaporated to remove the solvent. The residue is purified by silica gel frash column chromatography (solvent; hexane:ethyl acetate=2:1) to give 75 mg of 4α-acetoxy-2α-benzoyloxy-13α-[(2R,3S)-3-tert-butoxycarbonylamino-3-cyclopropyl-2-hydroxyacetoxypropionyloxy]-5β,20-epoxy-1β-hydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one.
Yield:63%
ESI-MS(m/z):1202(M+Na⁺+2), 1200(M+Na⁺)
IR(nujol,cm⁻¹):3445,1756,1725
NMR(CDCl₃,δ):0.22-0.29(1H,m), 0.47-0.53(1H,m), 0.63-0.67(2H,m), 1.02-1.12(1H,m), 1.23(3H,s), 1.25(3H,s), 1.34(9H,s), 1.72(1H,s), 1.85(3H,s), 2.02-2.11(1H,m), 2.06(3H,d,J=1Hz), 2.27-2.36(2H,m), 2.39(3H,s), 2.45(1H,brt,J=6Hz), 2.64(1H,ddd,J=7,10,14Hz), 3.59(1H,dt,J=3,10Hz), 3.92(1H,d,J=7Hz), 4.17(1H,d,J=9Hz), 4.32(1H,dd,J=3,18Hz), 4.35(1H,d,J=9Hz), 4.41(1H,dd,J=5,18Hz), 4.60(1H,d,J=12Hz), 4.75(1H,d,J=12Hz), 4.79(1H,d,J=12), 4.91(1H,d,J=10Hz), 4.92(1H,d,J=12Hz), 4.99(1H,brd,J=10Hz), 5.22(1H,d,J=2Hz), 5.58(1H,dd,J=7,11 Hz), 5.71(1H,d,J=7Hz), 6.13-6.20(1H,m), 6.26(1H,s), 7.51(2H,t,J=8Hz), 7.63(1H,tt,J=2,8Hz), 8.10(2H,brdd,J=1,9Hz).
(7)To a solution of 56 mg of 4α-acetoxy-2α-benzoyloxy-13α-[(2R,3S)-3-tert-butoxycarbonylamino-3-cyclopropyl-2-hydroxyacetoxypropionyloxy]-5β,20-epoxy-1β-hydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one in 3 ml of tetrahydrofuran are added 31 mg of (3S)-3-benzyloxycarbonylamino-3-carbamoylpropionic acid, 25 mg of 1,3-dicyclohexylcarbodiimide and about 1 mg of 4-dimethylaminopyridine. The reaction mixture is stirred at room temperature for 4 hours and condensed. The residue is dissolved in ethyl acetate and insoluble materials are removed by filtration. The filtrate is washed, dried and evaporated to remove the solvent. The residue is purified by thin layer chromatography to give 51 mg of 4α-acetoxy-2α-benzoyloxy-13α-{(2R,3S)-3-tert-butoxycarbonylamino-2-[(35)-3-benzyloxycarbonylamino-3-carbamoylpropionyloxyacetoxy]-3-cyclopropylpropionyloxy}-5β,20-epoxy-1β-hydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one.
Yield:76%
ESI-MS(m/z, ammonium acetate):1445(M+NH₄ ⁺+2)
IR(nujol,cm⁻¹):3363,1757,1723
NMR(CDCl₃,δ):0.17-0.23(1H,m), 0.49-0.53(1H,m), 0.62-0.69(2H,m), 1.10-1.18(1H,m), 1.18(3H,s), 1.23(3H,s), 1.33(9H,s), 1.72(1H,s), 1.84(3H,s), 2.03(3H,s), 2.03-2.06(1H,m), 2.29-2.32(2H,m), 2.37(3H,s), 2.62(1H,ddd,J=7,10,14Hz), 2.72(1H,dd,J=5,17Hz), 3.31(1H,dd,J=4,17Hz), 3.53(1H,dt,J=3,9Hz), 3.90(1H,d,J=7Hz), 4.16(1H,d,J=8Hz), 4.34(1H,d,J=7Hz), 4.59(1H,d,J=12Hz), 4.68(1H,d,J=16Hz), 4.69-4.73(1H,m), 4.75(1H,d,J=12Hz), 4.78(1H,d,J=12Hz), 4.90(1H,d,J=12Hz), 4.92(1H,d,J=16Hz), 4.97(1H,brd,J=9Hz), 5.13(1H,br), 5.14(1H,d,J=12Hz), 5.16(1H,d,J=12Hz), 5.55(1H,dd,J=10,7Hz), 5.70(1H,d,J=10Hz), 6.02(1H,brs), 6.11-6.21(2H,m), 6.24(1H,s), 6.54(1H,brs), 6.60-6.63(1H,m), 7.35-7.38(5H,m), 7.50(2H,t,J=8Hz), 7.63(1H,tt,J=7,2Hz), 8.10(2H,brd,J=7Hz).
(8)4α-Acetoxy-2α-benzoyloxy-13α-{(2R,35)-3-tert-butoxycarbonylamino-2-[(3S)-3-benzyloxycarbonylamino-3-carbamoylpropionyloxyacetoxy]-3-cyclopropylpropionyloxy)-5β,20-epoxy-1β-hydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one is treated in the same manner as described in Example 1(13) or Example 2 to give 4α-acetoxy-2α-benzoyloxy-13α-{(2R,35)-3-tert-butoxycarbonylamino-2-[(3S)-3-benzyloxycarbonylamino-3-carbamoylpropionyloxyacetoxy]-3-cyclopropylpropionyloxy}-5β,20-epoxy-1β,7β,10β-trihydroxytax-11-en-9-one.
FAB-MS(m/z):1078(M+H⁺)
IR(nujol,cm⁻¹):3400,1700
NMR(CDCl₃,δ):0.12-0.24(1H,m), 0.45-0.57(1H,m), 0.59-0.72(2H,m), 1.05-1.21(1H,m), 1.13(3H,s), 1.16(3H,s), 1.33(9H,s), 1.62-1.98(1H,m), 1.67(1H,s), 1.71(3H,s), 1.89(3H,s), 2.14-2.38(2H,m), 2.37(3H,s), 2.47-2.62(1H,m), 2.66-2.76(1H,m), 3.28-3.40(1H,m), 3.45-3.59(1H,m), 3.89(1H,d,J=7Hz), 4.10-4.28(3H,m), 4.32(1H,d,J=9Hz), 4.66-4.69(2H,m), 4.86-4.98(1H,m), 4.95(1H,d,J=9Hz), 5.10(1H,brs), 5.15(2H,brs), 5.24(1H,brs), 5.68(1H,d,J=7Hz), 6.03-6.28(3H,m), 6.72-6.86(1H,m), 7.31-7.41(5H,m), 7.47-7.55(2H,m), 7.57-7.66(1H,m), 8.11(2H,d,J=8Hz).
(9)4α-Acetoxy-2α-benzoyloxy-13α-{(2R,3S)-3-tert-butoxycarbonylamino-2-[(3S)-3-benzyloxycarbonylamino-3-carbamoylpropionyloxyacetoxy]-3-cyclopropylpropionyloxy}-5β,20-epoxy-1β,7β,10β-trihydroxytax-11-en-9-one is treated in the same manner as described in Example 1(14) to give 4α-acetoxy-2α-benzoyloxy-13α-{(2R,3S)-3-tert-butoxycarbonylamino-2-[(3S)-3-amino-3-carbamoylpropionyloxyacetoxy]-3-cyclopropylpropionyloxy}-5β,20-epoxy-1β,7β,10β-trihydroxytax-11-en-9-one methanesulfonate.
FAB-MS(m/z):944(M+H⁺)
IR(nujol,cm⁻¹):3400,1740,1700
NMR(DMSO-d₆,δ):0.09-0.19(1H,m), 0.31-0.41(1H,m), 0.47-0.59(2H,m), 0.95-1.10(1H,m), 1.02(3H,s), 1.03(3H,s), 1.35(9H,s), 1.54(3H,s), 1.62-1.72(1H,m), 1.79(3H,s), 2.17-2.34(3H,m), 2.30(3H,s), 2.32(3H,s), 2.95(1H,dd,J=8,17Hz), 3.08(1H,ddlike), 3.34-3.47(1H,m), 3.74(1H,d,J=7Hz), 4.02-4.14(4H,m), 4.67(1H,s), 4.89(2H,s), 4.95(1H,d,J=11Hz), 4.98(1H,d,J=2Hz), 5.05(1H,d,J=7Hz), 5.07(1H,d,J=4Hz), 5.14(1H,d,J=2Hz), 5.47(1H,d,J=7Hz), 5.95(1H,t,J=9Hz), 7.21(1H,d,J=9Hz), 7.56(2H,t,J=8Hz), 7.62-7.72(2H,m), 7.87(1H,brs), 8.02(2H,d,J=7Hz), 8.09(3H,brs).
Example 5
(1)To a solution of 202 mg of [(3S)-3-benzyloxycarbonylamino-3-carbamoylpropionyloxy]acetic acid in 4 ml of tetrahydrofuran are added successively 90 ml of triethylamine and 75 ml of isopropyloxycarbonylchloride under argon atmosphere at -10°C. The reaction mixture is stirred for 15 minutes. To the mixture is added slowly a solution of 4α-acetoxy-2α-benzoyloxy-13α-[(2R,3S)-3-tert-butoxycarbonylamino-3-cyclopropyl-2-hydroxypropionyloxy]-5β,20-epoxy-1β,7β,10β-trihydroxytax-11-en-9-one obtained in Example 2 in 2 ml of tetrahydrofuran. The reaction mixture is stirred at -10-0°C for 7 hours. To the mixture is added saturated aqueous solution of sodium hydrogen carbonate, and the mixture is extracted with ethyl acetate. The extract is washed, dried and evaporated to remove the solvent. The residue is purified by silica gel column chromatography (solvent; hexane:ethyl acetate:ethanol=15:15:1) to give 73 mg of 4α-acetoxy-2α-benzoyloxy-13α-{(2R,3S)-3-tert-butoxycarbonylamino-2-[(3S)-3-benzyloxycarbonylamino-3-carbamoylpropionyloxyacetoxy]-3-cyclopropylpropionyloxy}-5β,20-epoxy-1β,7β,10β-trihydroxytax-11-en-9-one. The physical properties of the product are the same as those of the compound of Example 4(8).
(2)4α-Acetoxy-2α-benzoyloxy-13α-{(2R,3S)-3-tert-butoxycarbonylamino-3-[(3S)-3-benzyloxycarbonylamino-3-carbamoylpropionyloxyacetoxy]-3-cyclopropylpropionyloxy}-5 β,20-epoxy-1β,7β,10β-trihydroxytax-11-en-9-one is treated in the same manner as described in Example 1(14) to give 4α-acetoxy-2α-benzoyloxy-13α-{(2R,3S)-3-tert-butoxycarbonylamino-2-[(3S)-3-amino-3-carbamoylpropionyloxyacetoxy]-3-cyclopropylpropionyloxy}-5β,20-epoxy-1β,7β,10β-trihydroxytax-11-en-9-one methanesulfonate. The physical properties of the product are the same as those of the compound of Example 4(9).
Example 6
(1)A solution of 2.07 g of ethyl (2R,3S)-3-cyclopropyl-3-tert-butoxycarbonylamino-2-hydroxypropionate
and 213 mg of pyridinium p-toluenesulfonate in 125 ml of toluene is refluxed under
heating. To the mixture is added dropwise a solution of 2.76 g of p-anisaldehydedimethylacetal
in 25 ml of toluene for 20 minutes. The reaction mixture is evaporated to remove the
generated methanol. The mixture is stirred under heating for 1.5 hours and cooled.
After the reaction mixture is condensed under reduced pressure, ethyl acetate and
water are added to the residue. The ethyl acetate layer is obtained by separation.
The aqueous layer is extracted with ethyl acetate. The extract is washed with water
and brine, dried and condensed under reduced pressure. The residue is purified by
silica gel column chromatography (solvent; toluene:ethyl acetate=40:1) to give 1.572
gof ethyl (4S,5R)-3-tert-butoxycarbonyl-2-(4-methoxyphenyl)-4-cyclopropyl-5-oxazolidinecarboxylate
(diastereomeric mixture).
Yield:53%
The physical properties of the main isomer only are shown.
ESI-MS(m/z):392(M⁺H)
IR(neat,cm⁻¹):1750,1703
NMR(CDCl₃,δ):0.34-0.42(1H,m), 0.51-0.73(3H,m), 1.10-1.22(1H,m), 1.30(3H,t,J=7Hz), 1.58(9H,s), 3.63(1H,dd,J=2,9Hz), 3.82(3H,s), 4.24(1H,q,J=7Hz), 4.25(1H,q,J=7Hz), 4.60(1H,d,J=2Hz), 6.32(1H,s), 6.90(2H,dt,J=2,9Hz), 7.45(2H,dt,J=2,9Hz).
(2)To a solution of 881 mg of ethyl (4S,5R)-3-tert-butoxycarbonyl-2-(4-methoxyphenyl)-4-cyclopropyl-5-oxazolidinecarboxylate
(diastereomeric mixture) in 16 ml of methanol is added dropwise a solution of 64.7
mg of lithium hydroxide in 8 ml of water under cooling, and the mixture is stirred
at room temperature for 1 hour. After the reaction mixture is evaporated under reduced
pressure to remove methanol, the residue is dissolved in chloroform. The pH of the
solution is adjusted to pH 2 with 10 % hydrochloric acid. After extracted with chloroform,
the extract is washed with brine twice, dried and eyaporated to remove the solvent
to give 792 mg of (4S,5R)-3-tert-butoxycarbonyl-2-(4-methoxyphenyl) -4-cyclopropyl-5-oxazolidinecarboxylic
acid.
Yield:97%
The physical properties of the main isomer only are shown.
ESI-MS(m/z):386(M+Na)
IR(neat,cm⁻¹):3200,1754,1702,1669
NMR(CDCl₃,δ):0.37-0.46(1H,m), 0.51-0.76(3H,m), 1.09-1.21(1H,m), 1.38(9H,s), 3.71(1H,dd,J=2,9Hz), 3.82(3H,s), 4.40(1H,broads), 4.64(1H,d,J=2Hz), 6.34(1H,s), 6.90(2H,dt,J=2,9Hz), 7.44(2H,dt,J=2,9Hz).
(3)To a solution of 722 mg of (4S,5R)-3-tert-butoxycarbonyl-2-(4-methoxyphenyl)-4-cyclopropyl-5-oxazolidinecarboxylic acid in 23 ml of toluene are added 495 mg of dicyclohexylcarbodiimide, 93 mg of 4-(N,N-dimethylamino)pyridine and 1.345 g of 4α-acetoxy-2α-benzoyloxy-5β,20-epoxy-1β,13α-dihydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one at room temperature. The mixture is stirred at 80 °C for 2 hours. Insoluble materials are removed by filtration. The filtrate is condensed under reduced pressure. The residue is purified by silica gel column chromatography (solvent; hexane:ethyl acetate=3:1) to give 1.713 g (92%yield) of 4α-acetoxy-2α-benzoyloxy-13α-[(4S,5R)-3-tert-butoxycarbonyl-(2S)-(4-methoxyphenyl)-4-cyclopropyloxazolidin-5-ylcarbonyloxy]-5β,20-epoxy-1β-hydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one and 4α-acetoxy-2α-benzoyloxy-13α-[(4S,5R)-3-tert-butoxycarbonyl-(2R)-(4-methoxyphenyl)-4-cyclopropyloxazolidin-5-ylcarbonyloxy]-5β,20-epoxy-1β-hydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one.
m.p.:158.8-165.1°C
ESI-MS(m/z):1258(M+NH₄)
IR(nujol,cm⁻¹):3488,1761,1729,1704
NMR(CDCl₃,δ):0.38-0.46(1H,m), 0.54-0.90(4H,m), 1.21(3H,s), 1.29(3H,s), 1.37(9H,s), 1.72(1H,s), 1.87(3H,s), 2.03-2.13(1H,m), 2.09(3H,d,J=1Hz), 2.24-2.38(2H,m), 2.33(3H,s), 2.63-2.72(1H,m), 3.78(1H,dd,J=2,9Hz), 3.85(3H,s), 3.96(1H,d,J=7Hz), 4.18(1H,d,J=9Hz), 4.34(1H,d,J=9Hz), 4.61(1H,d,J=12Hz), 4.73(1H,d,J=2Hz), 4.78(2H,s), 4.91(1H,d,J=12Hz), 4.97-5.02(1H,m), 5.61(1H,dd,J=7,11Hz), 5.71(1H,d,J=7Hz), 6.25-6.32(1H,m), 6.28(1H,s), 6.37(1H,s), 6.95(2H,dt,J=2,9Hz), 7.48(2H,m), 7.53(2H,dt,J=2,9Hz), 7.62(1H,tt,J=1,7Hz), 8.07(2H,dd,J=1,7Hz).
m.p.:176.1-184.3°C
ESI-MS(m/z):1258(M+NH₄)
IR(nujol,cm⁻¹):3325,1761,1728,1708
NMR(CDCl₃,δ):0.28-0.37(1H,m), 0.51-0.60(1H,m), 0.76-0.92(3H,m), 1.16(3H,s), 1.23(3H,s), 1.24(9H,s), 1.52(3H,s), 1.67(1H,s), 1.82(3H,s), 2.11-2.23(1H,m), 2.27-2.36(2H,m), 2.28(3H,s), 2.55-2.64(1H,m), 3.79(3H,s), 3.84(1H,dd,J=3,11Hz), 4.11(1H,d,J=8Hz), 4.13(1H,d,J=7Hz), 4.32(1H,d,J=8Hz), 4.50(1H,d,J=3Hz), 4.59(1H,d,J=12Hz), 4.75(1H,d,J=12Hz), 4.80(1H,d,J=12Hz), 4.89(1H,d,J=12Hz), 4.91-4.96(1H,m), 5.10(1H,dd,J=7,11Hz), 5.66(1H,d,J=7Hz), 5.97(1H,m), 6.10(1H,s), 6.12(1H,s), 6.87(2H,dt,J=2,9Hz), 7.26(2H,dt,J=2,9Hz), 7.49(2H,m), 7.63(1H,tt,J=1,7Hz), 8.06(2H,dt,J=1,7Hz).
(4)To a solution of 52.9 mg of 4α-acetoxy-2α-benzoyloxy-13α-[(4S,5R)-3-tert-butoxycarbonyl-2-(4-methoxyphenyl)-4-cyclopropyloxazolidin-5-ylcarbonyloxy]-5β,20-epoxy-1β-hydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one
in 2.1 ml of methanol is added 8.6 mg of p-toluenesulfonic acid monohydrate at room
temperature. The mixture is stirred at room temperature for 23 hours. After the reaction
mixture is evaporated under reduced pressure to remove methanol, ethyl acetate, and
saturated aqueous solution of sodium hydrogen carbonate is added to the residue. The
mixture is stirred. The resulting ethyl acetate layer is washed with water and brine,
dried, condensed under reduced pressure and purified by preparative thin layer chromatography
(solvent; hexane:ethyl acetate=2:1) to give 30.7 mg of 4α-acetoxy-2α-benzoyloxy-13α-[(2R,35)-3-tert-butoxycarbonylamino-3-cyclopropyl-2-hydroxypropionyloxy]-5β,20-epoxy-1β-hydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one.
The physical properties of the product are the same as those of the compound of Example
1(11).
Yield:64%
(5)4α-Acetoxy-2α-benzoyloxy-13α-[(2R,3S)-3-tert-butoxycarbonylamino-3-cyclopropyl-2-hydroxypropionyloxy]-5β,20-epoxy-1β-hydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one and [(3S)-3-benzyloxycarbonylamino-3-ethoxycarbonylpropionyloxy]acetic acid are treated in the same manner as described in Example 1(12)-(14) to give 4α-acetoxy-2α-benzoyloxy-13α-{(2R,3S)-3-tert-butoxycarbonylamino-2-[(3S)-3-amino-3-ethoxycarbonylpropionyloxyacetoxy]-3-cyclopropylpropionyloxy}-5β,20-epoxy-1β,7β,10β-trihydroxytax-11-en-9-one methanesulfonate. The physical properties of the product are the same as those of the compound of Example 1(14).
Example 7
(1)Ethyl (4S,5R)-3-tert-butoxycarbonyl-2-(4-methoxyphenyl)-4-cyclopropyl-5-oxazolidinecarboxylate (diastereomeric mixture) obtained in Example 6(1) is purified by column chromatography to give ethyl (4S,5R)-3-tert-butoxycarbonyl-2-(4-methoxyphenyl)-4-cyclopropyl-5-oxazolidinecarboxylate. A 87 mg of lithium hydroxide is added under ice-cooling to a solution of 1.03 g of ethyl (4S,5R)-3-tert-butoxycarbonyl-2-(4-methoxyphenyl)-4-cyclopropyl-5-oxazolidinecarboxylate in a mixture of 20 ml of methanol and 10 ml of water. The mixture is stirred at room temperature for 30 minutes. The reaction mixture is evaporated under reduced pressure to remove methanol. The pH of the solution of the residue in ethyl acetate is adjusted to pH 2 with 1N hydrochloric acid under ice-cooling. After the mixture is extracted with ethyl acetate, the extract is washed with brine, dried and evaporated to remove the solvent to give 1.20 g of (4S,5R)-3-tert-butoxycarbonyl-2-(4-methoxyphenyl)-4-cyclopropyl-5-oxazolidinecarboxylic acid quantitatively.
ESI-MS(m/z):386(M⁺+Na)
IR(neat,cm⁻¹):3080,1755,1702
NMR(CDCl₃,δ):0.37-0.46(1H,m), 0.52-0.77(3H,m), 1.11-1.23(1H,m), 1.38(9H,s), 3.71(1H,brd), 3.82(3H,s), 4.65(1H,d,J=2Hz), 6.34(1H,s), 6.88-6.93(2H,m), 7.42-7.47(2H,m).
(2)To a solution of 980 mg of (4S,5R)-3-tert-butoxycarbonyl-2-(4-methoxyphenyl)-4-cyclopropyl-5-oxazolidinecarboxylic acid and 1.15 g of 4α-acetoxy-2α-benzoyloxy-5β,20-epoxy-1β,13α-dihydroxy-7β-triethylsilyloxy-10β-(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one in 60 ml of toluene are added 594 mg of dicyclohexylcarbodiimide and 110 mg of dimethylaminopyridine. The mixture is stirred at 60 °C for 1 hour. Insoluble materials are removed by filtration. The filtrate is evaporated under reduced pressure to remove the solvent. To the residue is added ethyl acetate and 1% hydrochloric acid, and the mixture is extracted with ethyl acetate twice. The extract is washed with saturated aqueous solution of sodium hydrogen carbonate and brine, dried and evaporated to remove the solvent. The residue is purified by silica gel column chromatography (solvent; hexane:ethyl acetate=2:1) to give 1.68 g of 4α-acetoxy-2α-benzoyloxy-13α-[(4S,5R)-3-tert-butoxcycarbonyl-2-(4-methoxyphenyl)-4-cyclopropyloxazolidin-5-ylcarbonyloxy]-5β,20-epoxy-1β-hydroxy-7β-triethylsilyloxy-10β-(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one quantitatively.
m.p.:>130°C(slowly decomposed)
ESI-MS(m/z):1196(M⁺+NH₄)
IR(nujol,cm⁻¹):1730,1460,1380,1245
NMR(CDCl₃,δ):0.36-0.46(1H,m), 0.53-0.86(3H,m), 0.60(6H,brq), 0.94(9H,t,J=7Hz), 1.20-1.30(1H,m), 1.24(3H,s), 1.26(3H,s), 1.36(9H,s), 1.72(4H,s), 1.86-1.97(1H,m), 2.11(3H,d,J=1Hz) ,2.23-2.36(2H,m), 2.31(3H,s), 2.51-2.64(1H,m), 3.76(1H,dd,J=2,9Hz), 3.82(1H,d,J=7Hz), 3.84(3H,s), 4.17(1H,d,)=8Hz), 4.31(1H,d,J=8Hz), 4.50(1H,dd,J=7,10Hz), 4.73(1H,d,)=2Hz), 4.80(2H,s), 4.96(1H,d,)=8Hz), 5.70(1H,d,J=7Hz), 6.26(1H,brt), 6.30(1H,s), 6.38(1H,s), 6.92-6.98(2H,m), 7.44-7.56(4H,m), 7.57-7.64(1H,m), 8.03-8.10(2H,m).
(3)To a solution of 40 mg of 4α-acetoxy-2α-benzoyloxy-13α-[(4S,5R)-3-tert-butoxycarbonyl-2-(4-methoxyphenyl)-4-cyclopropyloxazolidin-5-ylcarbonyloxy]-5β,20-epoxy-1β-hydroxy-7β-triethylsilyloxy-10β-(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one in 1 ml of methanol is added 14 mg of p-toluenesulfonic acid monohydrate at room temperature. The mixture is stirred at room temperature for 2 hours. Then, 14 mg of p-toluenesulfonic acid monohydrate is added thereto. The mixture is stirred at room temperature for 4 hours. After the reaction mixture is condensed, the residue is extracted with ethyl acetate by adding ethyl acetate and saturated aqueous solution of sodium hydrogen carbonate thereto. The extract is washed with brine, dried and evaporated to remove the solvent. The residue is purified by thin layer chromatography (solvent; hexane:ethyl acetate=3:2) to give 22 mg of 4α-acetoxy-2α-benzoyloxy-13α-[(2R,3S)-3-tert-butoxycarbonylamino-3-cyclopropyl-2-hydroxypropionyloxy]-5β,20-epoxy-1β,7β-dihydroxy-10β-(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one.
Yield:69%
m.p.:>155°C(slowly decomposed)
ESI-MS(m/z):965(M⁺+NH₄),963,948(M⁺+H)
IR(neat,cm⁻¹):3520,1720,1250
NMR(CDCl₃,δ):0.22-0.31(1H,m), 0.44-0.53(1H,m), 0.60-0.69(2H,m), 1.20-1.28(1H,m), 1.18(3H,s),1.28(3H,s), 1.32(9H,s), 1.70(4H,s), 1.83-1.95(1H,m), 1.95(3H,d,J=1Hz), 2.23(1H,d,J=5Hz), 2.30-2.35(2H,m), 2.37(3H,s), 2.50-2.64(1H,m), 3.25-3.33(1H,m), 3.33(1H,d,J=6Hz), 3.77(1H,d,J=7Hz), 4.18(1H,d,J=8Hz), 4.33(1H,d,J=9Hz), 4.35-4.41(2H,m), 4.77(1H,d,J=12Hz), 4.88(1H,brd), 4.89(1H,d,J=12Hz), 4.97(1H,brd), 5.70(1H,d,J=7Hz), 6.17(1H,s), 6.18(1H,brt), 7.47-7.54(2H,m), 7.59-7.65(1H,m), 8.08-8.13(2H,m).
(4)To a solution of 20 mg of 4α-acetoxy-2α-benzoyloxy-13α-[(2R,3S)-3-tert-butoxycarbonylamino-3-cyclopropyl-2-hydroxypropionyloxy]-5β,20-epoxy-1β,7β-dihydroxy-10β-(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one and 7.5 mg of [(3S)-3-benzyloxycarbonylamino-3-carbamoylpropionyloxy]acetic acid in 1.5 ml of dichloromethane are added 5.0 mg of dicyclohexylcarbodiimide and 1.3 mg of dimethylaminopyridine under ice-cooling. The mixture is stirred under ice-cooling for 20 minutes and at room temperature for 4 hours. Insoluble materials are removed by filtration. After the filtrate is condensed under reduced pressure, the residue is extracted with ethyl acetate by adding ethyl acetate and 1% aqueous hydrochloric acid thereto. The extract is washed with saturated aqueous solution of sodium hydrogen carbonate and brine, dried and evaporated to remove the solvent. The residue is purified by thin layer chromatography (solvent; hexane:ethyl acetate=1:4) to give 13 mg of 4α-acetoxy-2α-benzoyloxy-13α-{(2R,35)-3-tert-butoxycarbonylamino-2-[(3S)-3-benzyloxycarbonylamino-3-carbamoylpropionyloxyacetoxy]-3-cyclopropylpropionyloxy}-5β,20-epoxy-1β,7β-dihydroxy-10β-(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one.
Yield:49%
m.p.:>140°C(slowly decomposed)
ESI-MS(m/z):1269(M⁺+NH₄)
IR(neat,cm⁻¹):3360,1700-1750,1505
NMR(CDCl₃,δ):0.15-0.23(1H,m), 0.47-0.56(1H,m), 0.60-0.70(2H,m), 1.15-1.20(1H,m), 1.16(3H,s), 1.24(3H,s), 1.30(9H,s), 1.69(4H,s), 1.83-1.99(1H,m), 1.96(3H,brs), 2.25-2.35(3H,m), 2.37(3H,s), 2.51-2.63(1H,m), 2.70(1H,dd,)=4,17Hz), 3.31(1H,dd,J=4,17Hz), 3.55(1H,brt), 3.77(1H,d,J=7Hz), 4.17(1H,d,J=8Hz), 4.32(1H,d,J=9Hz), 4.33-4.43(1H,m), 4.66-4.74(1H,m), 4.67(1H,d,J=16Hz), 4.76(1H,d,J=12Hz), 4.89(1H,d,j=12Hz), 4.93(1H,d,J=16Hz), 4.98(1H,brd), 5.10(1H,d,J=3Hz), 5.15(2H,s), 5.69(1H,d,J=7Hz), 6.00(1H,br), 6.13-6.21(2H,m), 6.17(1H,s), 6.50(1H,br), 6.74(1H,brd), 7.33-7.39(5H,m), 7.47-7.53(2H,m), 7.58-7.65(1H,m), 8.09-8.14(2H,m).
(5)To a solution of 35 mg of 4α-acetoxy-2α-benzoyloxy-13α-{(2R,3S)-3-tert-butoxycarbonylamino-2-[(3S)-3-benzyloxycarbonylamino-3-carbamoylpropionyloxyacetoxy]-3-cyclopropylpropionyloxy}-5β,20-epoxy-1β,7β-dihydroxy-10β-(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one
in 2.0 ml of methanol are added 55 mg of zinc and 0.4 ml of acetic acid at room temperature.
The mixture is stirred at 40 °C for 2 hours. The solid materials are removed by filtration.
After the filtrate is condensed under reduced pressure, the residue is extracted with
ethyl acetate by adding ethyl acetate and 1% hydrochloric acid to the residue under
ice-cooling. The extract is washed with the saturated aqueous solution of sodium hydrogen
carbonate and brine, dried and evaporated to remove the solvent. The residue is purified
by thin layer chromatography (solvent; chloroform:methanol=10:1) to give 24 mg of
4α-acetoxy-2α-benzoyloxy-13α-{(2R,3S)-3-tert-butoxycarbonylamino-2-[(3S)-3-benzyloxycarbonylamino-3-carbamoylpropionyloxyacetoxy]-3-cyclopropylpropionyloxy}-5
β,20-epoxy-1β,7β,10β-trihydroxytax-11-en-9-one. The physical properties of the product
are the same as those of the compound of Example 4(8).
Yield:80%
(6)4α-acetoxy-2α-benzoyloxy-13α-{(2R,3S)-3-tert-butoxycarbonylamino-2-[(3S)-3-benzyloxycarbonylamino-3-carbamoylpropionyloxyacetoxy]-3-cyclopropylpropionyloxy}-5β,20-epoxy-1β,7β,10β-trihydroxytax-11-en-9-one is treated in the same manner as described in Example 1(14) to give 4α-acetoxy-2α-benzoyloxy-13α-{(2R,3S)-3-tert-butoxycarbonylamino-2-[(3S)-3-amino-3-carbamoylpropionyloxyacetoxy]-3-cyclopropylpropionyloxy}-5β,20-epoxy-1β,7β,10β-trihydroxytax-11-en-9-one methanesulfonate. The physical properties of the product are the same as those of the compound of Example 4(9).
Example 8-12
Example 13-14
Example 15-20
Example 21-24
Example 25
(1)To 13.13 g of (1R,2R)-2-methylcyclopropyl-1,2-bis(isopropyloxycarbonyl)methylene acetal in a mixture of 40 ml of tetrahydrofuran and 80 ml of water is added 9.15 g of p-toluenesulfonic acid monohydrate. The reaction mixture is refluxed under heating for 8 hours. After the reaction mixture is cooled, a saturated aqueous solution of sodium hydrogen carbonate and 400 ml of toluene are added to the mixture. The aqueous layer is extracted with toluene twice. After the organic layer is dried over sodium sulfate, inorganic materials are removed by filtration. A 27.09 g of benzyloxycarbonylmethylenetriphenylphosphorane is added to the solution. The mixture is stirred at 80 °C for 18 hours. The solvent is removed in vacuo and the residue is purified by silica gel column chromatography (solvent;hexane:ethyl acetate=15:1) to give 6.67 g of benzyl trans-3-(2-methyl)cyclopropylacrylate. Benzyl trans-3-(2-methyl)cyclopropylacrylate is treated in the same manner as described in Example 1(2)-(8) to give (4S,5R)-3-tert-butoxycarbonyl-2,2-dimethyl-4-[(1R,2R)-2-methyl]cyclopropyl-5-oxazolidinecarboxylic acid.
m.p.:86-91°C
FAB-MS(m/z):300(MH⁺)
(2)(4S,5R)-3-tert-Butoxycarbonyl-2,2-dimethyl-4-[(1R,2R)-2-methyl]cyclopropyl-5-oxazolidinecarboxylic acid and 4α-acetoxy-2α-benzoyloxy-5β,20-epoxy-1β,13α-dihydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one are treated in the same manner as described in Example 1(9) to give 4α-acetoxy-2α-benzoyloxy-13α-{(4S,5R)-3-tert-butoxycarbonyl-2,2-dimethyl-4-[(1R,2R)-2-methyl]cyclohexyloxazolidin-5-ylcarbonyloxy}-5β,20-epoxy-1β-hydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one.
FAB-MS(m/z):1198(M⁺+Na)
(3)4α-Acetoxy-2α-benzoyloxy-13α-{(4S,5R)-3-tert-butoxycarbonyl-2,2-dimethyl-4-[(1R,2R)-2-methyl]cyclohexyloxazolidin-5-ylcarbonyloxy}-5β,20-epoxy-1β-hydroxy-7β,10β-bis(2,2,2-trichloroethoxycarbonyloxy)tax-11-en-9-one is treated in the same manner as described in Example 2 to give 4α-acetoxy-2α-benzoyloxy-13α-{(2R,3S)-3-tert-butoxycarbonylamino-2-hydroxy-3-[(1R,2R)-2-methyl]cyclopropylpropionyloxy}-5β,20-epoxy-1β,7β,10β-trihydroxytax-11-en-9-one.
m.p.:167-174°C
FAB-MS(m/z):808(M⁺+Na)
(4)4α-Acetoxy-2α-benzoyloxy-13α-{(2R,3S)-3-tert-butoxycarbonylamino-2-hydroxy-3-[(1R,2R)-2-methyl]cyclopropylpropionyloxy}-5β,20-epoxy-1β,7β,10β-trihydroxytax-11-en-9-one is treated in the same manner as described in Example 5 to give 4α-acetoxy-2α-benzoyloxy-13α-{(2R,3S)-3-tert-butoxycarbonylamino-2-[(3S)-3-amino-3-ethoxycarbonylpropionyloxyacetoxy]-3-[(1R,2R)-2-methyl]cyclopropylpropionyloxy}-5β,20-epoxy-1β,7β,10β-trihydroxytax-11-en-9-one methanesulfonate.
m.p.:>152°C(decomposed)
FAB-MS(m/z):1009(M⁺+Na)
IR(nujol,cm⁻¹):3400,1750,1720
NMR(300MHz,DMSO-d₆,δ):0.24-0.33(1H,m), 0.50-0.65(2H,m), 0.70-0.81(1H,m), 0.99(3H,d,J=6Hz), 1.03(6H,s), 1.24(3H,t,J=7Hz), 1.33(9H,s), 1.54(3H,s), 1.59-1.74(1H,m), 1.78(3H,s), 2.19-2.27(3H,m), 2.31(6H,s), 3.08(1H,dd,J=6,18Hz), 3.25-3.40(1H,m), 3.43-3.54(1H,m), 3.74(1H,d,J=7Hz), 4.01-4.13(3H,m), 4.16-4.28(2H,m), 4.40(1H,t,J=6Hz), 4.64(1H,s), 4.90(2H,s), 4.92-4.99(2H,m), 5.05(1H,d,J=8Hz), 5.11(1H,d,j=4Hz), 5.14(1H,s), 5.47(1H,d,J=7Hz), 5.89-6.00(1H,m), 7.15(1H,d,J=9Hz), 7.51-7.59(2H,m), 7.64-7.72(1H,m), 8.02(2H,d-like,J=7Hz), 8.37(3H,brs).
Example 26
Reference Example
Yield:74%
FAB-MS(m/z):835(MH⁺)
IR(nujol,cm⁻¹):3470,1770,1725,1710
NMR(CDCl₃,δ):0.58(6H,q,J=7Hz), 0.93(9H,t,J=7Hz), 1.64(3H,s), 1.85-1.92(1H,m), 2.08(1H,d,J=5Hz), 2.20(3H,s), 2.29(3H,s), 2.20-2.30(2H,m), 2.50-2.58(1H,m), 3.84(1H,d,J=7Hz), 4.15(1H,d,J=8Hz), 4.31(1H,d,J=8Hz), 4.47-4.51(1H,m), 4.79(1H,d,J=12Hz), 4.83(1H,d,J=12Hz), 4.83-4.88(1H,m), 4.96(1H,d,J=8Hz), 5.64(1H,d,J=7Hz), 6.30(1H,s), 7.26-7.63(3H,m), 8.10(2H,d,J=7Hz).
Effects of the Invention
(1) reacting a compound represented by the formula [II]:
wherein R¹ represents a hydroxyl protecting group; R represents a hydroxyl protecting
group; R³, R⁴, and ring A are the same as defined above, or a salt thereof, with a
compound represented by the formula [III]:
RX-COOH [III]
wherein R and X are the same as defined above, a salt thereof, or a reactive derivative
thereof to obtain the compound represented by a formula [V]:
wherein R¹, R, R³, R⁴, ring A, X, and R are the same as defined above, and removing
the protecting groups of the hydroxyl groups at the 7-position and the 10-position
in this compound;
(2) reacting the compound [II] or a salt thereof with the compound [III], a salt thereof,
or a reactive derivative thereof, to obtain the compound [V], reacting the compound
[V] with a compound represented by the formula [IV]:
E'OH [IV]
wherein E' is a group represented by -CO(CH₂)nZY; Y, Z, and n are the same as defined above, a salt thereof, or a reactive derivative
thereof, and removing the protecting groups of the hydroxyl groups at the 7-position
and the 10-position in the compound obtained; or
(3) reacting the compound [II] or a salt thereof with the compound [III], a salt thereof, or a reactive derivative thereof, to obtain the compound [V], removing the protecting groups of the hydroxyl groups at the 7-position and the 10-position in the compound [V], and then reacting the resulting compound with the compound of the formula [IV], a salt thereof, or a reactive derivative thereof, and then, if required, converting the resulting compound into a pharmaceutically acceptable salt thereof.