(19)
(11) EP 0 714 766 A2

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
05.06.1996  Patentblatt  1996/23

(21) Anmeldenummer: 95119508.0

(22) Anmeldetag:  22.09.1992
(51) Internationale Patentklassifikation (IPC)6B41C 1/14
(84) Benannte Vertragsstaaten:
AT CH DE ES FR GB IT LI

(62) Anmeldenummer der früheren Anmeldung nach Art. 76 EPÜ:
92116181.6 / 0590164

(71) Anmelder: Schablonentechnik Kufstein Aktiengesellschaft
A-6330 Kufstein (AT)

(72) Erfinder:
  • Fischer, Hannes
    A-6300 Wörgl (AT)

(74) Vertreter: TER MEER - MÜLLER - STEINMEISTER & PARTNER 
Mauerkircherstrasse 45
81679 München
81679 München (DE)

 
Bemerkungen:
Diese Anmeldung ist am 11 - 12 - 1995 als Teilanmeldung zu der unter INID-Kode 62 erwähnten Anmeldung eingereicht worden.
 


(54) Vorrichtung zur Herstellung von Druckschablonen


(57) Eine Vorrichtung zur Herstellung von Druckschablonen enthält eine an sich bekannte Bearbeitungsstation, die wenigstens eine Lagereinrichtung (5, 6) zur stirnseitigen Lagerung eines hohlzylinderförmigen Siebes (1), eine Antriebseinrichtung (9, 10, 11) zur Drehung des Siebes (1) um seine Zylinderachse (1b), einen parallel zur Zylinderachse (1b) bewegbaren Bearbeitungstisch (14) und eine Steuereinrichtung (4) zur Steuerung der Antriebseinrichtung (9, 10, 11), des Transports des Bearbeitungstisches (14) sowie zur Steuerung einer auf dem Bearbeitungstisch (14) angeordneten Werkzeugstation aufweist. Dabei besteht die Werkzeugstation aus wenigstens einer zur Ausspritzung von Flüssigkeit geeigneten Düse (2).




Beschreibung


[0001] Die Erfindung betrifft eine Vorrichtung zur Herstellung von Druckschablonen gemäß dem Oberbegriff des Patentanspruchs 1.

[0002] Eine derartige Vorrichtung ist bereits allgemein bekannt und umfaßt eine an sich bekannte Bearbeitungsstation, die wenigstens eine Lagereinrichtung zur stirnseitigen Lagerung eines hohlzylinderförmigen Siebes, eine Antriebseinrichtung zur Drehung des Siebes um seine Zylinderachse, einen parallel zur Zylinderachse bewegbaren Bearbeitungstisch und eine Steuereinrichtung zur Steuerung der Antriebseinrichtung, des Transports des Bearbeitungstisches sowie zur Steuerung einer auf dem Bearbeitungstisch angeordneten Werkzeugstation aufweist.

[0003] Zur bekannten Einrichtung gehört ein Laser zur Erzeugung eines Laserstrahls, mit dem sich ein leicht abdampfbarer Lack auf der Oberfläche des Siebes thermisch abtragen läßt.

[0004] Der Erfindung liegt die Aufgabe zugrunde, die Vorrichtung der eingangs genannten Art so weiterzubilden, daß sie einen einfacheren und kostengünstigeren Aufbau aufweist, so daß sich mit ihr Druckschablonen preiswerter herstellen lassen.

[0005] Die Lösung der gestellten Aufgabe ist im kennzeichnenden Teil des Patentanspruchs 1 angegeben. Vorteilhafte Ausgestaltungen der Erfindung sind den Unteransprüchen zu entnehmen.

[0006] Eine Vorrichtung nach der Erfindung zur Herstellung von Druckschablonen zeichnet sich dadurch aus, daß die Werkzeugstation aus wenigstens einer zur Ausspritzung von Flüssigkeit geeigneten Düse besteht.

[0007] Diese Düse empfängt elektrische Ausspritzsignale von der Steuereinrichtung, und zwar in Übereinstimmung mit einem vorgegebenen Muster sowie in Abhängigkeit der Drehstellung des Siebzylinders und der Position des Bearbeitungstisches. Das Muster bzw. Druckmuster kann dabei in elektronischer Form in einem Elektronikspeicher der Steuereinrichtung vorgespeichert sein. Dabei ist jedem gespeicherten Musterpunkt ein Wertepaar zugeordnet, das die Drehstellung des Siebzylinders (Winkelstellung) und die Axialposition des Bearbeitungstisches enthält. Sobald dieses Wertepaar durch Sensoren zur Steuereinrichtung geliefert wird, wird der zugeordnete Wert des Druckmusters aus dem genannten Elektronikspeicher ausgelesen und zur Bildung eines Ausspritzsignals herangezogen, das zur Düse übertragen wird.

[0008] Kommen elektrostatische Düsen zum Einsatz, so wird ein teilweise elektrostatisch aufgeladener Tropfnebel erzeugt, wobei die elektrisch aufgeladenen Tropfen aus ihrer Flugbahn abgelenkt und von den nicht geladenen Tropfen auf diese Weise separiert werden. Die Tropfen unterliegen hierbei den Einflüssen der Schwerkraft und des Luftwiderstandes und beschreiben daher parabolische Bahnkurven während ihrer Bewegung durch die Düse. Wenn die Anfangsgeschwindigkeit des Flüssigkeitsstrahles, aus welchem die Tropfen entstehen, immer auf einem konstanten und gleichen Wert gehalten werden kann, dann ist eine parabolische Flugbahn nicht nachteilig. Muß aber mit Rücksicht z. B. auf rheologische Parameter der Abdeckflüssigkeit oder die einwandfreie Bedeckung des Siebes eine andere Anfangsgeschwindigkeit vorgegeben werden, so resultiert hieraus auch eine andere Bahnparabel und die Selektion der unterschiedlich geladenen Tropfen wird schwieriger. Diese Verhältnisse können einheitlicher gestaltet werden, wenn die Bahnrichtung der Tropfen senkrecht gewählt wird, also die Düsenachse vertikal steht und die Düse z. B. von oben nach unten die Abdeckflüssigkeit auf das Sieb aufbringt. Auf diese Weise wird erreicht, daß die Bahn der Tropfen zunächst unbeeinflußt von der Schwerkraft bleibt und die Tropfen daher genau durch das Zentrum einer vor dem Ausspritzkanal liegenden Ringelektrode zur elektrostatischen Aufladung hindurchlaufen können, bevor sie schließlich durch eine nachfolgende Ablenkelektrode abgelenkt werden. Im Gegensatz dazu wird bei horizontaler Düse die Tropfenbahn schon unmittelbar hinter dem Ausspritzkanal durch Schwerkraft beeinflußt, so daß es schwieriger ist, das Zentrum der Ringelektrode zu treffen.

[0009] Befinden sich mehrere Düsen in Zylinderlängsrichtung nebeneinanderliegend auf dem Bearbeitungstisch und beaufschlagen diese Düsen unterschiedliche Bereiche des Siebzylinders, so gibt die Steuereinrichtung die elektrischen Ausspritzsignale zur jeweiligen in Transportrichtung des Bearbeitungstisches weiter hinten liegenden Düse zeitverzögert aus, derart, daß ein und dieselbe Stelle auf der Sieboberfläche durch die jeweiligen Düsen nacheinander bespritzt wird.

[0010] Für den Fall, daß alle Düsen denselben Bereich auf der Oberfläche des Siebzylinders beaufschlagen, also entsprechend zueinander geneigt sind, werden alle elektrischen Ausspritzsignale zu allen Düsen gleichzeitig übertragen.

[0011] Bei zeitversetztem Betrieb läßt sich somit in einfacher Weise eine dickere Abdeckschicht erzeugen, da ein und dieselbe Stelle auf der Sieboberfläche mehrmals beschichtet wird, entsprechend der Anzahl der Düsen. Dagegen können bei zeitgleichem Betrieb mehrere Flüssigkeiten zur Bildung der Abdeckschicht gleichzeitig an der genannten Stelle auf die Sieboberfläche aufgebracht werden, die dann miteinander reagieren können, um die Abdeckschicht zu erzeugen.

[0012] Im zuletzt genannten Fall kann es sich z. B. um Epoxydharz-Komponenten handeln, die erst dann in einen Gel-Zustand überführt werden, nachdem sie miteinander vermischt worden sind und die Vernetzungsreaktion begonnen hat. Die einzelnen Epoxydharz-Komponenten sind relativ dünnflüssig, so daß innerhalb der Düsen eine rasche Tropfenabscheidung erfolgt und damit die Düsen eine relativ kurze Strahllänge aufweisen können. Da diese Komponenten nach Auftreffen auf die Sieboberfläche jedoch infolge der Vernetzungsreaktion in einen Gel-Zustand überführt werden, besteht keine Gefahr, daß sie von der Oberfläche wieder abgeschleudert werden. Vorteilhaft Ist die Verwendung der mehreren Komponenten auch in der Hinsicht, daß dadurch eine bessere Kantenschärfe des Musters erhalten wird. Insbesondere bei langen Schablonen und damit langen Bearbeitungszeiten treten häufig Fließbewegungen auf, die zu einer Verschlechterung der Kantenstruktur führen können, wenn die Abdeckschicht aus nur einem einkomponentigen Material hergestellt wird, das eine relativ lange Trocknungszeit aufweist. Dagegen kann die Verfestigungszeit bei Wahl mehrerer geeigneter Komponenten erheblich verkürzt werden, was zu einer verbesserten Konturenschärfe führt.

[0013] Die Abdeckschicht kann auch durch Aufspritzen einer zähviskosen Flüssigkeit gebildet werden, die beispielsweise eine wässrige Emulsion eines Kunstharzlacks ist oder eine wässrige Suspension von Pigmenten sein kann. Dabei hat es sich als vorteilhaft erwiesen, das Aufspritzen der Flüssigkeit unter Begleitung eines sie umgebenden, laminaren Gasstromes vorzunehmen, beispielsweise unter Verwendung eines Luft- oder Inertgasstromes, um den Trockenvorgang der aufgespritzten Flüssigkeit zu beschleunigen. Der Gasstrom verhindert darüber hinaus, daß sich kleine Sekundärtröpfchen im Innern der Düsen anlagern und diese ansonsten verschmutzen würden. Die Geschwindigkeit des laminaren Gasstromes läßt sich ferner so wählen, daß sich einmal gebildete Flüssigkeitstropfen auf ihrem Weg zur Sieboberfläche nicht mehr einander nähern können, wodurch sich die Bildung größerer Tropfen vermeiden läßt. Ferner kann der laminare Gasstrom auch gegenüber der Umgebungstemperatur eine erhöhte Temperatur aufweisen, wodurch sich das Trocknen der ausgespritzten Flüssigkeit noch weiter beschleunigen läßt. Nicht zuletzt läßt sich das Sieb wenigstens auch im Auftreffpunkt der Flüssigkeit beheizen, beispielsweise durch einen Wärmestrahler, um möglichst schnell eine feste Abdeckschicht auf der Sieboberfläche zu erhalten. Es kann auch Warmluft axial ins Innere des Siebes eingeblasen werden. Auch eine Bestrahlung der auf das Sieb aufgespritzten Flüssigkeitstropfen mit Ultraviolett(UV)-Strahlung ist möglich, um die Vernetzungsreaktion früher beginnen zu lassen bzw. zu beschleunigen, was zu einer noch besseren Kantenschärfe des Musters führt (UV-Härtung). Die kurze Phase der Viskositätserniedrigung, wie sie bei der Erhitzung auftritt, wird daher bei einer reinen UV-Härtung vermieden.

[0014] Die Erfindung wird nachfolgend unter Bezugnahme auf die Zeichnung näher beschrieben. Es zeigen:

Figur 1 eine Vorrichtung zum Beschichten eines feinmaschigen Rundsiebes mit einer Abdeckschicht nach einem ersten Ausführungsbeispiel der Erfindung.

Figur 2 eine Vorrichtung zum Beschichten eines feinmaschigen Rundsiebes mit einer Abdeckschicht nach einem zweiten Ausführungsbeispiel der Erfindung.

Figur 3 Aufbau und Anordnung einer ersten Düse zum Beschichten des Rundsiebes mit Abdeckmaterial,

Figur 4 den Gesamtaufbau der ersten Düse,

Figur 5 Aufbau und Anordnung einer zweiten Düse zum Beschichten des Rundsiebes mit Abdeckmaterial, und

Figuren 6 - 8 den Gesamtaufbau der zweiten Düse.



[0015] Nachfolgend werden verschiedene Ausführungsbeispiele der Erfindung im einzelnen unter Bezugnahme auf die Zeichnung näher beschrieben.

[0016] Ein erstes Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung zeigt die Figur 1. Mit dem Bezugszeichen 1 ist ein rotierendes Sieb in Zylinderform bezeichnet, auf welches durch eine oder mehrere Düsen 2 Farbe oder Lack als Abdeckflüssigkeit aufgebracht wird. Hierbei wird ein aus den Düsen 2 ausgespritzter Strahl 3 der Abdeckflüssigkeit mittels eines Rechners 4 so gesteuert, daß die Abdeckflüssigkeit nur anjenen Stellen auf das Sieb 1 aufgebracht wird, an welchem das Sieb 1 musterbedingt abgedeckt werden muß und jene Stellen des Siebes 1 unbedeckt bleiben, an welchen dieses durchlässig bleiben soll. Das Sieb 1 wird zu diesem Zweck zwischen zwei synchron angetriebenen Endköpfen 5 aufgenommen und in drehende Bewegung (Drehrichtung D) versetzt. Um verschiedene Schablonenlängen bzw. Sieblängen zwischen den Endköpfen 5 aufnehmen zu können, ist beispielsweise der rechte Endkopf 5 in Richtung der Zylinderachse des Rundsiebes 1 verschiebbar. Das Sieb 1 wird zwischen den rechten und den linken Endkopf 5 gelegt und der rechte Endkopf 5 an das Sieb 1 herangefahren. Das üblicherweise sehr dünn und leicht gestaltete Sieb 1 kann unter Umständen schon durch die axial wirkende Spannkraft und die Reibung zwischen Sieb 1 und dem linken angetriebenen Endkopf 5 in Drehung versetzt werden. Auch reicht die Steifigkeit des Siebes 1 immer aus, um auch dem rechten Endkopf 5 über die wirkenden Reibkräfte die Drehbewegung mitzuteilen, wenn nur die Drehzahl des Siebes 1 so langsam erhöht wird, daß das erforderliche Beschleunigungsmoment die Übertragungsfähigkeit des Rundsiebes 1 nicht überfordert. Beide Endköpfe 5 sind an Lagerböcken 6 drehbar montiert, wobei die Lagerböcke 6 auf einem Maschinenbett 7 angeordnet sind. Zur Führung des rechten Lagerbockes 6 in Figur 1 sind Führungsstangen 8 vorhanden, die z. B. auf dem Maschinenbett 7 befestigt sein können.

[0017] Der linke Endkopf 5 wird durch einen Motor 9 und einen Riemen 10 angetrieben. Dieser Riemen 10 umspannt ein Antriebsrad 11, das fest auf einer Achse 12 liegt, welche den linken Endkopf 5 trägt. Am anderen Ende der Achse 12 befindet sich ein inkrementaler Impulsgeber 13, der die Drehlage der Achse 12 bzw. des Siebes 1 bestimmt und entsprechende Signale SD an den Rechner 4 abgibt. Gleichzeitig werden die Düsen 2, die auf einem Bearbeitungstisch 14 befestigt sind, in Richtung der Zylinderachse 1b des Siebes 1 langsam vorgeschoben, so daß ein dünner in Tropfen aufgelöster und aus Abdeckflüssigkeit bestehender Strahl, der aus den Düsen 2 austritt, entlang einer Schraubenlinie sehr geringer Steigung auf dem Sieb 1 auftrifft. Dem Bearbeitungstisch 14 wird seine Vorschubbewegung über eine Spindel 15 aufgeprägt, wobei diese Spindel 15 hierzu über einen Schrittmotor 16 angetrieben wird, der seine Schritt-Signale ST ebenfalls vom Rechner 4 empfängt. Diese Schritt-Signale ST werden durch eine Treiberstufe 17 in Leistungsimpulse PT umgesetzt. Die Drehung der Motorachse des Schrittmotors 16 wird über einen Riemen 18 und eine Riemenscheibe 19 auf die Spindel 15 übertragen. Diese durchragt den Bearbeitungstisch 14, der seinerseits auf Führungsschienen 20 am Maschinenbett 7 geführt ist.

[0018] Die Düsen 2 müssen mit einer für den späteren Druckvorgang geeigneten Abdeckflüssigkeit versorgt werden. Hierzu sind sie mit kleinen Druckbehältern 21 über Versorgungsleitungen 22 verbunden. In den Druckbehältern 21 steht die Abdeckflüssigkeit unter einem geringen Überdruck von etwa 1 bis 5 bar. Zweckmäßigerweise wird man für Jede Düse 2 einen getrennten Druckbehälter 21 vorsehen, da Unterschiede in den Leitungswiderständen und die Notwendigkeit, die Auftragsmenge je Düse 2 getrennt einregeln zu können, unterschiedliche Ausgangsdrucke der Abdeckflüssigkeit bedingen. Es fällt bei jeder Düse 2 auch eine nicht unbeträchtliche Menge unverbrauchter Abdeckflüssigkeit an, die kontinuierlich abgesaugt und zurückbefördert werden muß. Hierzu sind Unterdrucktanks 23 vorgesehen, in welche über Rückleitungen 24 die unverbrauchte Abdeckflüssigkeit durch den in diesen Tanks herrschenden Unterdruck zurückbefördert wird. Die rezirkulierte Abdeckflüssigkeit, welche auf Grund des durchlaufenen Prozesses Verdünnungsmittel verloren hat, kann nach einer Aufbereitung wiederum dem Auftragsprozeß als Abdeckflüssigkeit zugeführt werden. Um eine entsprechende Dicke der Abdeckschicht 1a auf dem Sieb 1 zu erzielen, sind die Düsen 2 mehrfach angeordnet, im vorliegenden Fall zweifach. Sie sind in Richtung der Zylinderachse 1b bzw. Schablonenachse voneinander beabstandet, um der Abdeckflüssigkeit vor dem zweiten Auftrag Zeit zu einem zumindest leichten Trocknen zu geben. Diese Trocknung kann durch Aufblasen von Warmluft unterstützt werden, oder durch Erzeugung entsprechender Wärmestrahlung. Hierzu kann auf dem Bearbeitungstisch 14 eine entsprechend ausgebildete Heizeinrichtung H montiert sein. Die Aushärtung der Flüssigkeit kann auch allein oder zusätzlich durch UV-Bestrahlung erfolgen, wie bereits erwähnt, so daß sich für diesen Fall auch eine UV-Lichtquelle (z. B. eine Quecksilberdampflampe) auf dem Bearbeitungstisch 14 befindet.

[0019] Im Prinzip kann man die Düsen 2 auch in Umfangsrichtung des Zylinders 1 bzw. Siebes versetzen, jedoch führt dies zu einer erschwerten Handhabung des Beschichtungsvorganges, wenn aufeinanderfolgende Rundsiebe 1 unterschiedlichen Durchmessers beschichtet werden sollen.

[0020] Die Düsen 2 sind vorzugsweise als Elektrostatikdüsen ausgebildet, denen jeweils ein Steuersignal S₁, S₂ vom Rechner 4 zugeführt wird, um bei Empfang eines Steuersignals die Abdeckflüssigkeit auszuspritzen.

[0021] Die Figur 2 zeigt eine im Prinzip gleiche Vorrichtung wie in Figur 1, wobei gleiche Elemente mit den gleichen Bezugszeichen versehen sind. Abweichend von Figur 1 ist hier der Bearbeitungstisch 14 aber an einer hinteren Trägerwand 25 auf Führungsschienen 26 in Axialrichtung des Zylinders 1 verschiebbar gelagert. An dieser hinteren Führungswand 25 sind ebenfalls die Spindel 15 und der Schrittmotor 16 mit Spindelantrieb 18 und 19 befestigt. An der dem Sieb 1 zugwandten Vorderseite des Bearbeitungstisches 14 befindet sich eine Halteeinrichtung 27, die zum Festklemmen zweier Düsen 2 dient, welche nunmehr mit ihren Düsenachsen vertikal stehen, also senkrecht zur ebenen Oberfläche des Maschinenbettes 7. Die Düsenöffnungen 28 weisen dabei nach unten.

[0022] Auf diese Weise ist es möglich, die Tropfen des Abdeckmaterials zunächst parallel zur und in Gravitationsrichtung auszuspritzen, bevor sie auf die Oberfläche des Siebes 1 auftreffen.

[0023] Bei dem Verfahren wird die Abdeckflüssigkeit in feinsten Tropfen aufgebracht werden, um ein hinreichend hohes Auflösungsvermögen bei der Erzeugung des Druckmusters auf der Oberfläche des Siebes 1 zu erzielen. Dabei kann die Flüssigkeit eine hohe Viskosität aufweisen, um einen ausreichenden Anteil von Festsubstanz bei relativ kleiner Tropfengröße mitführen zu können. Es können aber auch mehrere Flüssigkeitskomponenten getrennt durch verschiedene Düsen aufgespritzt werden, die in einem Punkt auf der Oberfläche des Siebes 1 vereinigt werden. Es kann sich hier um unterschiedliche Epoxydharzkomponenten handeln, die erst dann in einen Gel-Zustand überführt werden, wenn nach ihrem Zusammentreffen eine Vernetzungsreaktion angesprungen ist. Sinnvoll ist das Verfahren darüber hinaus auch nur, wenn eine sehr hohe Tropfenfrequenz erreicht werden kann.

[0024] Dies alles ist möglich durch den Einsatz sogenannter elektrostatisch wirkender Düsen, bei welchen ein Flüssigkeitsstrahl durch eine sehr hochfrequente Schwingung, beispielsweise einer Rohrwand, regelmäßig in Tropfen zerfallen gelassen wird und bei welchen die Tropfen anschließend elektrisch geladen werden und in einem Elektrostatikfeld je nach Ladungszustand abgelenkt oder nicht abgelenkt werden. Herkömmliche Düsen dieser Art sind jedoch nicht geeignet, die für das Beschichten von Sieben erforderlichen hochviskosen Abdeckflüssigkeiten zu verarbeiten. Während bei niederviskosen Flüssigkeiten bereits geringe Anfangsstörungen genügen, um den Flüssigkeitsstrahl durch die Wirkung der Oberflächenspannung der Flüssigkeit unmittelbar hinter dem Düsenaustritt rasch in Einzeltropfen zerfallen zu lassen, würden bei den für die Schablonenabdeckung notwendigen hohen Viskositäten Strahllängen von 0,5 - 1,0 m entstehen, bevor der erste Tropfen durch Strahleinschnürung entsteht. An der Stelle der ersten Tropfenbildung muß eine ringförmige Ladeelektrode mit sehr kleinem Durchmesser angeordnet werden. Auf Grund der unvermeidlichen Luftwirbel ist bei solchen Abständen weder der Ort der ersten Tropfenbildung genau festlegbar noch der Verlauf des Strahles, so daß durch eine so kleine ringförmige Ladeelektrode nicht mehr hindurchgetroffen werden kann. Bei der Erfindung kommen daher Elektrostatikdüsen mit geänderter Bauweise zum Einsatz.

[0025] Die Figur 3 zeigt den Aufbau einer derartigen Elektrostatikdüse 2.

[0026] In einer kleinen Druckkammer 29 steht die Abdeckflüssigkeit, die aus den in Figur 1 gezeigten Druckbehältern 21 herangeführt wird, unter Überdruck. Von dort tritt sie kontinuierlich durch eine Bohrung 30 aus. In der Bohrung 30 sorgt eine dünne Nadel 31, die durch Ultraschall zu hochfrequenter Schwingung in Nadellängsrichtung angeregt wird, für regelmäßige Störungen in jenem ringförmigen Strömungskanal, der durch die Nadel 31 und die Bohrung 30 gebildet wird. Außerdem verhindert die Schwingungsbewegung der Nadel 31 auch ein Verstopfen der Bohrung 30 z. B. durch kleine Partikel. Bei jeder Schwingungsbewegung der Nadel 31 in Richtung des Austritts, zu welchem die Abdeckflüssigkeit auf Grund des Druckgefälles strömt, wird die Abdeckflüssigkeit zufolge ihrer Zähigkeit mit der Nadelwand mitgenommen und so zusätzlich beschleunigt und bei Jeder entgegengesetzt gerichteten Schwingungsbewegung wird sie auf die gleiche Weise verzögert. Auch die Bewegung der Stirnfläche 32 der Nadel 31 erbringt einen in der Wirkung gleichgerichteten Effekt. Diese Stirnflächenbewegung der Nadel 31 ist bei den hier vorliegenden zähen Flüssigkeiten von besonderem Vorteil, da bei entsprechend hohen Beschleunigungswerten der Stirnfläche 32 die Festkörper abgeschleudert werden, was zu einer besonders starken Unterstützung des Einschnürvorgangs führt. Man hat es durch Dimensionierung des Durchmessers der Nadel 31 und der Bohrung 30 in der Hand, die Beschleunigungs- bzw. die Verzögerungseffekte ausreichend groß zu gestalten. Je größer der Durchmesser der Nadel 31 und je kleiner der Durchmesser der Bohrung 30 sind, desto stärker sind die Beschleunigungs- und damit die Störungseffekte. Aus den so herbeigeführten starken Störungen ergeben sich ausgeprägte, der Schwingungsfrequenz entsprechende regelmäßige Einschnürungen des die Bohrung 30 verlassenden Flüssigkeitsstrahls, die außerhalb der Bohrung 30 zufolge der Oberflächenspannung der Flüssigkeit weiter fortgebildet werden und so zu einer raschen Tropfenbildung führen. Damit die entstandenen Tropfen elektrostatisch aufgeladen werden können, ist eine Ringelektrode 33 vorgesehen, die im Durchmesser kleingehalten wird, weil dann schon bei niedrigen Spannungen eine ausreichende Aufladung der Tropfen erreicht werden kann. Es wird angestrebt, mit einer Spannung von 100 - 200 V arbeiten zu können. Diese Spannung muß im Augenblick des Tropfenabrisses an der Ringelektrode 33 anliegen. Spannungen dieser Größe lassen sich noch bequem mit hohen Frequenzen durch Transistoren schalten. Zum Zeitpunkt des Abrisses des Tropfens vom noch zusammenhängenden Strahl muß dieser auf einem 0 - Spannungspotential gegenüber der Ringelektrode 33 gehalten werden, damit auf dem abreißenden Tropfen eine negative Ladung verbleibt, und außerdem muß der Abriß im Bereich der Ringelektrode 33 erfolgen. Für die elektrische Verbindung mit der Druckkammer 29, die dauernd auf Erdpotential (= 0 V) gehalten wird, muß die innere Leitfähigkeit der Abdeckflüssigkeit sorgen. Daher ist es äußerst zweckmäßig, für die Abdeckflüssigkeit eine wässrige Emulsion von Kunstharzlacken oder eine wässrige Suspension von Pigmenten zu wählen. Die Ringelektrode 33 wird im Durchmesser kleingehalten, wodurch hohe Feldstärken bereits bei niedrigeren Schaltspannungen erreicht werden. Damit der aus der Bohrung 30 austretende Flüssigkeitsstrahl das Zentrum der Ringelektrode 33 mit möglichst großer Sicherheit trifft, wird diese Ringelektrode 33 so nahe wie möglich an den Austritt der Bohrung 30 herangeführt. Der Strahl muß an dieser Stelle gerade beginnen, in Tropfen zu zerfallen. Die Treffsicherheit des Ringelektrodenzentrums wird durch eine vertikale Strahlführung, wie bereits im Zusammenhang mit der Figur 2 erwähnt, wesentlich vergrößert, wobei für den notwendigen raschen Strahlzerfall entsprechend stark ausgeprägte Anfangseinschnürungen des aus der Bohrung 30 austretenden Flüssigkeitsstrahles sorgen, die durch eine entsprechend starke Schwingung der Nadel 31 erzwungen werden.

[0027] Die aufgeladenen Flüssigkeitstropfen, die hier das Bezugszeichen 34 tragen, werden anschließend durch die Wirkung eines über eine Elektrode 35 aufgebrachten Gleichspannungsfeldes auf einer gekrümmten Bahnlinie 36 in einen Fänger 37 geleitet. Von dort gelangen sie über die in Figur 1 erwähnten Rückleitungen 24 in die ebenfalls dort gezeigten Unterdrucktanks 23. Die nichtgeladenen Flüssigkeitstropfen 38 werden durch dieses Gleichspannungsfeld nicht abgelenkt und entsprechend setzen diese ihren Weg nahezu geradlinig entlang der Bahnlinie 39 fort, um schließlich auf das Sieb 1 zutreffen. Das Sieb 1 weist hier eine zur Bahn 39 der auf dieses auftreffenden, ungeladenen Tropfen 38 senkrechte Lage auf. Es kann aber durchaus zweckmäßig sein, dieses Sieb 1 gegenüber einer solchen Lage zu neigen, was im Zusammenhang mit der nächsten Figur 4 gezeigt wird. Die Abdeckflüssigkeit muß In ausreichendem Maße Feststoffe transportieren, um nach Eintrocknen auf dem Sieb 1 einen gut abdeckenden Film zu bilden, wodurch eine hohe Viskosität bedingt wird. Die hohe Zähigkeit hilft aber, daß nach der Aufbringung der Abdeckflüssigkeit auf das Sieb 1 diese trotz der wirkenden Fliehkraft am Auftreffort verbleibt und auch nicht auf Grund der hohen Auftreffgeschwindigkeit durch die Siebperforation hindurchschießt oder während des Auftreffens auf dem Sieb 1 in noch kleinere Tröpfchen zerspritzt.

[0028] Damit die Ringelektrode 33 auch während langer Betriebszeiten sauber bleibt, wird eine kombinierte Flüssigkeits- und Luft- oder Inertgaszufuhr in den Bereich der Ringelektrode 33 durchgeführt. Knapp vor Beginn des Spritzbetriebs wird durch Bohrungen 40 zunächst Flüssigkeit eingeleitet, um die Ringelektrode 33 zu reinigen. Anschließend wird diese durch die gleichen Bohrungen 40 trocken geblasen, etwa durch trockene, enwärmte Luft oder ein Inertgas. Die gleiche Ausgestaltung der Düse wird zusätzlich genutzt, um ein Eintrocknen der dünnen Bohrung 30 während längerer Arbeitspausen zu verhindern. In diesem Fall wird durch die Bohrungen 40 der anschließende Luftraum 41 vor der Bohrung 30 und innerhalb der Ringelektrode 33 mit Spülflüssigkeit gefüllt. Diese Spülflüssigkeit wird unter einem sehr geringen Überdruck gehalten (etwa 10 bis 20 mm Wassersäule), wodurch sich noch innerhalb des Düsenkanals 42 ein Flüssigkeitsmeniskus 43 ausbildet, der über längere Zeit bestehen kann, und der ein Austreten von Flüssigkeit aus dem Düsenkanal 42 verhindert. Diese Befüllung schützt die dünne Bohrung 30 vor dem Eintrocknen. Um der Flüssigkeit einen möglichst guten Zutritt zu der Bohrung 30 zu ermöglichen, kann eine kegelförmige Ansenkung 44 vorgesehen ein. Durch sie öffnet sich die Bohrung 30 in den Düsenkanal 42 in Richtung der Ringelektrode 33. Es kann aber auch zweckmäßig sein, die Spülflüssigkeit nicht in Kontakt mit der Abdeckflüssigkeit innerhalb der Bohrung 30 treten zu las sen, um letztere nicht zu verdünnen. In diesem Fall entfällt die konische Ansenkung 44, und es findet sich an dieser Stelle nur ein entsprechend klein gehaltener zylindrischer Bohransatz. Die Spülflüssigkeit wird dann auch in dieser Bohrung einen Meniskus bilden, ähnlich dem Meniskus 43. Einen ebensolchen bildet die Abdeckflüssigkeit am Ausgang der Bohrung 30. Zwischen beiden Menisken befindet sich dann ein kleiner Luftraum, der dank seines kleinen Volumens rasch mit dampfförmigen Molekülen der leicht abdampfbaren Komponenten des Abdecklackes und der Spülflüssigkeit gesättigt wird. Eine weitere Abdunstung dieser Komponenten aus dem Abdecklack ist dann nicht mehr möglich, so daß ein Eintrocknen verhindert wird, ohne die Gefahr, daß die Abdeckflüssigkeit durch Spülflüssigkeit vedünnt wird.

[0029] Die Düse 2 wird auch während der Ausbringung von Abdeckflüssigkeit auf das Sieb 1 von Luft durchströmt. Dadurch hält die aus den Bohrungen 40 austretende Trockenluft kleine Sekundärtröpfchen von der Ringelektrode 33 ab und diese somit sauber. Solche Sekundärtröpfchen entstehen gleichzeitig mit den Haupttropfen bei dem Zerfall des aus der Bohrung 30 austretenden Flüssigkeitsstrahls. Wegen der Kleinheit und der geringen Masse dieser Sekundärtröpfchen können diese durch den Abschnürungsvorgang der Haupttropfen an die Ringelektrode 33 geschleudert werden. Würden sich dort Tropfenansätze bilden, dann könnte mit der Zeit die einwandfreie Funktion der Elektrode in Frage gestellt werden. Ein weiterer Effekt ergibt sich bei der Durchströmung des diffusorartigen Kanals 42. Hier sollte die Fluggeschwindigkeit der Tropfen zwar etwas aber nicht zu stark verzögert werden, da sich diese erst nach dem Auftreffen auf dem Sieb 1 berühren dürfen. Eine Berührung der Flüssigkeitstropfen noch innerhalb des Düsenkanals 42 würde zur sofortigen Bildung von großen Tropfen führen, die wiederum wegen des spezifisch geringeren Luftwiderstandes weitere Normal-Tropfen einfangen und in Summe führen diese Vorgänge zu einer Verfälschung des elektrisch aufgeprägten Musterbildes. Diese Erscheinung kann dann verhindert werden, wenn die Tropfen auf ihrer Flugbahn innerhalb des Düsenkanals 42 von einer laminaren Luftströmung eingehüllt werden, die eine hierzu geeignete Strömungsgeschwindigkeit aufweist. Durch eine solche Luftströmung kann auch eine Vortrocknung der Einzeltropfen erreicht werden. Dies bringt Vorteile, wenn der Tropfen am Sieb 1 aufschlägt. Durch eine Vortrocknung läßt sich die Tropfenviskosität erhöhen und außerdem die Größe der Tropfen verringern. Dadurch wird ein Zerplatzen des Tropfens in viele kleine Einzeltropfen beim Auftreffen auf das Sieb 1 und die Ausbildung einer entsprechend unscharfen Lackkontur vermieden. Für eine ausreichende Vortrocknung ist allerdings eine verhältnismäßig große Länge des Düsenkanals 42 erforderlich, was insbesondere bei parallel zum Gravitationsfeld verlaufender Achse des Düsenkanals 30 möglich ist, also bei vertikaler Düsenachse.

[0030] Die Figur 4 zeigt den Gesamtaufbau der Düse nach Figur 3. Es gelten dabei die gleichen Bezugszeichen wie in Figur 3. Die Auftreffrichtung der Tropfen 38 auf das Sieb 1 ist hier nicht mehr senkrecht, sondern liegt unter einem Winkel 45. Dies hilft, die Tropfen an einem Hindurchtreten durch das Sieb 1 zu hindern, weil sich dann vor jedem Tropfen in der Richtung seiner Flugbahn stets eine Materialwand befindet. Darüber hinaus ergibt sich eine verminderte Relativgeschwindigkeit zwischen Tropfen und Sieb, wodurch ebenfalls die Gefahr des Zerplatzens der Tropfen verringert wird. Die Nadel 31 ist in einem Nadelhalter 46 gefaßt, der als Stufenhorn ausgebildet ist, d. h. der Durchmesser des Nadelhalters 46 nimmt zur Spitze der Nadel 31 hin ab. Dies verstärkt die in den Nadelhalter 46 eingeleitete Amplitude der hochfrequenten mechanischen Schwingung, so daß die Nadel 31 im Bereich der Bohrung 30 mit maximaler Amplitude schwingt. Der Nadelhalter 46 ist fest in einer Membran 47 gefaßt und diese wird durch ein Piezoelement 48 zu der hochfrequenten Schwingung angeregt. Ein Druckstück 49 leitet diese Schwingung an die Membran 47 weiter, wodurch die in der Druckkammer 29 befindliche Flüssigkeit auch durch die Membran 47 selbst druckbeaufschlagt wird. Um dies zu gewährleisten, müssen die Zuleitungen zur Druckkammer 29 entsprechend dünn ausgelegt sein. Bei entsprechender Ausbildung des Druckstückes 49 kann bereits hier eine Vorverstärkung der Schwingungsamplitude auf mechanischem Weg erreicht werden. Das Piezoelement 48 wird durch nicht mehr dargestellte Versorgungsleitungen mit einer der Eigenfrequenz der Düsenanordnung entsprechenden hochfrequenten Sinus- oder Rechteckspannung angeregt. Da das Piezoelement 48 sandwichartig aus sehr vielen dünnen Schichten zusammengesetzt ist, genügen bereits geringe elektrische Spannungen, um heftige Kontraktionen bzw. Elongationen insbesondere im Bereich der Eigenfrequenz der Gesamtanordnung zu erzeugen. Das Piezoelement 48 wird statisch in seiner Längsrichtung durch eine Druckschraube 50 vorgespannt, und eine Kontramutter 51 sichert diese Schraubeneinstellung. Ein Gehäuse 52 schließt statisch und dynamisch den Kraftfluß aller Einzelbauteile. Die Bohrung 30 der Düse 2 ist in einem Saphirplättchen 53 ausgeführt, welches von einer Schraube 54 in eine Halterung 55 gepreßt und auf diese Weise dort fixiert wird. Durch die Wahl des Bohrungsmaterials Saphir wird die durch die Nadelschwingung bedingte Gefahr des Verreibens oder Verschweißens der Nadel 31, die aus einem metallischen Material besteht, mit der Bohrungswandung weitgehend gemindert.

[0031] Es sei noch darauf hingewiesen, daß die Ringelektrode 33 mit einer Zuleitung 56 verbunden ist, um erstere mit einem elektrischen Potential über die Zuleitung 56 versorgen zu können.

[0032] Eine weitere Ausführungsform einer elektrostatischen Düse zur Durchführung des erfindungsgemäßen Verfahrens ist in Figur 5 gezeigt. Auch hier sind die gleichen Elemente wie in den Figuren 3 und 4 mit den gleichen Bezugszeichen versehen und werden nicht nochmals erläutert. Die Bohrung 30 ist bei diesem Ausführungsbeispiel so klein, beispielsweise im Enddurchmesser 17 µm, daß sie nicht mehr von der Nadel 31 in ihrer ganzen Länge durchsetzt werden kann. Die Nadel 31 reicht daher nur bis in die Nähe der engsten Bohrungsstelle. Die Wirkung der Nadel 31 ist aber ähnlich der Wirkung, die früher beschrieben wurde. Eine Schwingungsbewegung der Nadel 31 in Richtung zum Düsenaustritt steigert sowohl auf Grund der Wandschubkräfte als auch auf Grund der Verdrängungswirkung der Nadelstirnfläche 32 den Druck im Düseninnenraum 57. Die entsprechende Rücklaufbewegung der Nadel 31 bewirkt eine Druckminderung. Hierdurch werden wiederum starke Störungen dem austretenden Flüssigkeitsstrahl aufgeprägt und dieser zeigt eine starke Neigung zum geregelten und raschen Zerfall. Die Bildung der Einzeltropfen findet im Bereich der Ringelektrode 33 statt, die auch hier mit einer geeigneten Zuleitung zum Anlegen eines elektrostatischen Potentials versehen ist. Der Düseninnenraum 57, in welchem sich die Nadel 31 bewegt, wird durch einen Düsenkörper 58 erhalten, der aus Hartmetall oder Keramik hergestellt ist. Dieser Düsenkörper 58 ist in eine Bohrung 59 der Halterung 55 eingesetzt, wobei der Nadelhalter 46 noch teilweise in die Bohrung 59 hineinragen kann.

[0033] In den Figuren 6, 7 und 8 ist der Gesamtaufbau der Düse nach Fig. 5 dargestellt. Die Figur 6 zeigt den Schnitt durch einen Aufriß der Düse, die Figur 7 den Kreuzriß und die Figur 8 einen Querschnitt durch die Düse. Es sind wiederum gleiche Elemente wie in den Figuren 3 bis 5 mit den gleichen Bezugszeichen versehen und werden nicht nochmals beschrieben.

[0034] Ein Halter 60 preßt ein Mundstück 61, in welches die Ablenkelektrode 35 eingegossen ist, gegen den Düsengrundkörper 62. Der Düsenkanal 42 verläuft durch das Mundstück 61 hindurch und ist eingangsseitig mit der Ringelektrode 33 umgeben. Sie wird ebenfalls durch das Mundstück 61 getragen. Die schwingende Membran 47 befindet sich zwischen dem Gehäuse 52 und dem Düsengrundkörper 62. Dabei ist die schwingende Membran 47 zwischen Gehäuse 52 und Düsengrundkörper 62 eingespannt, wobei sie durch ein etwa 0,5 bis 1,0 mm dickes Stahlplättchen gebildet wird, welches wegen der besonderen Art der Einspannung nur in einem Umgebungsbereich der Nadel 31 Biegeschwingungen ausführen kann. Im darüberhinausragenden Bereich wird diese Membran 47 als Klemmelement für ein Mikrosieb 63 verwendet. Die relativ große Dicke der Membran bedingt Eigenfrequenzen, die zwischen 200 und 300 kHz liegen. Das Mikrosieb 63 ist zwischen der Membran 47 und dem Düsengrundkörper 62 eingespannt und verhindert, daß Partikel, die größer als 5 µm sind, und die unbeabsichtigt mit der Abdeckflüssigkeit mitgeführt werden, in das zur Düse führende Kanalsystem eintreten. Hier hilft die über das Mikrosieb 63 im Eintrittsbereich der Flüssigkeit geführte Membran 47 und die in diese eingeleitete Ultraschallschwingung eine Blockade des Mikrosiebs 63 durch sich verhakende Pigmente zu vermeiden. Um eine möglichst große Filterfläche des Mikrosiebes 63 auszunutzen, wird dieses von einem System sehr kleiner feingefräster Stützkanäle 64 gehalten. Die Abdeckflüssigkeit wird durch die Versorgungsleitung 22 der Düse 2 zugeleitet. Diese Versorgungsleitung 22 ist mittels einer Überwurfmutter 65 auf ein Klemmstück 66 dicht aufgesetzt.

[0035] Über eine Luft- Wasserversorgungsleitung 67 wird die für die Reinigung und die Trocknung der Düse 2 erforderliche Flüssigkeit bzw. die notwendige Luft der Düse 2 im Bedarfsfall zugeführt. Auch diese Leitung 67 wird mit einer Überwurfmutter 68 gegen ein Einschraubklemmstück 69 gepreßt. Die Leitung 67 führt zu einem Umschaltventil 70, welches hier symbolisch dargestellt ist und sich in einer größeren Entfernung von der Düse 2 befindet.

[0036] In Figur 8 ist zu erkennen, daß das Piezoelement 48 innerhalb des Gehäuses 52 durch zwei kurze Gewindestifte 71 in einer Symmetrielage relativ zum Gehäuse 52 gehalten wird.

[0037] Die in den Figuren 3 bis 8 beschriebenen Elektrostatikdüsen eignen sich in besonderer Weise dazu, das Verfahren durchzuführen, da sich mit ihnen auch eine hochviskose bzw. zähe Abdeckflüssigkeit tropfenweise auf das Sieb aufspritzen läßt, ohne daß dazu die Baulänge der Düse und damit die Abmessungen der Vorrichtung zur Durchführung des Verfahrens extrem große Werte annehmen müssen. Die Abdeckflüssigkeit ist resistent gegen Abrasion und gegen chemische Einflüsse der Druckchemikalien.


Ansprüche

1. Vorrichtung zur Herstellung von Druckschablonen, mit einer an sich bekannten Bearbeitungsstation, die wenigstens eine Lagereinrichtung (5, 6) zur stirnseitigen Lagerung eines hohlzylinderförmigen Siebes (1), eine Antriebseinrichtung (9, 10, 11) zur Drehung des Siebes (1) um seine Zylinderachse (1b), einen parallel zur Zylinderachse (1b) bewegbaren Bearbeitungstisch (14) und eine Steuereinrichtung (4) zur Steuerung der Antriebseinrichtung (9, 10, 11), des Transports des Bearbeitungstisches (14) sowie zur Steuerung einer auf dem Bearbeitungstisch (14) angeordneten Werkzeugstation aufweist, dadurch gekennzeichnet, daß die Werkzeugstation aus wenigstens einer zur Ausspritzung von Flüssigkeit geeigneten Düse (2) besteht.
 
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Werkzeugstation mehrere in Längsrichtung des hohlzylinderförmigen Siebes (1) nebeneinander angeordnete Düsen (2, 2) aufweist.
 
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß jede Düse (2) mit einem Überdruckbehälter (21) für aufzuspritzende Flüssigkeit in Verbindung steht.
 
4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß jede Düse (2) mit einem Unterdruckbehälter (23) in Verbindung steht, in den von der Düse (2) ausgespritzte, unverbrauchte Flüssigkeit zurückgeführt wird.
 
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß eine Düsenlängsachse (39) im wesentlichen parallel und außerhalb einer die Zylinderachse (1b) aufnehmenden Horizontalebene liegt.
 
6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Düsenlängsachse (39) im wesentlichen in Vertikalrichtung verläuft.
 
7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Düse (2) elektrische Ausspritzsignale (S₁, S₂) von der Steuereinrichtung (4) in Übereinstimmung mit einem vorgegebenen Muster sowie in Abhängigkeit der Drehstellung des Siebzylinders (1) und der Position des Bearbeitungstisches (14) empfängt.
 
8. Vorrichtung nach Anspruch 2 und 7, dadurch gekennzeichnet, daß die Düsen (2, 2) unterschiedliche Bereiche des Siebzylinders (1) beaufschlagen und die Steuereinrichtung (4) die elektrischen Ausspritzsignale (S₁, S₂) zur jeweiligen in Transportrichtung des Bearbeitungstisches (14) weiter hinten liegenden Düse (2) zeitverzögert ausgibt.
 
9. Vorrichtung nach Anspruch 2 und 7, dadurch gekennzeichnet, daß alle Düsen (2, 2) denselben Bereich des Siebzylinders (1) beaufschlagen und die Steuereinrichtung (4) die elektrischen Ausspritzsignale (S₁, S₂) zu allen Düsen gleichzeitig überträgt.
 
10. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß sich in Drehrichtung des Siebzylinders (1) gesehen hinter dem jeweiligen Flüssigkeitsauftreffpunkt eine Heizeinrichtung (H) und/oder Bestrahlungseinrichtung zur Erhitzung und/oder UV-Bestrahlung der auf dem Siebzylinder (1) aufgespritzten Flüssigkeit befindet.
 
11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß die Heizeinrichtung (H) und/oder die UV-Bestrahlungseinrichtung auf dem Bearbeitungstisch (14) montiert sind.
 
12. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß Warmluft ins Innere des Siebes (1) einblasbar ist.
 
13. Vorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Düse (2) zur Ausspritzung einer hochviskosen bzw. zähen Abdeckflüssigkeit ausgebildet ist.
 
14. Vorrichtung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß die Düse (2) so ausgebildet ist, daß durch sie die Flüssigkeit in feinsten Tröpfchen auf das Sieb (1) aufbringbar ist.
 
15. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, daß die Düse (2) eine Elektrostatikdüse ist.
 
16. Vorrichtung nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß die Düse (2) zusätzlich zur Abdeckflüssigkeit einen laminaren Gasstrom ausstößt.
 
17. Vorrichtung nach Anspruch 14 und 16, dadurch gekennzeichnet, daß die Geschwindigkeit des laminaren Gasstromes so gewählt ist, daß sich einmal gebildete Flüssigkeitströpfchen auf ihrem Weg zur Sieboberfläche nicht mehr einander nähern können.
 
18. Vorrichtung nach Anspruch 16 oder 17, dadurch gekennzeichnet, daß der laminare Gasstrom gegenüber der Umgebungstemperatur eine erhöhte Temperatur aufweist.
 




Zeichnung